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An integral criterion for the existence of an invariant measure of an Itô process is developed. This new crite-
rion is based on the probabilistic symbol of the Itô process. In contrast to the standard integral criterion for
invariant measures of Markov processes based on the generator, no test functions and hence no information
on the domain of the generator is needed.
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1. Introduction

Consider (�,F , (Ft )t≥0, (Xt )t≥0,P
x)x∈Rd to be a Feller process on R

d with semigroup (Tt )t≥0
on C0(R

d), that is,

Ttf (x) =
∫
Rd

f (y)μt (x,dy) = E
x
[
f (Xt )

]
,

where μt(x,dy) = P
x(Xt ∈ dy) = P(Xt ∈ dy|X0 = x) are the transition probabilities and

C0(R
d) are the continuous, real-valued functions on Rd vanishing at infinity. Then the infinites-

imal generator A of X is defined by

Af = lim
t→0

Ttf − f

t

for all functions f in the domain of A, that is, all f in

D(A) =
{
f ∈ C0

(
R

d
)
, lim
t→0

Ttf − f

t
exists in ‖ · ‖∞

}
.

It is known (see, e.g., [17], Theorem 3.37) that a probability measure μ on R
d is invariant (or

stationary) for the Feller process X with semigroup (Tt )t≥0, meaning that∫
Rd

Ttf (x)dμ(x) =
∫
Rd

f (x)dμ(x), ∀f ∈ C0
(
R

d
)
, t ≥ 0,
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if and only if ∫
Rd

Af (x)μ(dx) = 0 (1.1)

holds for all f in a core of the generator A.
In the special case that X is a rich Feller process, that is, a Feller process with the property that

the test functions C∞
c (Rd) are contained in the domain D(A) of the generator, this generator is

a pseudo-differential operator with negative definite symbol p(x, ξ)

Af (x) = −
∫
Rd

eix′ξp(x, ξ)f̂ (ξ)dξ (1.2)

for all f ∈ C∞
c (Rd) (see, e.g., [7], Definition 2.25 and Corollary 2.23). Hereby the superscript “ ′”

denotes the transpose of a vector, f̂ (y) = (2π)−d
∫
Rd e−ix′yf (x)dx denotes the Fourier trans-

form of f and C∞
c (Rd) is the space of infinitely often continuously differentiable functions on

R
d with compact support. Thus in this case, equations (1.1) and (1.2) together yield that if μ is

an invariant law for X, then for all f in C∞
c (Rd) one has∫

Rd

∫
Rd

eix′ξp(x, ξ)f̂ (ξ)dξμ(dx) = 0. (1.3)

Conversely, if (1.3) holds for all f in a core D ⊂ C∞
c (Rd) ∩ D(A) of A, then μ is an invariant

law for X.
Further, formally applying Fubini’s theorem on equation (1.3) leads to∫

Rd

eixξp(x, ξ)μ(dx) = 0, for λ-almost all ξ ∈ R
d, (1.4)

where λ denotes the Lebesgue measure. Observe that (1.4) is an equation directly relating the
symbol to the invariant law and does not involve any test functions. This is a big advantage for
application of (1.4) compared to (1.1) where we started from.

As a trivial example of application, consider L to be a Lévy process, that is, we have
p(x, ξ) = ψL(ξ) where ψL denotes the Lévy–Khintchine exponent of L. Then (1.4) is equiv-
alent to ψL(ξ)φμ(ξ) = 0 where φμ denotes the characteristic function of μ. Since this char-
acteristic function is continuous and takes the value 1 at 0 this yields that ψL(ξ) = 0 for ξ in
some neighborhood of 0 which implies that ψL(ξ) = 0 for all ξ (cf. [22], Lemma 13.9). Hence,
Lt = 0. Indeed the zero process is the only Lévy process which admits an invariant law (cf. [22],
Exercise 19.6). On the contrary, for the zero process (1.4) follows immediately.

Instead of making the above computations rigorous in the case of rich Feller processes, in this
paper we will consider a wider class of processes. Therefore recall that in the case of general
Markov processes, necessity of equation (1.1) for μ to be invariant is still given. For example,
[11], Proposition 9.2, states that if a distribution μ is invariant for a Markov process X then (1.1)
holds for all f in the domain of the generator of X. Remark that one part of the literature on
Markov processes (and so [11]) defines the generator on functions with bounded support, that is,
in Cb(R

d) ⊃ C0(R
d) which does not fit into the setting we described above and which we will

use throughout this paper.
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For the converse direction in the Markovian setting, that is, to show sufficiency of (1.1) for
μ to be invariant, further assumptions on the generator are needed as discussed for example, in
[10] and [5]. This is the reason why sometimes (e.g., in [1]) a probability measure μ is called
infinitesimal invariant for a given generator and domain, if and only if (1.1) is fulfilled for all f

in the domain of the generator.
General Markov processes do not necessarily have an associated symbol. Hence in this paper,

we restrict ourselves to Itô processes as they are defined below (Definition 2.2). This class in-
cludes the rich Feller processes, but is much more general. For these Itô processes, we derive the
relation between the symbol of an Itô process as defined below and its invariant law. In particu-
lar, our aim is to show in as much generality as possible, that for an Itô process X with symbol
p(x, ξ) equation (1.4) holds if (and only if) μ is an (infinitesimal) invariant law for X.

The paper is outlined as follows. In Section 2, we recall the necessary definitions of Itô pro-
cesses and symbols as they will be used throughout this paper. Section 3 then shows necessity of
(1.4) for μ to be an invariant law for a wide class of Itô processes. Several examples are given
and some special cases are studied. Sufficiency of (1.4) for μ to be infinitesimal invariant is then
treated in Section 4 and again it is illustrated by special cases. Some rather technical proofs for
results in Section 3 have been postponed to the closing Section 5.

2. Preliminaries

In 1998, Jacob came up with the idea to use a probabilistic approach in order to calculate the
so-called symbol of a stochastic process [14]. This probabilistic formula was generalized in the
same year to rich Feller processes by Schilling [23]. Let us recall the definition.

Definition 2.1. Let (Xt )t≥0 be a Markov process in R
d . Define for every x, ξ ∈R

d and t ≥ 0 the
quantity

λξ (x, t) := −E
xei(Xt−x)′ξ − 1

t
.

We call p :Rd ×R
d → C given by

p(x, ξ) := − lim
t↓0

E
xei(Xt−x)′ξ − 1

t
= lim

t↓0
λξ (x, t) (2.1)

the probabilistic symbol of X if the limit exists for every x, ξ .

For rich Feller processes satisfying the growth condition

sup
x∈Rd

∣∣p(x, ξ)
∣∣ ≤ c

(
1 + ‖ξ‖2), ξ ∈R

d , (2.2)

for ‖ · ‖ denoting an arbitrary submultiplicative norm, the probabilistic symbol and the symbol in
equation (1.2) coincide. This is why we use the letter p and call the new object again “symbol”.
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Remark that (2.2) is a standard condition in this context. We refer to [7] for a comprehensive
overview on Feller processes and their symbol.

The class of rich Feller processes includes Lévy processes as special case. For these, the sym-
bol only depends on ξ and coincides with the Lévy exponent, that is,

p(x, ξ) = ψL(ξ) := − logE
[
eiL′

1ξ
] = −i�′ξ + 1

2
ξ ′Qξ −

∫
Rd

(
eiξ ′y −1− iξ ′y1{‖y‖<1}(y)

)
N(dy),

where (Lt )t≥0 is a Lévy process with characteristic triplet (�,Q,N). For details on Lévy pro-
cesses in particular, we refer to [22].

On the other hand, every rich Feller process is an Itô process (cf. [26], Theorem 3.9) in the
following sense. It is this class we are dealing with in the present paper.

Definition 2.2. An Itô process is a strong Markov process, which is a semimartingale w.r.t. every
P

x having semimartingale characteristics of the form

B
(j)
t (ω) =

∫ t

0
�(j)

(
Xs(ω)

)
ds, j = 1, . . . , d

C
jk
t (ω) =

∫ t

0
Qjk

(
Xs(ω)

)
ds, j, k = 1, . . . , d (2.3)

ν(ω;ds,dy) = N
(
Xs(ω),dy

)
ds

for every x ∈ R
d with respect to a fixed cut-off function χ . Here, �(x) = (�(1)(x), . . . , �(d)(x))′

is a vector in R
d , Q(x) is a positive semi-definite matrix and N is a Borel transition kernel such

that N(x, {0}) = 0. We call �, Q and n := ∫
y �=0(1 ∧‖y‖2)N(·,dy) the differential characteristics

of the process.

Usually we will have to impose the following condition on the differential characteristics of
Itô processes.

Definition 2.3. Let X be a Markov process and f :Rd → R be a Borel-measurable function.
Then f is called X-finely continuous (or finely continuous, for short) if the function

t �→ f (Xt ) = f ◦ Xt (2.4)

is right continuous at zero P
x -a.s. for every x ∈R

d .

Remark 2.4. Fine continuity is usually introduced in a different way (see [6], Section II.4,
and [12]). However, by [6], Theorem 4.8, this is equivalent to (2.4). It is this kind of right con-
tinuity which we will use in our proofs. Let us mention that this assumption is very weak, even
weaker than ordinary continuity.

In [8], the class of Itô processes in the sense of Definition 2.2 has been characterized as the set
of solutions of very general SDEs. In particular, as mentioned already, the class of Itô processes
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contains the class of rich Feller processes. The following example (cf. [25], Example 5.2) shows
that this inclusion is strict: The process

Xx
t =

{
x − t under Px for x < 0,
0 under Px for x = 0,
x + t under Px for x > 0,

t ≥ 0,

is an Itô process with bounded and finely continuous differential characteristics which is not
Feller.

For Itô processes, we can compute the probabilistic symbol. In particular, we even have the
following connection of probabilistic symbol and generator.

Lemma 2.5. If the test functions C∞
c (Rd) are contained in the domain D(A) of the generator

A of an Itô process X, the representation (1.2) holds for every f ∈ C∞
c (Rd), where p(x, ξ) is

the probabilistic symbol.

Proof. An operator A with domain D(A) is called the extended generator of X, if D(A) consists
of those Borel measurable functions f for which there exists a (Bd)∗-measurable function Af

such that the process

M
f
t := f (Xt ) − f (X0) −

∫ t

0
Af (Xs)ds

is a local martingale (cf. [9], Definition 7.1). Here, (Bd)∗ denotes as usual the universally mea-
surable sets (see, e.g., [6], Section 0.1). We have C∞

c (Rd) ⊂ D(A) ⊂ D(A) and A|(D(A)) =A
by Dynkin’s formula. By [9], Theorem 7.16, we obtain that

−Af (x) = −
∑
j≤d

�(j)(x)Djf (x) − 1

2

∑
j,k≤d

Qj,kDj,kf (x)

−
∫

y �=0
f (x + y) − f (x) − χ(y)

∑
j≤d

y(j)Djf (x)N(x,dy)

=
∫
Rd

eix′ξp(x, ξ)f̂ (ξ)dξ

for every f ∈ C∞
c (Rd) which is (1.2). �

To end this section, let us also mention that there exists a formula to calculate the symbol even
for the wider class of homogeneous diffusions with jumps in the sense of [15] (cf. [27], Theo-
rem 3.6). However, this formula uses stopping times and can not be used in our considerations. In
the proof of Theorem 3.3 below, we have to use the classical version of the probabilistic symbol
presented above.

For the even wider class of Hunt semimartingales, the limit (2.1) is not defined and hence the
symbol does not exist any more (cf. [19]).
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3. Necessity

We start by showing the necessity of (1.4) for μ to be an invariant law.

Theorem 3.1. Let (Xt )t≥0 be an Itô process with generator A whose domain D(A) contains the
test functions C∞

c (Rd) and with symbol p(x, ξ). Assume μ is an invariant measure for X such
that

∫
Rd |p(x, ξ)|μ(dx) < ∞. Then∫

Rd

eix′ξp(x, ξ)μ(dx) = 0 ∀ξ ∈R
d .

Proof. It is well known, that for an invariant measure μ it holds∫
Rd

Af (x)μ(dx) = 0 for all f ∈ D(A).

By Lemma 2.5, the generator A admits the representation (1.2) for all f ∈ C∞
c (Rd). Hence using

Fubini’s theorem, we obtain for all f ∈ C∞
c (Rd)

0 =
∫
Rd

Af (x)μ(dx) = −
∫
Rd

∫
Rd

eix′ξp(x, ξ)f̂ (ξ)dξμ(dx)

= −
∫
Rd

f̂ (ξ)

∫
Rd

eix′ξp(x, ξ)μ(dx)dξ.

This yields that for λ-a.a. ξ it holds
∫
Rd eix′ξp(x, ξ)μ(dx) = 0. Since by hypothesis p(x, ξ) is

absolutely integrable with respect to μ, its Fourier transform with respect to μ is continuous.
This gives the claim. �

Example 3.2. Let (Xt )t≥0 be a generalized Ornstein–Uhlenbeck process, defined as the unique
solution of

dXt = Xt− dUt + dLt , t ≥ 0,

for two independent Lévy processes (Ut )t≥0 and (Lt )t≥0. It has been shown in [3], Theorem 3.1,
that X is a Feller process, that the domain of its generator contains C∞

c (R) and that C∞
c (R) is a

core for the generator.
Further it follows from the results in [24] that the symbol of X is given by

p(x, ξ) = ψU(xξ) + ψL(ξ), x, ξ ∈R.

Assume μ is a probability measure on R such that
∫

x2μ(dx) < ∞. Then due to the specific
form of the symbol

∫
Rd |p(x, ξ)|μ(dx) < ∞ is automatically fulfilled. Hence, we see from The-

orem 3.1 that ∫
R

eixξψU(xξ)μ(dx) = −ψL(ξ)φμ(ξ) (3.1)



A criterion for invariant measures 1703

is a necessary condition for μ to be invariant for X. Remark that equation (3.1) has also been
obtained in [3], Theorem 4.1.

In general, we have only little or no information on the domain of the generator of an Itô
process which makes the above theorem inapplicable. We will see in the following, that it is
possible to obtain similar results without any information on the domain of the generator by
using the probabilistic definition of the symbol directly. The first case we consider is the Itô
process with bounded and finely continuous differential characteristics. Examples include Feller
processes satisfying the growth condition (2.2). Although the boundedness assumption seems to
be rather restrictive, this class of processes already contains various interesting examples, which
are used in stochastic modeling and mathematical statistics (see, e.g., Example 3.5 below).

Theorem 3.3. Let (Xt )t≥0 be an R
d -valued Itô process with bounded, finely continuous differ-

ential characteristics which admits an invariant law μ and whose symbol is given by p(x, ξ),
x, ξ ∈R

d . Then ∫
Rd

eix′ξp(x, ξ)μ(dx) = 0 for all ξ ∈R
d .

For the proof of Theorem 3.3, we need the following lemma, which also shows the form of the
symbol in the given setting.

Lemma 3.4. Let (Xt )t≥0 be an R
d -valued Itô process with bounded, finely continuous differen-

tial characteristics. For every ξ ∈ R
d the limit

p(x, ξ) := − lim
t↓0

Exei(Xt−x)′ξ − 1

t
= lim

t↓0
λξ (x, t)

exists and the functions λξ are globally bounded in x (and t ) for every ξ ∈ R
d . As the limit, we

obtain

p(x, ξ) = −i�(x)′ξ + 1

2
ξ ′Q(x)ξ −

∫
y �=0

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(x,dy). (3.2)

The proof of Lemma 3.4 is postponed to Section 5.

Proof of Theorem 3.3. Let X∞ be a random variable such that μ = L(X∞) where “L” stands
for “law of”. Then using Lemma 3.4, we obtain by Lebesgue’s dominated convergence theorem∫

Rd

eix′ξp(x, ξ)μ(dx) = −
∫
Rd

eix′ξ lim
t→0

E
x

[
ei(Xt−x)′ξ − 1

t

]
μ(dx)

= − lim
t→0

1

t

∫
Rd

eix′ξ
E

x
[
ei(Xt−x)′ξ − 1

]
μ(dx),
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with ∫
Rd

eix′ξ
E

x
[
ei(Xt−x)′ξ − 1

]
μ(dx) =

∫
Rd

E
x
[
eiX′

t ξ
]
μ(dx) −

∫
Rd

eix′ξμ(dx)

=
∫
Rd

E
[
eiX′

t ξ |X0 = x
]
μ(dx) −E

[
eiX′∞ξ

]
= E

[
eiX′∞ξ

] −E
[
eiX′∞ξ

]
= 0. �

The following example is taken from [16], Section 5.7. It is derived by a transformation from
a classical example due to Barndorff-Nielsen [2].

Example 3.5. Let (Xt )t≥0 be the unique solution of the SDE

dXt = b(Xt )dt + σ(Xt )dWt, t ≥ 0,

with X0 = x0, a standard Brownian motion (Wt)t≥0,

b(x) = −
(

ϑ + c2

2 cosh(x)

)
sinh(x)

cosh2(x)
and σ(x) = c

cosh(x)
,

where ϑ, c > 0. For x0 ∈ R the scale density and the speed density of X are then given by

s(x) := exp

(
−2

∫ x

x0

b(u)

σ 2(x)
du

)
and m(x) := 1

σ 2(x)s(x)
.

Since
∫

s(x)dx = ∞ while M := ∫
m(x)dx < ∞, we are in the setting of [16], Section 5.2.

There, the authors restate the well-known fact that the unique stationary distribution of the pro-
cess X in this case admits the density

π(x) = m(x)

M
.

By our above result, this means∫
eixξ

(∣∣σ(x)
∣∣2|ξ |2 − ib(x)ξ

)
π(x)dx = 0

since p(x, ξ) = |σ(x)|2|ξ |2 − ib(x)ξ is the symbol of X by [24], Theorem 3.1.

3.1. Lévy driven SDEs

In general, we can not drop the boundedness assumption on the differential characteristics which
we have used in Theorem 3.3. This assumption corresponds to bounded coefficients of the SDEs
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whose solutions are the considered Itô processes. However, in some cases we are able to gen-
eralize our result as shown in the following proposition where a linearly growing coefficient is
allowed. Another possible extension of Theorem 3.3 will be stated in Proposition 3.12 below.

Proposition 3.6. Let (Xt )t≥0 be the unique solution of the SDE

dXt = −aXt dt + �(Xt−)dLt , t ≥ 0,

where a ∈R, � :Rd → R
d×n is bounded and locally Lipschitz continuous and (Lt )t≥0 is a Lévy

process in R
n satisfying E‖L1‖ < ∞. Then X is an Itô process and for every ξ ∈ R

d the limit
p(x, ξ) = limt↓0 λξ (x, t) exists and the functions λξ are globally bounded in x (and t ) for every
ξ ∈R

d . Furthermore if μ is an invariant law of X, then∫
Rd

eix′ξp(x, ξ)μ(dx) =
∫
Rd

eix′ξ (ψL

(
�(x)′ξ

) + iax′ξ
)
μ(dx) = 0 for all ξ ∈R

d .

The proof of Proposition 3.6 is postponed to Section 5.

Remarks 3.7.

(i) The structure of the symbol in Proposition 3.6 is not surprising. It is exactly what one
would get for the generalized symbol which uses stopping times (see [27], Theorem 3.6).
However, it is important to see that for the classic probabilistic symbol, as we have to use
it in our context, the convergence of the λξ (x, t) is uniform.

(ii) The class of Itô processes studied in the above proposition is a subset of the class of
solutions of delay equations for which stationarity was treated in [21]. Remark that even
in their general paper, the authors have to impose the boundedness condition on � ([21],
Assumption 4.1(c)).

(iii) Although the assumption of L having a finite first moment seems very restrictive, it can-
not be released.

As an example consider the Lévy-driven Ornstein–Uhlenbeck (OU) process

Xt = e−λt

(
X0 +

∫
(0,t]

eλs dLs

)
, t ≥ 0,

for λ > 0 and a symmetric α-stable, real-valued Lévy process (Lt )t≥0, α ∈ [1,2]. Then
(Xt )t≥0 solves the SDE dXt = −λXt− dt + dLt and by results in [24] its symbol is given
by

p(x, ξ) = iλxξ + ψL(ξ) = iλxξ + |ξ |α.

Since L is α-stable, we have E|L1|r < ∞ if and only if r < α. Hence in particular
E log+ |L1| < ∞, such that by [18], Theorem 2.1, the process (Xt )t≥0 admits a sta-
tionary solution with distribution L(X∞). By [4], Theorem 3.1, it further follows that
E|X∞|r < ∞ for all r < α and – as it was already remarked in [4] – this result is sharp.
Hence L(X∞) does not necessarily have a finite αth moment and the integral (1.4) does
not necessarily exist.
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In [1], the authors studied the absolutely continuous invariant measures of solutions of SDEs
of the form

dXt = √
2a1 dWt + β(Xt)dt + a2 dZt , t ≥ 0, (3.3)

for suitable coefficients, a standard Brownian motion (Wt)t≥0 and a pure-jump process (Zt )t≥0
with stable (type) Lévy measure.

For such SDEs with additive Lévy noise, we obtain the following proposition whose proof can
be found in Section 5. Remark that this proposition would follow directly from Proposition 3.6,
if we imposed E‖L1‖ < ∞ and E‖Z1‖ < ∞.

Proposition 3.8. Let (Xt )t≥0 be the unique solution of the SDE

dXt = b dZt + �(Xt−)dLt , t ≥ 0,

where (Lt )t≥0 and (Zt )t≥0 are independent Lévy processes which are n- respectively d-
dimensional, b ∈ R and � :Rd → R

d×n is bounded and locally Lipschitz. Then X is an Itô
process, for every ξ ∈R

d the limit p(x, ξ) = limt↓0 λξ (x, t) exists and the functions λξ are glob-
ally bounded in x (and t ) for every ξ ∈R

d . Furthermore if μ is an invariant law of X, then∫
Rd

eix′ξp(x, ξ)μ(dx) =
∫
Rd

eix′ξ (ψL

(
�(x)′ξ

) + ψZ(bξ)
)
μ(dx) = 0 for all ξ ∈R

d .

Further, restricting to the class of processes whose absolutely continuous invariant measures
have been studied in [1], we obtain the following corollary.

Corollary 3.9. Let (Xt )t≥0 be the unique solution of the SDE (3.3) where a1, a2 ≥ 0, a1 +a2 > 0,
β :Rd → Rd is Borel measurable, locally Lipschitz, bounded and its Fourier transform exists,
(Wt )t≥0 is an R

d -valued standard Brownian motion, and (Zt )t≥0 is an R
d -valued pure-jump

process with Lévy measure να(dy) := |y|−(d+α) dy, for α ∈ (0,2).
Assume μ(dx) = ρ(x)dx is invariant for X. Then(

a1|ξ |2 − a2cα|ξ |α)
ρ̂(ξ) + iξ ′ · β̂ρ(ξ) = 0, ξ ∈R

d, (3.4)

where cα = ∫
Rd\{0}(cos(u′y) − 1)να(dy) for u some unit vector in R

d and | · | denotes the eu-

clidean norm in R
d .

Proof. Let μ(dx) = ρ(x)dx be invariant for X. Since β is bounded and locally Lipschitz, and
Z and W only act additively, we can apply Proposition 3.8 in the given setting and obtain that

0 =
∫
Rd

eix′ξp(x, ξ)ρ(x)dx

=
∫
Rd

eix′ξ (−iβ(x)′ξ + a1|ξ |2 − a2cα|ξ |α)
ρ(x)dx

= −iξ ′
∫
Rd

eix′ξ β(x)ρ(x)dx + (
a1|ξ |2 − a2cα|ξ |α)∫

Rd

eixξρ(x)dx.
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Substituting ξ by −ξ we further observe that this is equivalent to

0 = iξ ′β̂ρ(ξ) + (
a1|ξ |2 − a2cα|ξ |α)

ρ̂(ξ)

which is (3.4). �

Remark 3.10. In [1], Proposition 3.1, an invariance condition for the type of process considered
in Corollary 3.9 is given. Unfortunately, in their computations, the authors missed to use complex
conjugates when applying Parseval’s identity, resulting in a wrong sign ([1], between equations
(3.4) and (3.5)). The (corrected) condition stated there is then automatically fulfilled if (3.4)
holds.

Another interesting class of processes in our setting are processes with factorizing symbol as
they appear in the following corollary.

Corollary 3.11. Let (Xt )t≥0 be the unique solution of the SDE

dXt = �(Xt−)dLt , t ≥ 0,

where � :R → R is bounded and locally Lipschitz continuous and (Lt )t≥0 is a symmetric α-
stable, real-valued Lévy process, α ∈ (0,1).

Assume X has an absolutely continuous invariant law μ(dx) = ρ(x)dx. Then �(x)ρ(x) = 0
for λ-a.a. x.

Proof. We know from Proposition 3.6 that the symbol of X is given by p(x, ξ) = |�(x)|α|ξ |α .
Suppose now that X had an invariant law μ(dx) = ρ(x)dx. By our above results this yields

0 =
∫

eixξp(x, ξ)μ(dx) = |ξ |α
∫

eixξ
∣∣�(x)

∣∣αρ(x)dx ∀ξ ∈R.

Thus, f (ξ) := ∫
eixξ |�(x)|αρ(x)dx = 0 for ξ non-zero. Since � was assumed to be bounded,

the product |�(x)|αρ(x) ≤ C · ρ(x) is integrable. Hence, its Fourier transform is in C0. Thus,
f (0) = 0 which gives the claim. �

3.2. Diffusions

In case of a Brownian motion as driving process instead of a general Lévy process, we can even
drop the boundedness condition on the coefficient �.

Proposition 3.12. Let (Xt )t≥0 be the unique solution of the SDE

dXt = −aXt dt + �(Xt)dWt, t ≥ 0,
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where (Wt )t≥0 is an n-dimensional standard Brownian motion, a ∈ R and � :Rd → R
d×n is

continuously differentiable with bounded derivative. Then X is an Itô process, for every ξ ∈ R
d

the limit p(x, ξ) = limt↓0 λξ (x, t) exists and the functions λξ are globally bounded in x (and t )
for every ξ ∈ R

d . Furthermore if μ is an invariant law for X, then∫
Rd

eix′ξp(x, ξ)μ(dx) =
∫
Rd

eix′ξ (∣∣�(x)′ξ
∣∣2 + iax′ξ

)
μ(dx) = 0 for all ξ ∈ R

d .

We postpone the proof of this proposition to Section 5.

Example 3.13. Consider the Ornstein–Uhlenbeck (OU) process driven by a one-dimensional,
standard Brownian motion (Wt )t≥0 with parameters λ > 0, σ > 0 and starting random variable
X0, independent of (Wt)t≥0, which is given by

Xt = e−λt

(
X0 +

∫
(0,t]

eλsσ dWs

)
, t ≥ 0.

This process is a special case of the generalized OU process introduced in Example 3.2. In
particular, X solves the SDE dXt = −λXt− dt + σ dWt such that we can now obtain directly
from Proposition 3.12 that the symbol of the OU process is

p(x, ξ) = iλxξ + |σξ |2.
It is well known that X admits a stationary distribution μ = L(X∞) which is normal with mean

0 and variance σ 2

λ
. Using the symbol and this stationary distribution yields∫

R

eixξp(x, ξ)μ(dx) = λξE
[
iX∞eiX∞ξ

] + σ 2ξ2E
[
eiX∞ξ

]
= λξφ′

X∞(ξ) + σ 2ξ2φX∞(ξ)

= −ξ2σ 2 exp

(
−σ 2

2λ
ξ2

)
+ σ 2ξ2 exp

(
−σ 2

2λ
ξ2

)
= 0

so that equation (1.4) is fulfilled.

Example 3.14. Let (Xt )t≥0 be the stochastic exponential of a Brownian motion (Wt )t≥0 with
variance σ 2, that is, Xt = 1 + ∫

(0,t] Xt− dWt , then we have ([20], Theorem II.37),

Xt = exp
(
Wt − 1

2σ 2t
)
, t ≥ 0.

From Proposition 3.12, we obtain the corresponding symbol of the stochastic exponential as

p(x, ξ) = x2ξ2.
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Now, if X had a stationary distribution μ = L(X∞) with finite second moment, this would fulfill
(1.4), that is,

0 =
∫
R

eixξ x2ξ2μ(dx) = ξ2φ′′
X∞(ξ)

and hence we had φ′′
X∞(ξ) = 0 for all ξ which is only possible if φX∞ = 1 for all ξ . Thus μ had

to be the Dirac measure at 0. But obviously Xt > 0 for all t ≥ 0 which leads to a contradiction.

4. Sufficiency

As mentioned in the Introduction, for Markov processes which are not rich Feller, equation (1.1)
is in general not sufficient to prove invariance of the law μ. Therefore we restrict ourselves in
this section to infinitesimal invariant laws, that is, to laws which fulfill (1.1).

Theorem 4.1. Let (Xt )t≥0 be an Itô process with generator A whose domain D(A) contains
the test functions C∞

c (Rd) and with symbol p(x, ξ). Assume there exists a probability measure
μ such that

∫
Rd |p(x, ξ)|μ(dx) < ∞ and

∫
Rd eix′ξp(x, ξ)μ(dx) = 0. Then∫

Rd

Af (x)μ(dx) = 0 for all f ∈ C∞
c

(
R

d
)
.

Proof. By Lemma 2.5 the generator A admits the representation (1.2) for all f ∈ C∞
c (Rd).

Hence using Fubini’s theorem we obtain for all f ∈ C∞
c (Rd)

0 = −
∫
Rd

f̂ (ξ)

∫
Rd

eix′ξp(x, ξ)μ(dx)dξ

= −
∫
Rd

∫
Rd

eix′ξp(x, ξ)f̂ (ξ)dξμ(dx)

=
∫
Rd

Af (x)μ(dx). �

The above theorem can easily be adapted to specific classes of symbols. We illustrate this with
the following corollary.

Corollary 4.2. Let (Xt )t≥0 be the unique solution of the SDE

dXt = −aXt dt + �(Xt)dWt, t ≥ 0,

where (Wt )t≥0 is a standard Brownian motion, a ∈ R and � :R → R is continuously dif-
ferentiable with bounded derivative and such that |�(x)| ≤ K|x|κ/2 for some constant K

and some κ ∈ [1,2]. Further suppose that the domain D(A) of the generator of X con-
tains the test functions C∞

c (Rd). Assume there exists a probability distribution μ such that
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Rd eix′ξp(x, ξ)μ(dx) = 0 and

∫ ‖x‖κμ(dx) < ∞. Then∫
Rd

Af (x)μ(dx) = 0 for all f ∈ C∞
c

(
R

d
)
.

Proof. We know from Proposition 3.12 that the symbol of X is given by p(x, ξ) = |�(x)′ξ |2 +
iax′ξ . Hence, we have

∫
Rd |eix′ξp(x, ξ)|μ(dx) ≤ ∫

Rd |p(x, ξ)|μ(dx) < ∞. By Theorem 4.1 this
gives the claim. �

Example 4.3. Let (Xt )t≥0 be a generalized Ornstein–Uhlenbeck process, as defined in Exam-
ple 3.2. Then by the same arguments as in Example 3.2 we see from Theorem 4.1 together with
[17], Theorem 3.37, that∫

R

eixξψU(xξ)μ(dx) = −ψL(ξ)φμ(ξ), ξ ∈R, (4.1)

is also sufficient for μ to be an invariant law for X with finite second moment.
In the special case of the Ornstein–Uhlenbeck process as introduced in Example 3.13 it is

sufficient to suppose μ to be integrable and equation (3.1) reduces to

−λξφ′
μ(ξ) = σ 2ξ2φμ(ξ), ξ ∈R.

This differential equation can be uniquely solved by φμ(ξ) = exp(−σ 2

2λ
ξ2) (compare Exam-

ple 3.13).

5. Proofs

Proof of Lemma 3.4. We give the one-dimensional proof, since the multidimensional version
works alike; only the notation becomes more involved. Let x, ξ ∈ R. First, we use Itô’s formula
under the expectation and obtain

1

t
E

x
(
ei(Xt−x)ξ − 1

) = 1

t
E

x

(∫ t

0+
iξei(Xs−−x)ξ dXs

)
(I)

+ 1

t
E

x

(
1

2

∫ t

0+
−ξ2ei(Xs−−x)ξ d[X,X]cs

)
(II)

+ 1

t
E

x

(
e−ixξ

∑
0<s≤t

(
eiξXs − eiξXs− − iξeiξXs−�Xs

))
. (III)

In what follows, we will deal with the terms one-by-one. To calculate term (I) we use the canon-
ical decomposition of a semimartingale (see [15], Theorem II.2.34) which we write as follows

Xt = X0 + Xc
t +

∫ t

0
χ(y)y

(
μX(·;ds,dy) − ν(·;ds,dy)

) + X̌t (χ) + Bt(χ), (5.1)
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where X̌t = ∑
s≤t (�Xs(1 − χ(�Xs)). Therefore, term (I) can be rewritten as

1

t
E

x

(∫ t

0+
iξei(Xs−−x)ξ d

(
Xc

t︸︷︷︸
(IV)

+
∫ t

0
χ(y)y

(
μX(·;ds,dy) − ν(·;ds,dy)

)
︸ ︷︷ ︸

(V)

+ X̌t (χ)︸ ︷︷ ︸
(VI)

+Bt(χ)︸ ︷︷ ︸
(VII)

))
.

We use the linearity of the stochastic integral mapping. First, we prove for term (IV)

E
x

∫ t

0+
iξei(Xs−−x)ξ dXc

s = 0.

The integral ei(Xt−−x)ξ • Xc
t := ∫ t

0+ ei(Xs−−x)ξ dXc
s is a local martingale, since Xc

t is a local mar-
tingale. To see that it is indeed a martingale, we calculate

[
ei(X−x)ξ • Xc, ei(X−x)ξ • Xc

]
t
=

∫ t

0

(
ei(Xs−x)ξ

)2 d
[
Xc,Xc

]
s
=

∫ t

0

((
ei(Xs−x)ξ

)2
Q(Xs)

)
ds.

The last term is uniformly bounded in ω and therefore, finite for every t ≥ 0. Hence, ei(Xt−x)ξ •
Xc

t is an L2-martingale which is zero at zero and therefore, its expected value is constantly zero.
The same is true for the integrand (V): We show that the function Hx,ξ (ω, s, y) := ei(Xs−−x)ξ ·

yχ(y) is in the class F 2
p of Ikeda and Watanabe (see [13], Section II), that is,

E
x

∫ t

0

∫
y �=0

∣∣ei(Xs−−x)ξ · yχ(y)
∣∣2

ν(·;ds,dy) < ∞.

In order to prove this, we observe

E
x

∫ t

0

∫
y �=0

∣∣ei(Xs−−x)ξ
∣∣2 · ∣∣yχ(y)

∣∣2
ν(·;ds,dy) = E

x

∫ t

0

∫
y �=0

∣∣yχ(y)
∣∣2

N(Xs,dy)ds.

Since we have by hypothesis ‖ ∫
y �=0(1∧y2)N(·,dy)‖∞ < ∞ this expected value is finite. There-

fore, the function Hx,ξ is in F 2
p and we conclude that∫ t

0
ei(Xs−−x)ξ d

(∫ s

0

∫
y �=0

χ(y)y
(
μX(·;dr,dy) − ν(·;dr,dy)

))

=
∫ t

0

∫
y �=0

(
ei(Xs−−x)ξχ(y)y

)(
μX(·;ds,dy) − ν(·;ds,dy)

)
is a martingale. The last equality follows from [15], Theorem I.1.30.

Now we deal with term (II). Here we have

[X,X]ct = [
Xc,Xc

]
t
= Ct = (

Q(Xt) • t
)
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and therefore,

1

2

∫ t

0+
−ξ2ei(Xs−−x)ξ d[X,X]cs = −1

2
ξ2

∫ t

0
ei(Xs−−x)ξQ(Xs)ds. (5.2)

Since Q is finely continuous and bounded we obtain by dominated convergence

− lim
t↓0

1

2
ξ2 1

t
E

x

∫ t

0
ei(Xs−x)ξQ(Xs)ds = −1

2
ξ2Q(x).

For the finite variation part of the first term, that is, (VII), we obtain analogously

lim
t↓0

iξ
1

t
E

x

∫ t

0
ei(Xs−x)ξ �(Xs)ds = iξ�(x). (5.3)

Finally, we have to deal with the various jump parts. At first, we write the sum in (III) as an
integral with respect to the jump measure μX of the process:

e−ixξ
∑

0<s≤t

(
eiXsξ − eiXs−ξ − iξeiξXs−�Xs

)
= e−ixξ

∑
0<s≤t

(
eiXs−ξ

(
eiξ�Xs − 1 − iξ�Xs

))
=

∫
]0,t]×Rd

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξy

)
1{y �=0}

)
μX(·;ds,dy)

=
∫

]0,t]×{y �=0}
(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y) − iξy · (1 − χ(y)

)))
μX(·;ds,dy)

=
∫

]0,t]×{y �=0}
(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
μX(·;ds,dy)

+
∫

]0,t]×{y �=0}
(
ei(Xs−−x)ξ

(−iξy · (1 − χ(y)
)))

μX(·;ds,dy).

The last term cancels with the one we left behind from (I), given by (VI). For the remainder-term,
we get:

1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
μX(·;ds,dy)

= 1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
ν(·;ds,dy)

= 1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))︸ ︷︷ ︸
:=g(s−,·)

N(Xs,dy)ds.
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Here we have used the fact that it is possible to integrate with respect to the compensator of a
random measure instead of the measure itself, if the integrand is in F 1

p (see [13], Section II.3).

The function g(s,ω) is measurable and bounded by our assumption, since |eiξy −1− iξyχ(y)| ≤
Cξ · (1 ∧ |y|2), for a constant Cξ > 0. Hence, g ∈ F 1

p .
Again by bounded convergence, we obtain

lim
t↓0

1

t
E

x

∫ t

0
ei(Xs−x)ξ

∫
y �=0

(
eiyξ − 1 − iyξχ(y)

)
N(Xs,dy)ds

(5.4)

=
∫

y �=0

(
eiyξ − 1 − iyξχ(y)

)
N(x,dy).

This is the last part of the symbol. Here we have used the continuity assumption on N(x,dy).
Considering the above calculations, in particular (5.2), (5.3) and (5.4) we obtain∣∣∣∣Exei(Xt−x)′ξ − 1

t

∣∣∣∣ =
∣∣∣∣iξ 1

t
E

x

∫ t

0
ei(Xs−−x)ξ �(Xs)ds − 1

2
ξ2 1

t
E

x

∫ t

0
ei(Xs−−x)ξQ(Xs)ds

+ 1

t
E

x

∫ t

0
ei(Xs−−x)ξ

∫
y �=0

(
eiyξ − 1 − iyξχ(y)

)
N(Xs,dy)ds

∣∣∣∣
≤ |ξ | t

t
‖�‖∞ + ξ2 t

2t
‖Q‖∞ + Cξ

t

t

∥∥∥∥∫
y �=0

(
1 ∧ |y|2)N(·,dy)

∥∥∥∥∞
,

a bound which is uniform in t and x. �

For the proof of Proposition 3.6, we need the following lemma. Observe that for κ ≥ 2 and in
the one-dimensional case, this lemma follows directly from [20], Theorem V.67.

Lemma 5.1. Let κ ≥ 1 and suppose (Lt )t≥0 is a Lévy process such that E[‖L1‖κ ] < ∞. Assume
X0 is a random variable, independent of L, such that E[‖X0‖κ ] < ∞. Then the process (Xt )t≥0

defined by

Xt = X0 − a

∫
(0,t]

Xs− ds +
∫

(0,t]
�(Xs−)dLs,

where � :Rd →Rd×n is bounded, locally Lipschitz and a ∈R, fulfills

E

[
sup

0≤t≤1
‖Xt‖κ

]
< ∞.

Proof. Observe that

‖Xt‖κ ≤ 4κ‖X0‖κ + 4κ |a|κ
∥∥∥∥∫

(0,t]
Xs− ds

∥∥∥∥κ

+ 2κ

∥∥∥∥∫
(0,t]

�(Xs−)dLs

∥∥∥∥κ
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and hence for any 0 ≤ s ≤ 1

E

[
sup

0≤t≤s

‖Xt‖κ
]

≤ 4κ
E

[‖X0‖κ
] + 4κ |a|κE

[
sup

0≤t≤s

∥∥∥∥∫
(0,t]

Xu du

∥∥∥∥κ]
+ 2κ

E

[
sup

0≤t≤s

∥∥∥∥∫
(0,t]

�(Xu−)dLu

∥∥∥∥κ]
.

By [20], Lemma on bottom of page 345, we have that

E

[
sup

0≤t≤s

∥∥∥∥∫
(0,t]

Xu du

∥∥∥∥κ]
≤

∫
(0,s]

E
[‖Xu‖κ

]
du.

On the other hand, it follows from an easy multivariate extension of [4], Lemma 6.1, that
E[sup0≤t≤1 ‖ ∫

(0,t] �(Xu−)dLu‖κ ] is finite, say ≤ K , under the given conditions. Thus

E

[
sup

0≤t≤s

‖Xt‖κ
]

≤ 4κ
E

[‖X0‖κ
] + 2κK + 4κ |a|κ

∫
(0,s]

E

[
sup

0≤v≤u

‖Xv‖κ
]

du.

Now it follows from Gronwall’s inequality (cf. [20], Theorem V.68) that

E

[
sup

0≤t≤1
‖Xt‖κ

]
≤ (

4κ
E

[‖X0‖κ
] + 2κK

)
e4κ |a|κ < ∞

as we had to show. �

Proof of Proposition 3.6. It is well known that the given SDE has a unique solution under the
given conditions (cf., e.g., [15], Chapter IX.6.7). To keep notation simple, we give only the proof
for d = n = 1. Fix x, ξ ∈ R and apply Itô’s formula to the function exp(i(· − x)ξ):

1

t
E

x
(
ei(Xt−x)ξ − 1

) = 1

t
E

x

(∫ t

0+
iξei(Xs−−x)ξ dXs − 1

2

∫ t

0+
ξ2ei(Xs−−x)ξ d[X,X]cs

(5.5)

+ e−ixξ
∑

0<s≤t

(
eiXsξ − eiXs−ξ − iξeiXs−ξ�Xs

))
.

For the first term, we get

1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ

)
dXs

= 1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ

)
d

(∫ s

0
�(Xr−)dLr

)
− 1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ aXs−

)
ds

= 1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ�(Xs−)

)
d(�s) (5.6)
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+ 1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ�(Xs−)

)
d

( ∑
0<r≤s

�Lr1{|�Zr |≥1}
)

(5.7)

− 1

t
E

x

∫ t

0+
(
iξei(Xs−−x)ξ aXs−

)
ds, (5.8)

where we have used the Lévy–Itô decomposition of the Lévy process. Since the integrand is
bounded, the martingale parts of the Lévy process yield martingales whose expected value is
zero.

Now we deal with (5.7). Adding this integral to the third expression on the right-hand side of
(5.5) we obtain

1

t
E

x
∑

0<s≤t

(
ei(Xs−−x)ξ

(
ei�(Xs−)�Lsξ − 1 − iξ�(Xs−)�Ls1{|�Xs |<1}

))
t↓0−→

∫
R\{0}

(
ei�(x)yξ − 1 − iξ�(x)y1{|y|<1}

)
N(dy).

The calculation above uses the same well-known results about integration with respect to in-
teger valued random measures as the proof of Lemma 3.4. In the case of a Lévy process, the
compensator is of the form ν(·;ds,dy) = N(dy)ds, see [13], Example II.4.2.

For the first drift part (5.6), we obtain

1

t
E

x

∫ t

0+
(
iξ · ei(Xs−−x)ξ�(Xs−)�

)
ds = iξ� ·Ex 1

t

∫ t

0

(
ei(Xs−x)ξ�(Xs)

)
ds

t↓0−→ iξ��(x).

To deal with the second expression on the right-hand side of (5.5), we first have to calculated
the square bracket of the process

[X,X]ct =
([∫ ·

0
�(Xr−)dLr,

∫ ·

0
�(Xr−)dLr

]c

t

)
=

∫ t

0
�(Xs−)2 d(Qs).

Let us remark that
∫

aXs ds is negligible in calculating the square bracket [X,X]t since it is
quadratic pure jump by [20], Theorem II.26. Now we can calculate the limit for the second term
of (5.5)

1

2t
E

x

∫ t

0+
(−ξ2ei(Xs−−x)ξ

)
d[X,X]cs

= 1

2t
E

x

∫ t

0+
(−ξ2ei(Xs−−x)ξ

)
d

(∫ s

0

(
�(Xr−)

)2
Qdr

)
(5.9)

= −1

2
ξ2QE

x

(
1

t

∫ t

0

(
ei(Xs−x)ξ�(Xs)

2 ds
))

t↓0−→ − 1

2
ξ2Q�(x)2.
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While in these three parts, due to the boundedness of �, the uniform boundedness of the approx-
imants is trivially seen, we have to be a bit more careful in dealing with the term (5.8): we use
the Lemma 5.1 and the fact sup0≤t≤1 E|Xt | ≤ E[sup0≤t≤1 |Xt |]. In order to show that

aiξEx

∫ 1

0
ei(Xts−x)ξX(ts)− ds

t↓0
−→ aiξx

in a uniformly bounded way, we consider

E
x

∫ 1

0

∣∣ei(Xst−x)ξXst − ei(Xst−x)ξ x + ei(Xst−x)ξ x − x
∣∣ds

= E
x

∫ 1

0

∣∣ei(Xst−x)ξ (Xst − x) + (
ei(Xst−x)ξ − 1

)
x
∣∣ds.

By E
x |Xst − x| ≤ c < ∞, we can interchange the order of integration. In the end, we obtain

p(x, ξ) = −i�
(
�(x)ξ

) + iaxξ + 1

2

(
�(x)ξ

)
Q

(
�(x)ξ

)
−

∫
y �=0

(
ei(�(x)ξ)y − 1 − i

(
�(x)ξ

)
y · 1{|y|<1}(y)

)
N(dy)

= ψL

(
�(x)ξ

) + iaxξ.

Let us remark that in the multi-dimensional case the matrix �(x) has to be transposed, that is,
the symbol of the solution is ψL(�(x)′ξ) + iax′ξ .

The result now follows as in the proof of Theorem 3.3. �

Proof of Proposition 3.8. In order to prove this result, we can mimic the previous proof. In
this case, a = 0, the driving Lévy process is (Z′,L′)′ ∈ R

d+n and the bounded coefficient is
(b · Id,�(x)) ∈ Rd×(d+n) where Id denotes the d-dimensional identity matrix. Since a is zero
the respective part of the proof – the one where the moment assumption is needed – can be
omitted. �

Proof of Proposition 3.12. The proof works perfectly analogue to the one of Proposition 3.6
with the following exception: from [20], Theorem V.67, we obtain that sup0≤t≤1 E(Xt)

2 is finite.
This is needed in order to obtain the convergence in (5.9) in a uniformly bounded way. In the
present setting, Q is the identity matrix. �
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