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Lipschitz partition processes
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We introduce a family of Markov processes on set partitions with a bounded number of blocks, called
Lipschitz partition processes. We construct these processes explicitly by a Poisson point process on the
space of Lipschitz continuous maps on partitions. By this construction, the Markovian consistency property
is readily satisfied; that is, the finite restrictions of any Lipschitz partition process comprise a compatible
collection of finite state space Markov chains. We further characterize the class of exchangeable Lipschitz
partition processes by a novel set-valued matrix operation.
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1. Introduction

Partition-valued Markov processes, particularly coalescent and fragmentation processes, arise
as mathematical models in population genetics and mathematical biology. Initially, Ewens [14]
derived his celebrated sampling formula while studying neutral allele sampling in population
genetics. Extending Ewens’s work, Kingman characterized exchangeable partitions of the nat-
ural numbers [16,17], which play a larger role in the mathematical study of genetic diversity
[18]. Related applications in phylogenetics and the study of ancestral lineages prompted King-
man’s coalescent process [19], which arises as the scaling limit of both Wright–Fisher and Moran
models under different regimes [23]. Exchangeable coalescent and fragmentation processes have
also taken hold in the probability literature because of some beautiful relationships to classi-
cal stochastic process theory, for example, Brownian motion and Lévy processes. For specific
content in the literature, see [1–4,21]; for recent overviews of this theory, see [5,22].

In this paper, we study a family of Markov processes on labeled partitions with a finite number
k ≥ 1 of classes. By a simple projection, we describe a broad class of processes on the space of
partitions with at most k blocks. Processes on this space are cursorily related to composition
structures for ordered partitions, for example, [13,15], but our approach more closely follows
previous work [8], which is motivated by DNA sequencing applications. In addition to genetics
applications, processes on this subspace relate to problems of cluster detection and classification
in which the total number of classes is finite, for example, [7,9,20].

Prior to [8], coagulation–fragmentation processes dominated the literature. The processes in
[8] do not evolve by fragmentation or coagulation; their jumps involve simultaneous fragmen-
tation and coagulation of all blocks. To describe a broader class of processes, we incorporate
ideas from the coagulation–fragmentation literature as well as our previous work. We call these
Lipschitz partition processes.

Our main theorems are not corollaries of the many results for fragmentation and coalescent
processes. Instead, our approach extracts fundamental properties of these processes, specifically
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their construction from the Coag and Frag operators; see, for example, Bertoin [5], Chapters 3–4.
Importantly, these operators are Lipschitz continuous and associative. From these observations,
we construct a family of processes by repeated application of random Lipschitz continuous maps
that act on the space of partitions.

In the exchangeable case, the random maps are confined to the subspace of strongly Lipschitz
continuous functions, which we characterize in full by a class of specially structured set-valued
matrices (Section 4.2). These set-valued matrices act on labeled partitions similarly to the ac-
tion of a matrix on a real-valued vector (with obvious modifications to the operations addition
and multiplication). They also establish an intimate connection between exchangeable Lipschitz
partition processes and random stochastic matrices (Section 4.4).

1.1. General construction: Overview

For now, we regard a labeled partition as a finite collection of non-overlapping, labeled subsets.
Consider the following construction of a discrete-time Markov chain. Let �0 be an initial state

and let F1,F2, . . . be independent and identically distributed (i.i.d.) random maps on the space
of labeled partitions. Then, for each t ≥ 1, we define

�t := Ft(�t−1) = (Ft ◦ Ft−1 ◦ · · · ◦ F1)(�0). (1.1)

The collection � := (�t , t ≥ 0) is a discrete-time Markov chain.
We study an analogous construction for continuous-time processes. Instead of an i.i.d. se-

quence of random maps, we construct � from a Poisson point process on the space of maps.
Informally, if F := {(t,Ft )} is a realization of such a Poisson point process (where each Ft is a
map), we construct � by putting

�t :=
{

Ft(�t−), t is an atom time of F,
�t−, otherwise,

for every t > 0. (1.2)

We are interested in processes � that exhibit

• Markovian consistency, that is, for each n ∈ N, the restriction of � to labeled partitions of
[n] := {1, . . . , n} is a Markov chain, and

• exchangeability, that is, the law of � is invariant under relabeling of elements of N.

Markovian consistency might also be called the projective Markov property, meaning the projec-
tion of � to spaces of finite labeled partitions is also Markov. Throughout the paper, we use the
term consistency in place of Markovian consistency. Consistency plays a central role not only in
this paper but also more widely in the study of partition-valued Markov processes. In general, a
function of a Markov process need not be Markov, and so consistency is not trivially satisfied;
see Example 2.1.

We pay special attention to the exchangeable case, for which we can make some precise state-
ments. In this case, we show that the Poisson point process F is supported on the space of maps
having the strong Lipschitz property (Section 4.1).

The general approach outlined in (1.1) and (1.2) can be applied to construct processes on the
unrestricted space of set partitions, or even ordered set partitions, but we do not treat these cases.



1388 H. Crane

In our main theorems, we show a correspondence between strongly Lipschitz maps on labeled
partitions and k × k set-valued matrices. Without bounding the number of classes, we cannot
obtain such a precise statement.

1.2. Organization of the paper

We organize the paper as follows. In Section 2, we give some preliminaries for partitions and
labeled k-partitions. In Section 3, we introduce the general class of Lipschitz partition processes;
and in Section 4, we specialize to exchangeable Lipschitz partition processes. In Section 5, we
discuss discrete-time Markov chains. In Section 6, we make some concluding remarks about pro-
jections to unlabeled set partitions and more general issues concerning partition-valued Markov
processes.

2. Preliminaries

2.1. Partitions

For n ∈ N = {1,2, . . .}, a partition π of [n] := {1, . . . , n} is a collection {b1, . . . , br} of non-
empty, disjoint subsets (blocks) satisfying

⋃r
i=1 bi = [n]. Alternatively, π can be regarded as an

equivalence relation ∼π , where

i ∼π j ⇐⇒ i and j are in the same block of π. (2.1)

We write #π to denote the number of blocks of π . Unless otherwise stated, we assume that the
blocks of π are listed in increasing order of their least element. We write P[n] to denote the space
of partitions of [n].

Writing Sn to denote the symmetric group acting on [n], we define the relabeling π ∈P[n] by
σ ∈ Sn, π �→ πσ , where

i ∼πσ j ⇐⇒ σ(i) ∼π σ (j).

Furthermore, for m ≤ n, we define the restriction of π ∈P[n] to P[m] by

π|[m] = Dm,nπ := {
b ∩ [m] :b ∈ π

} \ {∅},
the restriction of each block of π to [m] after removal of any empty sets. In general, to any
injective map ψ : [m] → [n], we associate a projection ψ ′ :P[n] → P[m], where

i ∼ψ ′(π) j ⇐⇒ ψ(i) ∼π ψ(j).

We write PN to denote the space of partitions of N, which are defined as compatible sequences
(πn,n ∈ N) of finite set partitions. For m ≤ n, we say π ∈ P[n] and π ′ ∈ P[m] are compatible if
π|[m] = π ′; and we call (πn,n ∈N) a compatible sequence if πn ∈P[n] and πm = Dm,nπn, for all
m ≤ n, for every n ∈ N.



Lipschitz partition processes 1389

Writing n(π,π ′) := max{n ∈N :π|[n] = π ′|[n]}, we equip PN with the ultrametric

dPN

(
π,π ′) := 2−n(π,π ′), π,π ′ ∈PN, (2.2)

under which (PN, dPN
) is complete, separable, and naturally endowed with the discrete σ -field

σ 〈⋃n∈NP[n]〉.

2.2. Random partitions

A sequence (μn,n ∈ N) of measures on the system (P[n], n ∈ N), where μn is a measure on P[n]
for each n ∈ N, is consistent if

μm = μnD−1
m,n for every m ≤ n; (2.3)

that is, μm coincides with the law μnD−1
m,n induced by the restriction map. By Kolmogorov’s

extension theorem, any consistent collection of measures determines a unique measure μ on PN.
This circle of ideas is central to the theory of random partitions of N as it permits the explicit con-
struction of a random partition � through its compatible sequence (�n,n ∈ N) of finite random
partitions.

A random partition � of N is called exchangeable if �σ =L � for all permutations σ :N →
N that fix all but finitely many elements of N, where =L denotes equality in law. Kingman
[17] gives a de Finetti-type characterization of exchangeable random partitions of N through the
paintbox process. Let

�↓ :=
{

(s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}

denote the space of ranked mass partitions. Given s ∈ �↓, we write s0 := 1 − ∑
i≥1 si and con-

struct � as follows. Let X1,X2, . . . be a sequence of independent (but not necessarily identically
distributed) random variables with law

Ps{Xi = j} :=
{

sj , j ≥ 1,
s0, j = −i,
0, otherwise.

Given X := (X1,X2, . . .), we define � := �(X) by the relation

i ∼� j ⇐⇒ Xi = Xj .

We write �s to denote the law of �, called a paintbox process directed by s. For n ∈N, we write
�

(n)
s to denote the restriction of �s to a probability measure on P[n]. In this way, (�

(n)
s , n ∈ N) is

a consistent collection of finite-dimensional measures determining �s . More generally, given a
measure ν on �↓, the ν-mixture of paintbox processes is defined by

�ν(·) :=
∫

�↓
�s(·)ν(ds).



1390 H. Crane

Kingman’s correspondence associates every exchangeable random partition of N with a unique
probability measure on �↓.

A widely circulated example of a sequential construction is the Chinese restaurant process.
Overall, the Chinese restaurant process produces a compatible collection (�n,n ∈ N) of finite
partitions for which each �n obeys the Ewens distribution on P[n]. The random partition � de-
termined by (�n,n ∈N) obeys the Ewens process, whose directing measure is the two-parameter
Poisson–Dirichlet distribution with parameter (0, θ); see [22] for more information on the dis-
tinguishing properties of the Ewens distribution.

2.3. Partition-valued Markov processes

In this paper, we study Markov processes � := (�t , t ≥ 0) on PN that are

• consistent: for each n ∈N, �|[n] := (�t |[n], t ≥ 0) is a Markov chain on P[n]; and
• exchangeable: �σ := (�σ

t , t ≥ 0) =L � for all permutations σ :N → N that fix all but
finitely many n ∈N.

In this case, exchangeability refers to joint exchangeability in the sense that elements are rela-
beled according to the same partition at all time points. Consistency refers to a preservation of
the Markov property.

A consistent Markov process � on PN can be constructed sequentially through its finite re-
strictions (�|[n], n ∈ N), but care must be taken to ensure that each of the restrictions �|[n] has
càdlàg sample paths. Perhaps the most well-known example of an exchangeable and consistent
Markov process on PN is the exchangeable coalescent process.

2.3.1. Exchangeable coalescent process

The construction of the coalescent process from the Coag-operator telegraphs our general ap-
proach. Let π := {b1, b2, . . .} be any partition of a finite or infinite set with #π = k ∈ N ∪ {∞},
and let b′ := {b′

1, b
′
2, . . .} be a partition of [k′], for any k′ ≥ k. We call π ′′ := Coag(π,π ′) :=

{b′′
1 , b′′

2, . . .} the coagulation of π by π ′, where

b′′
i :=

⋃
j∈b′

i

bj , i ≥ 1. (2.4)

(To maintain the definition of π ′′ as a partition, we remove any empty sets that result from this
operation.) Essential to definition (2.4) is that the blocks of π are ordered in ascending order of
their least element. For example, let π := 1356/2/47/8 and π ′ := 135/24, then

Coag
(
π,π ′) = Coag(1356/2/47/8,135/24) = 134567/28.

In words: block {1,3,5} of π ′ indicates that we merge the first, third, and fifth blocks of π , while
block {2,4} indicates that we merge the second and fourth blocks of π . (We ignore any elements
of π ′ larger than #π ; for example, there is no fifth block of π and so the position of 5 in π ′ does
not affect Coag(π,π ′).)
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The Coag operator has been used extensively in the study of coalescent processes; see Chap-
ter 4 of Bertoin [5]. Let μ be a measure on PN such that

μ
({0N}) = 0 and μ

({π ∈ PN :π|[n] �= 0[n]}
)
< ∞ for every n ∈N, (2.5)

where 0A denotes the partition of A ⊆ N into singletons. Also, let B := {(t,Bt )} ⊂ [0,∞) ×PN

be a Poisson point process with intensity dt ⊗μ (where dt denotes Lebesgue measure on [0,∞)).
Given B, we construct a coalescent process � := (�t , t ≥ 0) on PN as follows. For each n ∈ N,
we specify �[n] := (�

[n]
t , t ≥ 0) on P[n] by �

[n]
0 = 0[n] and, for every t > 0,

• if t > 0 is an atom time of B such that Bt |[n] �= 0[n], then we put �
[n]
t = Coag(�

[n]
t−,Bt );

• otherwise, we put �
[n]
t = �

[n]
t− .

Note that, by the definition of Coag, �
[m]
t = Dm,n�

[n]
t for all t ≥ 0, for all m ≤ n. Hence,

(�[n], n ∈ N) is a compatible collection of processes. Furthermore, by (2.5), each �[n] is a
Markov chain on P[n] with càdlàg sample paths. Hence, (�[n], n ∈ N) determines a consistent
Markov process � on PN. If, in addition, μ is exchangeable, then � is exchangeable. The pro-
cess constructed in this way is called a coalescent process.

Remark 2.1. The construction of � from the collection (�[n], n ∈ N) of finite state space pro-
cesses, rather than directly from the entire process B, is necessary. In general, (2.5) permits B
to have infinitely many atoms in arbitrarily small intervals of [0,∞); but, by the second half of
(2.5), there can be only finitely many atom times t > 0 for which Bt |[n] �= 0[n], for each n ∈ N.
Therefore, while the Poisson point process construction cannot be applied directly to construct �
(because the atom times might be dense in [0,∞)), we can construct � sequentially by building
a compatible collection of processes that are consistent in distribution.

An important property of the Coag operator is Lipschitz continuity with respect to (2.2), that
is, for every π ∈ PN,

dPN

(
Coag

(
π ′,π

)
,Coag

(
π ′′,π

)) ≤ dPN

(
π ′,π ′′) for all π ′,π ′′ ∈PN.

Furthermore, Coag :PN ×PN → PN is associative in the sense that

Coag
(
π,Coag

(
π ′,π ′′)) = Coag

(
Coag

(
π,π ′),π ′′) for all π,π ′,π ′′ ∈PN.

Lipschitz continuity is important for the consistency property because it implies that the coagula-
tion of π|[n] by π ′ depends only on π ′|[n], for every n ∈ N. Associativity ensures the construction
of � is well-defined.

The Frag operator acts as the dual to Coag in the related study of fragmentation processes.
Analogously to the above construction, the Frag operator can be used to construct fragmentation
processes on PN, but we do not discuss those details. We only acknowledge that the Frag op-
erator is also Lipschitz continuous with respect to (2.2). These operators are important because
they characterize the semigroup of coagulation and fragmentation processes. By Lipschitz conti-
nuity, the semigroups of these processes are easily shown to fulfill the Feller property (under the
additional regularity condition (2.5), or its analog for fragmentation processes).
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The coalescent process above need not be exchangeable. Bertoin [5] only considers the ex-
changeable case and so specializes to the case in which μ in (2.5) is the directing measure of a
paintbox process.

2.3.2. Processes on partitions with a bounded number of blocks (Crane [8], Section 4.1)

For k ∈ N, let PN:k := {π ∈ PN : #π ≤ k} be the subcollection of partitions of N with k or fewer
blocks, and let �

↓
k := {(s1, . . . , sk) : s1 ≥ · · · ≥ sk ≥ 0,

∑k
i=1 si = 1} denote the ranked k-simplex.

For any probability measure ν on �
↓
k , the paintbox measure �ν is supported on PN:k .

In [8], we studied a family of Markov processes on PN:k with the following description. Let ν

be a finite measure on �k . Given an initial state π ∈PN:k , we construct a Markov process � from
a Poisson point process B = {(t,Bt , St )} ⊂ R

+ × Pk
N:k × S k

k with intensity dt ⊗ �⊗k
ν ⊗ ϒ⊗k ,

where ϒ is the uniform distribution on Sk and, for any measure μ, μ⊗k := μ ⊗ · · · ⊗ μ denotes
its k-fold product measure. Given a realization of B, we construct � := (�t , t ≥ 0) from its finite
restrictions as follows. First, for each n ∈ N, we put �

[n]
0 = π|[n]. Then, for each t > 0, we write

�
[n]
t− = (b1, . . . , br ), r ≤ k, with blocks listed in order of their least element, and

• if t > 0 is an atom time of B with Bt := (B1, . . . ,Bk) a k-tuple of partitions and St :=
(S1, . . . , Sk) a k-tuple of permutations [k] → [k],
– we construct the set-valued matrix

⎛
⎜⎜⎜⎜⎝

B1
S1(1)

∩ b1 B2
S2(1)

∩ b2 · · · Br
Sr (1)

∩ br

B1
S1(2) ∩ b1 B2

S2(2) ∩ b2 · · · Br
Sr (2) ∩ br

...
...

. . .
...

B1
S1(k) ∩ b1 B2

S2(k) ∩ b2 · · · Br
Sr (k) ∩ br

⎞
⎟⎟⎟⎟⎠ , (2.6)

and
– for each j = 1, . . . , k, we put Cj := ⋃r

i=1(B
i
Si (j) ∩ bi), the union of the entries in row j

of the above matrix. We then define �
[n]
t := {C1, . . . ,Ck} \ {∅}, provided �

[n]
t �= �

[n]
t− ;

• otherwise, we put �
[n]
t = �

[n]
t− .

We have shown [8] that the finite-dimensional transition rates for this process are

Qn

(
π,π ′) = k↓#π ′ ∏

b∈π

�b
ν(π

′|b)

k
↓#π ′|b

, π �= π ′ ∈ P[n]:k,

where k↓j := k(k − 1) · · · (k − j + 1) and �b
ν denotes the measure �ν induces on the space of

partitions of b ⊆N.
The above construction has an easy description as a three step procedure. For k ≥ 1, let π :=

{b1, . . . , br}, r ≤ k, be a partition of a finite or infinite set. Then we obtain a jump from π to π ′
as follows.
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(i) Independently, for each i = 1, . . . , r , randomly partition bi according to the paintbox
process �ν restricted to bi . Write Bi := {Bi,1, . . . ,Bi,ri } to denote the partition obtained.

(ii) Independently, for each i = 1, . . . , r , randomly label the blocks of Bi by sampling uni-
formly without replacement from [k]. Equivalently, we can draw a uniform random per-
mutation σi of [k] and order the blocks of Bi by adding k − ri empty-sets to the end of
Bi and writing Ci := (Bi,σi (1), . . . ,Bi,σi (k)).

(iii) We define π ′ by merging all subsets assigned the same label in step (ii); that is, we put
B ′

l := ⋃k
j=1 Bj,σj (l) for each l = 1, . . . , k and then define π ′ := {B ′

1, . . . ,B
′
k} \ {∅}.

This procedure produces an exchangeable Feller process on PN:k . The next example illustrates
that an exchangeable Markov process on PN:k need not be consistent.

Example 2.1 (Failure of consistency property). Throughout this example, let s0 := (2/3,1/3) ∈
�

↓
k . With initial state �0 ∼ �s0 , we define the infinitesimal jump rates of � as follows. For every

t ≥ 0,

• given �t �= 1N, the trivial one-block partition of N, �t jumps to 1N at rate 1, and
• given �t = 1N, �t jumps to B ∼ �s0 at rate 2.

Clearly, � is Markovian, exchangeable, and has càdlàg sample paths; however, for each n ∈ N,
the restriction �|[n] := (�t |[n], t ≥ 0) is not Markovian because the jump rate at every time t ≥ 0
depends on whether �t is trivial, which depends on the tail of (�t |[n], n ∈ N).

We focus on generalizing (i)–(iii). To do so, we work on the space LN:k of labeled partitions
of N with k classes. The relationship between LN:k and PN:k is straightforward, and the added
structure of LN:k enables a cleaner exposition.

2.4. Labeled partitions

For fixed k ∈ N, a k-partition is a labeled set partition with k classes. Specifically, for any A ⊆ N,
a k-partition λ of A is a length k set-valued vector (λ1, . . . , λk) with λi ⊆ A for each i ∈ [k],
λi ∩ λi′ = ∅ for i �= i′, and

⋃k
i=1 λi = A. Alternatively, for A = [n], λ can be regarded as

• a sequence λ = λ1λ2 · · ·λn in [k][n], where

λi = j ⇐⇒ i ∈ λj , or

• a map λ : [n] → [k], where λ(i) = λi for each i ∈ [n].
Note that all three specifications of λ are equivalent and can be used interchangeably. In general,
we write LA:k to denote the space of k-partitions of A ⊆ N.

Any λ ∈ L[n]:k induces a partition of [n] through the map Bn :L[n]:k → P[n]:k , defined by

Bn(λ) := {λ1, . . . , λk} \ {∅},
the unordered collection of classes of λ with empty sets removed. Permutations and injection
maps act on (L[n]:k, n ∈ N) similarly to their action on (P[n]:k, n ∈ N). In general, let ψ : [m] →
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[n], m ≤ n, be an injection. Then we define ψ∗ :L[n]:k → L[m]:k by

ψ∗(λ) := λ ◦ ψ for every λ ∈ L[n]:k,

where λ ∈ L[n]:k is treated as a map [n] → [k].
The restriction map L[n]:k → L[m]:k is defined by

λ|[m] := (
λ1 ∩ [m], . . . , λk ∩ [m]),

and the notion of compatibility for sequences of labeled partitions carries over from unlabeled
partitions. We define LN:k as the space of k-partitions of N, whose elements can be represented
by a compatible sequence of finite k-partitions. Finally, we equip LN:k with ultrametric

d
(
λ,λ′) := 2−n(λ,λ′), λ,λ′ ∈ LN:k, (2.7)

where n(λ,λ′) := max{n ∈ N :λ|[n] = λ′|[n]}, and σ -field σ 〈⋃n∈NL[n]:k〉.
The projections (Bn, n ∈ N),ψ ′, and ψ∗ cooperate with one another; that is, the diagram in

(2.8) commutes: Bm ◦ ψ∗ = ψ ′ ◦ Bn. By this natural correspondence, we can study processes
on LN:k and later project to PN:k . Under mild conditions, the projection into PN:k preserves
most, and sometimes all, of the properties of a process on LN:k . Using this correspondence, we
principally study processes on LN:k with the intention to later project into PN:k . We discuss this
procedure briefly in Section 6.1, but, by that time, most of its implications should be obvious.

[n]

[m]
ψ

��
L[n]:k

ψ∗
��

Bn
�� P[n]:k

ψ ′
��

L[m]:k
Bm

�� P[m]:k

(2.8)

2.5. Exchangeable random k-partitions

A random k-partition � := (�i,1 ≤ i ≤ k) of N is called exchangeable if, regarded as a [k]-
valued sequence � := �1�2 · · · , it satisfies

�σ := �σ(1)�σ(2) · · · =L �,

for all permutations σ :N → N fixing all but finitely many n ∈ N.
By de Finetti’s theorem, the law of an exchangeable k-partition is determined by a unique

probability measure ν on the (k − 1)-dimensional simplex

�k :=
{

(s1, . . . , sk) : si ≥ 0 and
k∑

i=1

si = 1

}
.
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For s ∈ �k , we let �1,�2, . . . be i.i.d. from

Ps

{
�1 = j

} = sj , j = 1, . . . , k,

and define � := �1�2 · · · , whose distribution we denote ζs . For a measure ν on �k , we write

ζν(·) :=
∫

�k

ζs(·)ν(ds)

to denote the ν-mixture of ζs -measures.

3. Lipschitz partition processes

A random collection � = (�t , t ≥ 0) in LN:k is a Markov process if, for every t > 0, the σ -
fields σ 〈�s, s < t〉 and σ 〈�s, s > t〉 are conditionally independent given �t . We are interested
in consistent Markov processes on LN:k . We specialize to exchangeable processes in Section 4.

In Section 2.3.1, we showed a construction of exchangeable coalescent processes by an iterated
application of the Coag operator at the atom times of a Poisson point process. Fundamental
properties of the Coag operator endow the coalescent process with consistency and the Feller
property. Of utmost importance is Lipschitz continuity, without which the process restricted to,
say, [n] could depend on indices {n + 1, n + 2, . . .} and the restrictions need not be Markovian,
as in Example 2.1.

3.1. Poissonian construction

Let � := {F :LN:k → LN:k} be the collection of all maps LN:k → LN:k and, for each n ∈ N, let
�n ⊆ � be the subcollection of maps so that the restriction of F(λ) to L[n]:k depends on λ only
through λ|[n], that is

�n := {
F ∈ � :λ|[n] = λ′|[n] �⇒ F(λ)|[n] = F

(
λ′)

|[n] for all λ,λ′ ∈ LN:k
}
.

These collections satisfy

� ⊃ · · · ⊃ �n−1 ⊃ �n ⊃ �n+1 ⊃ · · · ,
whose limit

⋂
n∈N �n = �∞ exists and is non-empty. (For example, the identity map Id :LN:k →

LN:k is in �n for every n ∈ N and, hence, Id ∈ �∞.) For all F ∈ �∞, the restriction F(λ)|[n]
depends only on λ|[n], for every n ∈N.

Lemma 3.1. The collection �∞ is in one-to-one correspondence with

Lip(LN:k) := {
F ∈ � :d

(
F(λ),F

(
λ′)) ≤ d

(
λ,λ′) for all λ,λ′ ∈ LN:k

}
,

Lipschitz continuous maps LN:k → LN:k with Lipschitz constant 1.
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Proof. First, suppose F ∈ Lip(LN:k). Then d(F (λ),F (λ′)) ≤ d(λ,λ′) for every λ,λ′ ∈ LN:k . By
definition of the metric (2.7), λ|[r] = λ′|[r] for all r ≤ − log2 d(λ,λ′) and d(F (λ),F (λ′)) ≤ 2−r ;
hence, for every n ∈ N, λ|[n] = λ′|[n] implies F(λ)|[n] = F(λ′)|[n] and F ∈ �∞. The converse is
immediate by the definition of the sets (�n,n ∈ N) above. �

As Lip(LN:k) is exactly the set{
F ∈ � :∀n ∈ N, λ|[n] = λ′|[n] �⇒ F(λ)|[n] = F

(
λ′)

|[n] for all λ,λ′ ∈ LN:k
}
,

any F ∈ Lip(LN:k) can be written as the compatible sequence (F[1],F[2], . . .) of its restrictions
to Lip(L[n]:k) for each n ∈ N. Specifically, the restriction F[n] of F ∈ Lip(LN:k) to Lip(L[n]:k)
is defined, for every λ ∈ L[n]:k , by F[n](λ) = F(λ∗)|[n], for any choice of λ∗ ∈ LN:k such that
λ∗|[n] = λ. In this sense, Lip(LN:k) is a projective limit space which we can equip with the ultra-
metric

d�

(
F,F ′) := 2−n(F,F ′), (3.1)

where n(F,F ′) := max{n ∈ N :F[n] = F ′[n]}, and σ -field F = σ 〈⋃n∈N Lip(L[n]:k)〉. It follows
that any measure ϕ on (Lip(LN:k),F) determines a measure ϕn on Lip(L[n]:k) through

ϕn(F ) := ϕ
({

F ∗ ∈ Lip(LN:k) :F ∗[n] = F
})

, F ∈ Lip(L[n]:k). (3.2)

For any n ∈ N∪ {∞}, let Idn denote the identity map L[n]:k → L[n]:k .1 Then, for a measure ϕ

on (Lip(LN:k),F) satisfying

ϕ
({Id}) = 0 and ϕn

(
Lip(L[n]:k) \ {Idn}

)
< ∞ for every n ∈ N, (3.3)

let F := {(t,F t )} ⊂ R
+ × Lip(LN:k) be a Poisson point process with intensity dt ⊗ ϕ. Given F

and some (possibly random) initial state λ0 ∈ LN:k , we construct a Markov process � on LN:k as
follows. For each n ∈ N, we define �[n] = (�

[n]
t , t ≥ 0) on L[n]:k by �

[n]
0 = λ0|[n] and

• if t > 0 is an atom time of F such that F t[n] �= Idn, we put �
[n]
t = F t[n]

(
�

[n]
t−

);
• otherwise, we put �

[n]
t = �

[n]
t− .

(3.4)

Proposition 3.1. For every n ∈ N, �[n] is a càdlàg finite state space Markov process, and
(�[n], n ∈N) determines a unique consistent Markov process � on LN:k .

Proof. That each �[n] is càdlàg follows from (3.3) since ϕn(Lip(L[n]:k) \ {Idn}) < ∞ ensures
that, within any bounded interval of [0,∞), there are at most finitely many atom times of F for
which F t[n] �= Idn. Furthermore, for each n ∈N, �[n] is Markov by the construction in (3.4). The

collection (�[n], n ∈ N) is compatible by construction and therefore, for every t ≥ 0, (�
[n]
t , n ∈

N) determines a unique k-partition �t of N. It follows that (�[n], n ∈ N) determines a unique
consistent Markov process � = (�t , t ≥ 0) on LN:k . �

1To maintain consistent notation, we also define [∞] :=N so that L[n]:k =LN:k for n = ∞.
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Some remarks about the above construction:

(i) � need not be exchangeable; we treat exchangeable processes in Section 4 and give an
explicit example of a non-exchangeable process in Section 4.5.

(ii) Each restriction �|[n] := (�t |[n], t ≥ 0) has a Poisson point process construction based on
F(n) ⊂R

+ × Lip(L[n]:k) with intensity dt ⊗ ϕn.
(iii) The second half of (3.3) is needed so that the finite restrictions (�|[n], n ∈ N) are càdlàg.

Also, ϕ must put all its support on Lip(LN:k), or else the construction in (3.4) would not
result in a compatible collection of finite state space processes.

The second half of (3.3) corresponds to the second half of (2.5) in the following precise
sense. In (3.3), we exclude the identity map Idn since it does not result in a jump in the
restricted process �[n], for each n ∈ N. Similarly, for each n ∈ N, 0[n] is the neutral
element for Coag, that is, Coag(π,0[n]) = π for all π ∈ P[n]. Hence, 0[n] determines the
identity map P[n] → P[n] by way of the coagulation operator.

3.2. The Feller property

Alternatively, we can construct � from F by first constructing a Markov process φ∞ on
Lip(LN:k). For each n ∈ N, we construct φ[n] := (φ

[n]
t , t ≥ 0) on Lip(L[n]:k) by φ

[n]
0 = Idn and

• if t > 0 is an atom time of F such that F t[n] �= Idn, we put φ
[n]
t = F t[n] ◦ φ

[n]
t− ;

• otherwise, we put φ
[n]
t = φ

[n]
t− .

(3.5)

Corollary 3.1. The collection (φ[n], n ∈ N) is consistent on (Lip(L[n]:k), n ∈ N) and determines
a unique Markov process φ∞ on Lip(LN:k). Moreover, �∞ = (�∞

t , t ≥ 0) defined by

�∞
t = φ∞

t (�0) for every t ≥ 0, (3.6)

is a version of � in (3.4).

Proof. The first claim follows immediately by the arguments in Proposition 3.1.
To establish the second claim, let F be the Poisson point process with intensity dt ⊗ ϕ and,

for every n ∈ N, let Jn be the set of atom times of F such that F t[n] �= Idn. By (3.3), Jn ∩ [0, t] is
almost surely finite for every n ∈ N and t < ∞. We construct � from F as in (3.4) and φ∞ from
F as in (3.5).

For fixed n ∈N and t > 0, write t ≥ t1 > · · · > tr > 0 to be the ranked atom times of Jn before
time t . Each F ti ∈ Lip(LN:k), i = 1, . . . , r , and so

�t |[n] = (
F

t1[n] ◦ · · · ◦ F
tr[n]

)
(�0|[n]) = φ∞

t,[n](�0|[n]) = φ∞
t (�0)|[n] = �∞

t |[n],

where φ∞
t,[n] denotes the restriction of φ∞

t to Lip(L[n]:k). Hence, �∞|[n] = �|[n] almost surely for
every n ∈N; whence, �∞ = � almost surely. The conclusion follows. �
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Remark 3.1. In essence, representation (3.6) entails the application of a flow (φs,t ,0 ≤ s < t <

∞) on the space Lip(LN:k), for which we apply φt := φ0,t to �0, for each t ≥ 0. This can be
compared to constructions of coalescent processes by flows of bridges [6].

Representation (3.6) is convenient for studying the semigroup of �. For every bounded, con-
tinuous function g :LN:k → R, the semigroup (Pt , t ≥ 0) of � is defined by

Pt g(λ) := Eλg(�t ), t ≥ 0, λ ∈ LN:k,

the expectation of g(�t) given �0 = λ. In addition, (Pt , t ≥ 0) is called a Feller semigroup, and
the process � is called a Feller process, if, for every bounded, continuous g :LN:k → R,

• λ �→ Pt g(λ) is continuous for every t > 0, and
• limt↓0 Pt g(λ) = g(λ) for all λ ∈ LN:k .

Corollary 3.2. The semigroup (Pt , t ≥ 0) of � satisfies

Pt g(λ) := Eg
(
φ∞

t (λ)
)
, (3.7)

for every bounded, continuous map g :LN:k → R and every λ ∈ LN:k , where (φ∞
t , t ≥ 0) is the

process in Corollary 3.1.

The proof follows immediately from Corollary 3.1.

Theorem 3.1. The process � constructed in (3.4) fulfills the Feller property.

Proof. Continuity of the map λ �→ Pt g(λ) is an immediate consequence of continuity of g, the
description of Pt in (3.7), and the fact that φ∞

t ∈ Lip(LN:k) for all t > 0 almost surely.
That limt↓0 Pt g(λ) = g(λ) for all λ ∈ LN:k follows by continuity of g and (3.3), which ensures

that the time of the initial jump out of λ|[n] is strictly positive, for every n ∈N. �

By the Feller property, any � with the construction in (3.4) has a càdlàg version. For the rest
of the paper, we implicitly assume � has càdlàg paths.

Definition 3.1 (Lipschitz partition process). We call the Markov process � constructed in (3.5)
a Lipschitz partition process directed by ϕ.

4. Exchangeable Lipschitz partition processes

A process � on LN:k is called exchangeable if � =L �σ for all permutations σ :N → N fixing
all but finitely many elements of N. We have already shown (Proposition 3.1 and Theorem 3.1)
that Lipschitz partition processes are consistent and possess the Feller property. We now consider
exchangeable Lipschitz partition processes on LN:k .
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Provided its rate measure μ is exchangeable, a coalescent process (Section 2.3.1) is exchange-
able. In the exchangeable case, the directing measure μ in (2.5) need only satisfy μ(1 ∼ 2) < ∞.
Furthermore, if we describe μ by a paintbox measure �ν on PN, (2.5) implies

ν
({

(0,0, . . .)
}) = 0 and

∫
�↓

(1 − s1)ν(ds) < ∞.

For Lipschitz partition processes constructed in (3.4), ϕ must be restricted to the space of strongly
Lipschitz maps to ensure exchangeability. We introduce strongly Lipschitz maps in Section 4.1
and show some of their properties in Section 4.2.

4.1. Strongly Lipschitz maps

In this section, we see that any exchangeable Markov process � with construction (3.4) must be
directed by a measure ϕ whose support is contained in the proper subset of strongly Lipschitz
maps on LN:k .

For any A ⊆N and λ,λ′ ∈ LA:k , we define the overlap of λ and λ′ by

λ ∩ λ′ :=
k⋃

i=1

(
λi ∩ λ′

i

)
, (4.1)

and let

�n := {
F ∈ Lip(LN:k) :F[n](λ) ∩ F[n]

(
λ′) ⊇ λ ∩ λ′ for all λ,λ′ ∈ L[n]:k

}
(4.2)

be the subset of functions F ∈ Lip(LN:k) for which the overlap of the image of any λ,λ′ ∈ L[n]:k
by the restriction F[n] contains the overlap of λ and λ′. By definition of the ultrametric (2.7) on
LN:k , if d(λ,λ′) ≤ 2−n for some n ∈N, then [n] ⊆ λ ∩ λ′; thus, �n ⊆ �n for all n ∈N. We write
� := ⋂

n∈N �n to denote the collection of Lipschitz continuous maps satisfying

F(λ) ∩ F
(
λ′) ⊇ λ ∩ λ′ for all λ,λ′ ∈ LN:k, (4.3)

and we call any F ∈ � strongly Lipschitz continuous. In the following proposition, let � be a
Lipschitz partition process directed by ϕ.

Proposition 4.1. If � is exchangeable, then ϕ is supported on F ∩ �, the trace σ -field of F =
σ 〈⋃n∈N Lip(L[n]:k)〉.

Proof. Suppose � is exchangeable and fix n ∈ N. Then �σ|[n] =L �|[n] for all σ ∈ Sn. Hence,
we can construct �σ and � from the same Poisson point process F := {(t,F t )} by putting

�σ
t |[n] = σ ∗F t[n](�t−|[n]) = σ ∗F t[n]σ ∗−1(

�σ
t−|[n]

)
(4.4)

for every t ∈ Jn := {t > 0 : (t,F t ) ∈ F and F t[n] �= Idn}, the jump times of �|[n]. By (4.4) and the

construction of � in (3.4), Fσ := {(t, σ ∗F tσ ∗−1
)} has the same law as a Poisson point process
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on [0,∞) × Lip(LN:k) with intensity dt ⊗ ϕ, for all σ ∈ Sn. Since we have assumed that the
support of ϕ is a subset of Lip(LN:k) and the set J∞ of atom times of F is at most countable
by (3.3), we have σ ∗F tσ ∗−1 ∈ Lip(LN:k) for all t ∈ J∞ almost surely. It follows that ϕ must be
supported on

� := {
F ∈ Lip(LN:k) :σ ∗Fσ ∗−1 ∈ Lip(LN:k) for every finite permutation σ :N →N

}
,

which is non-empty. To see that � ⊂ �, we need the following lemma.

Lemma 4.1. For n ∈ N, let λ,λ′ ∈ L[n]:k have overlap of size #(λ ∩ λ′) = r ∈ [n]. Then there
exists σ ∈ Sn such that σ 2 is the identity [n] → [n] and λσ ∩ λ′σ = [r].

Proof. For m,m′ ≤ r , let r < i1 < i2 < · · · < im be the elements of (λ ∩ λ′) \ [r] and let j1 <

· · · < jm′ ≤ r be the elements of (λ∩λ′)c ∩[r]. Note that m′ = r − (r −m) = m; so we can define
σ ∈ Sn by σ(il) = jl and σ(jl) = il for every l = 1, . . . ,m, and σ(i) = i otherwise. Clearly, σ 2

is the identity and i ∈ λ ∩ λ′ implies σ(i) ∈ [r]. �

Now, fix n ∈ N and take F ∈ �. For any σ ∈ Sn, we write Fσ[n] := σ ∗F[n]σ ∗−1
. Take any

λ,λ′ ∈ L[n]:k and let σ be the permutation of [n] from the preceding lemma. Then σ ∗ = σ ∗−1
,

Fσ[n] := σ ∗F[n]σ ∗ ∈ Lip(L[n]:k), and F[n] = σ ∗Fσ[n]σ ∗. Let dn denote the restriction of the metric
d in (2.7) to L[n]:k . By Lipschitz continuity and Lemma 4.1,

dn

(
Fσ[n]σ ∗(λ),F σ[n]σ ∗(λ′)) = dn

(
Fσ[n]

(
λσ

)
,F σ[n]

(
λ′σ )) ≤ 2−r ;

hence, λσ (j) = λ′σ (j) and [Fσ[n]σ ∗(λ)](j) = [Fσ[n]σ ∗(λ′)](j) for all j ∈ [r]. Finally, take i ∈
λ ∩ λ′. Then σ(i) ∈ [r] by Lemma 4.1, which implies

[
F[n](λ)

]
(i) = σ ∗[Fσ[n]σ ∗(λ)

]
(i)

= [
Fσ[n]σ ∗(λ)

](
σ(i)

)
= [

Fσ[n]σ ∗(λ′)](σ(i)
)

= σ ∗[Fσ[n]σ ∗(λ′)](i) = [
F[n]

(
λ′)](i),

and i ∈ F(λ) ∩ F(λ′). It follows that � ⊂ �. �

Remark 4.1. The converse of Proposition 4.1 does not hold.

Proposition 4.1 shows that the directing measure of an exchangeable Lipschitz partition pro-
cess can only assign positive measure to events in the trace σ -field F ∩ �. In the next section,
we use condition (4.3) to characterize the space �.
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4.2. Strongly Lipschitz maps and set-valued matrix multiplication

A k × k matrix M over S ⊂ N is a collection (Mij ,1 ≤ i, j ≤ k) of subsets of S for which we
define the operation multiplication by

(
M ∗ M ′)

ij
≡ (

MM ′)
ij

:=
k⋃

l=1

(
Mil ∩ M ′

lj

)
, 1 ≤ i, j ≤ k. (4.5)

The operation in (4.5) mimics multiplication of real-valued matrices, but for matrices taking
values in a distributive lattice. Here, the lattice operations ∩ and ∪ correspond to multiplication
and addition, respectively.

We are particularly interested in partition operators, matrices M over [n] with each Mj ∈
L[n]:k , j = 1, . . . , k, where Mj denotes the j th column of M . We write M[n]:k to denote the set
of k × k partition operators over [n].

Some observations about the operation (4.5):

(i) For m ≤ n, we can define the restriction of M ∈ M[n]:k to M[m]:k . First, we let I k
m :=

diag([m], . . . , [m]) be the k × k matrix with diagonal entries [m] and off-diagonal entries
the empty set. Then, for any M ∈ M[n]:k , the product M[m] := I k

mM = MIk
m ∈ M[m]:k

is well-defined as the restriction of M to M[m]:k . It follows that (M[n]:k, n ∈ N) is a
projective system with limit space MN:k , partition operators on LN:k .

(ii) For any injection ψ := (ψ1, . . . ,ψk) : [m]k → [n]k , m ≤ n, we define the projection
ψ∗∗ :M[n]:k → M[m]:k by

ψ∗∗(M) := (
ψ∗

1

(
M1), . . . ,ψ∗

k

(
Mk

))
, for every M ∈ M[n]:k,

where we write M := (M1, . . . ,Mk) as the vector of its columns. In particular, for σ ∈
Sn, we write σ ∗∗M = Mσ = (σ ∗M1, . . . , σ ∗Mk), the image of M under relabeling each
of its columns by σ .

(iii) We can equip MN:k with the ultrametric d� in (3.1) restricted to MN:k ; in particular,

d�

(
M,M ′) := 2−n(M,M ′),

where n(M,M ′) := max{n ∈N :MIk
n = M ′I k

n }.
We record some facts about partition operators.

Lemma 4.2. Let n ∈N∪ {∞} and m ≤ n.

(i) Any M ∈M[m]:k determines a map M :M[n]:k →M[m]:k , M ′ �→ MM ′.
(ii) Any M ∈M[m]:k determines a map M :L[n]:k → L[m]:k by

(Mλ)i :=
k⋃

j=1

(Mij ∩ λj ), i = 1, . . . , k, λ ∈ L[n]:k. (4.6)
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(iii) The operation (4.5) is associative, that is, M(M ′M ′′) = (MM ′)M ′′ for all M,M ′,M ′′ ∈
M[n]:k .

(iv) Each M ∈ M[n]:k determines a Lipschitz continuous map M :M[n]:k → M[n]:k through
(4.5) and M :L[n]:k → L[n]:k through (4.6).

Proof. The proof is routine, but we include the proof of (iv) because it is crucial to the paper.
Note that the restriction of any λ ∈ LN:k to n ∈N can be expressed as λ|[n] = I k

nλ. Let λ,λ′ ∈ LN:k
be such that I k

r λ = I k
r λ′ for some r ∈N. Then d(λ,λ′) ≤ 2−r and, for every M ∈MN:k ,

I k
r (Mλ) = (

I k
r M

)
λ = (

MIk
r

)
λ = M

(
I k
r λ

) = M
(
I k
r λ′) = I k

r

(
Mλ′),

implying d(Mλ,Mλ′) ≤ d(λ,λ′). �

Example 4.1 (Partition operator). Fix n = 6, k = 2, and let λ = ({1,3,4,5}, {2,6}). Then the
image of λ by

M :=
( {2,3} {2,4,5,6}

{1,4,5,6} {1,3}
)

is

Mλ :=
( {2,3} {2,4,5,6}

{1,4,5,6} {1,3}
)( {1,3,4,5}

{2,6}
)

=
(({2,3} ∩ {1,3,4,5}) ∪ ({2,4,5,6} ∩ {2,6})({1,4,5,6} ∩ {1,3,4,5}) ∪ ({1,3} ∩ {2,6})

)

=
( {2,3,6}

{1,4,5}
)

.

Remark 4.2 (Partition operators and the Coag operator). There is a relationship between parti-
tion operators and the coagulation operator Coag :PN×PN → PN from Section 2.3.1. For k ∈N,
let π := {b1, . . . , bk} ∈ PN:k and define λ := (b1, . . . , bk), the k-partition obtained by listing the
blocks of π in ascending order of their least element. Now, given π ′ = {b′

1, . . . , b
′
r ′ } ∈ P[k], we

define M := Mπ ′ by

Mij :=
{
N, j ∈ b′

i ,
∅, otherwise.

Then B∞(Mπ ′λ) = Coag(π,π ′). For example, let π = 123/45/678/9 so that λ = (123,45,

678,9), and let π ′ = 12/34. In this case, Coag(π,π ′) = 12345/6789 and

Mπ ′λ =
⎛
⎜⎝
N N ∅ ∅

∅ ∅ N N

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

⎞
⎟⎠

⎛
⎜⎝

123
45
678

9

⎞
⎟⎠ =

⎛
⎜⎝

12345
6789
∅

∅

⎞
⎟⎠ .

Note that, in general, partition operators cannot be used instead of the coagulation operator in
the construction of the coalescent process because, in the standard coalescent, the initial state
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�0 := 0N has infinitely many blocks, but partition operators are defined as k × k matrices for
finite k ≥ 1.

Proposition 4.2. The space MN:k of partition operators is in one-to-one correspondence with
� defined in (4.2).

Proof. Let F ∈ � and n ∈ N. Then F ∈ �n and, for each i ∈ [n], if λ(i) = λ′(i) then
F[n](λ|[n])(i) = F[n](λ′|[n])(i). For j = 1, . . . , k, let E

(n)
j ∈ L[n]:k be the k-partition of [n] satisfy-

ing E
(n)
j (i) = j for every i ∈ [n]. Construct M[n] ∈ M[n]:k by setting its j th column M

j
[n] equal

to the image of E
(n)
j by F[n]. So M[n] := (F[n](E(n)

1 ),F[n](E(n)
2 ), . . . ,F[n](E(n)

k )). By definition
of �n in (4.2), it is clear that M[n]λ = F[n](λ), for every λ ∈ L[n]:k . The collection (M[n], n ∈ N)

is compatible with respect to the restriction maps on (M[n]:k, n ∈ N) and therefore determines a
unique M ∈MN:k satisfying

Mλ = F(λ) for every λ ∈ LN:k.

The opposite morphism MN:k → � follows from definition (4.6) and definition of the metric
in (2.7). �

From Proposition 4.2, we can assume, without loss of generality, that any exchangeable pro-
cess with construction (3.4) is directed by a measure μ on (MN:k, σ 〈⋃n∈NM[n]:k〉) for which

μ
({

I k∞
}) = 0 and μn

(
M[n]:k \ {

I k
n

})
< ∞ for all n ∈ N, (4.7)

where I k
n is the partition operator with diagonal entries [n] and off-diagonal entries the empty

set, and μn denotes the restriction of μ to M[n]:k . Note that (4.7) agrees with (3.3).

Theorem 4.1. Let � := (�t , t ≥ 0) be a Lipschitz partition process on LN:k . Then � is ex-
changeable if and only if its directing measure μ

• is supported on MN:k ,
• satisfies

μ
({

I k∞
}) = 0 and μ2

({
M ∈ M[2]:k :M �= I k

2

})
< ∞, (4.8)

and
• for every permutation σ :N → N fixing all but finitely many n ∈ N and every measurable

subset A ⊆MN:k ,

μ(A) = μ
({

Mσ :M ∈ A
})

. (4.9)

Proof. Support of μ on MN:k follows from Proposition 4.2, and (4.9) is a consequence of ex-
changeability and the fact that, for any M ∈ M[n]:k , λ ∈ L[n]:k , and σ ∈ Sn, (Mλ)σ = Mσ λσ .
Condition (4.8) follows from (4.7).
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To show the converse, we need only show that (4.8) implies (4.7). Indeed, let n ∈ N and note
that the event M[n]:k \ {I k

n } = {M ∈ M[n]:k :M �= I k
n } implies that there is some permutation

σ ∈ Sn such that Mσ Ik
2 �= I k

2 ; hence,

μn

({
M :M �= I k

n

}) = μn

( ⋃
σ∈Sn

{
M :Mσ Ik

2 �= I k
2

})

≤
∑

σ∈Sn

μ2
({

M ∈M[2]:k :M �= I k
2

})

= n!μ2
({

M ∈ M[2]:k :M �= I k
2

})
< ∞.

The rest is immediate. �

Proposition 4.2 and Theorem 4.1 suggest a construction of arbitrary partition operators. In
brief, take any collection λ(1), . . . , λ(k) in LN:k and, for each j = 1, . . . , k, put the j th column of
M ∈ MN:k equal to λ(j). Likewise, a measure μ on MN:k can be defined by a measure on the
product space Lk

N:k . Furthermore, using the above observation, we can construct a measure ϕ with
support in Lip(LN:k) but not in MN:k , leading to an explicit construction of a non-exchangeable
Lipschitz process whose semigroup is not determined by strongly Lipschitz functions. We show
such a process in Section 4.5.

4.3. Examples: Exchangeable Lipschitz partition processes

Example 4.2 (Self-similar exchangeable Markov process on LN:k). For any probability mea-
sure ν on �k , recall the definition of ζν (Section 2.5). Given a measure ν on �k , we write μν⊗k to
denote the measure on MN:k coinciding with the product measure ζν ⊗ · · · ⊗ ζν on Lk

N:k . More
generally, for measures ν1, . . . , νk on �k , μν1⊗···⊗νk

is the measure on MN:k coinciding with
ζν1 ⊗ · · · ⊗ ζνk

on Lk
N:k .

Let ν1, . . . , νk be measures on �k such that∫
�k

(1 − si)νi(ds) < ∞ for all i = 1, . . . , k.

Then the second half of (3.3) is satisfied for μν1⊗···⊗νk
and we can construct a process � :=

(�t , t ≥ 0) from a Poisson point process M := {(t,Mt)} ⊂ R
+ × MN:k with intensity dt ⊗

μν1⊗···⊗νk
, just as in (3.4). The infinitesimal jump rates of this process are given explicitly by

Qn

(
λ,λ′) :=

k∏
i=1

ζ λi
νi

(
λ′|λi

)
, λ �= λ′ ∈ L[n]:k,

for each n ∈ N, where ζ b
ν denotes the measure induced on Lb:k by ζν for any b ⊆N. This process

is the analog of the self-similar processes in Section 2.3.2.
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Example 4.3. Similar to the above example, let ν be a measure on �k so that

ζ (n)
ν

(
L[n]:k\

{
E

(n)
i

})
< ∞, for every n ∈N and all i = 1, . . . , k,

where E
(n)
i ∈ L[n]:k is the k-partition of [n] with all elements labeled i. With Uk denoting the

uniform distribution on [k], the Poisson point process F = {(t, λt ,Ut )} ⊂ [0,∞) × LN:k × [k],
with intensity dt ⊗ ζν ⊗ Uk , determines a random subset M ⊂ [0,∞) × MN:k , where for each
atom time t > 0 of F we define Mt ∈MN:k by putting

Mi
t =

{
λt , i = Ut ,
Ei, otherwise;

that is, writing λt = (λt,1, . . . , λt,k), we put

Mt :=

⎛
⎜⎜⎜⎝

1 2 · · · Ut · · · k

N ∅ · · · λt,1 · · · ∅

∅ N · · · λt,2 · · · ∅

...
...

. . .
...

. . .
...

∅ ∅ · · · λt,k · · · N

⎞
⎟⎟⎟⎠.

Given F and an initial state �0 ∈ LN:k , we construct the process � as in (3.4) by putting �t =
Mt�t− whenever t > 0 is an atom time of F. Variations of this description, for example, for
which at most one class of the current state �t is broken apart in any single jump, are possible
and straightforward. For example, the rates at which different classes experience jumps need not
be identical.

Example 4.4 (Group action on LN:k). For any λ ∈ LN:k , we define Mλ ∈MN:k by

Mλ :=

⎛
⎜⎜⎝

λ1 λk λk−1 · · · λ2
λ2 λ1 λk · · · λ3
...

...
...

. . .
...

λk λk−1 λk−2 · · · λ1

⎞
⎟⎟⎠ . (4.10)

In words, Mλ is the k × k matrix whose j th column is the j th cyclic shift of the classes of λ.
Note that Mλλ

′ = Mλ′λ for all λ,λ′ ∈ LN:k .
Any measure ζ on LN:k determines a measure μζ on MN:k as follows. Let A ⊂ LN:k be any

measurable subset, then we define

μζ

({Mλ :λ ∈ A}) = ζ(A).

Let ζ be a measure on LN:k so that μζ satisfies (4.7) and let G := {(t,Gt )} ⊂ R
+ × LN:k be a

Poisson point process with intensity dt ⊗ ζ . Then the construction of the process � on LN:k with
initial state �0 ∈ LN:k proceeds as in (3.4) where, for every atom time t > 0 of G, we define
Mt := MGt . Note that the exchangeability condition from Theorem 4.1 (in coordination with de
Finetti) implies that if the process � constructed from G is exchangeable, then the measure ζ

directing G must coincide with ζν for some measure ν on �k .
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Corollary 4.1. The process � based on G and �0 is exchangeable if and only if ζ = ζν , for
some measure ν on �k , and �0 is an exchangeable k-partition of N.

By regarding the elements of N as labeled balls and the classes of λ ∈ LN:k as labeled boxes,
the action Mλλ

′ can be interpreted as the reassignment of each of the balls to a new class via a
cyclic shift by one less than their class assignment in λ (modulo k). The commutative property of
this class of maps also implies that the collection {Mλ :λ ∈ LN:k} ⊂ MN:k is a special subspace
of MN:k . For instance, for every λ ∈ LN:k , MλMT

λ = I k∞, where MT ∈ MN:k denotes the usual
matrix transpose of M .

4.4. Associated �k-valued Markov process

We define the asymptotic frequency of any A ⊆N by the limit

|A| := lim
n→∞

#(A ∩ [n])
n

, if it exists. (4.11)

Furthermore, we say λ ∈ LN:k possesses asymptotic frequency |λ| := (|λj |,1 ≤ j ≤ k) ∈ �k ,
provided |λj | exists for every j = 1, . . . , k. By de Finetti’s theorem, any exchangeable k-partition
of N possesses an asymptotic frequency almost surely. In particular, for s ∈ �k , � ∼ ζs has
|�| = s with probability one.

Given a process � on LN:k , its associated �k-valued process is defined by |�| := (|�t |, t ≥ 0),
provided |�t | exists for all t ≥ 0 simultaneously. In this section, we show that the associated �k-
valued process of any exchangeable Lipschitz partition process � exists almost surely and is a
Feller process.

Let μ be the directing measure of an exchangeable Lipschitz partition process � and let
M := {(t,Mt )} be a Poisson point process with intensity dt ⊗ μ. For M ∈ MN:k , we define
the asymptotic frequency of any M ∈ MN:k as the (column) stochastic matrix S := |M|k with
(i, j)-entry Sij := |Mij |, provided |Mij | exists for all i, j = 1, . . . , k. We have the following
lemmas.

Lemma 4.3. For every atom time t > 0 of M, |Mt |k exists almost surely.

Proof. This is a consequence of Theorem 4.1, by which, for any atom time t > 0 of M, each
column of Mt is an exchangeable k-partition. By de Finetti’s theorem, the asymptotic frequency
of each column of Mt exists almost surely. Since k < ∞, |Mt |k exists a.s. �

For each atom time t of M, we write St := |Mt |k . We also augment the map | · |k on MN:k
by including the cemetery state ∂ in the codomain of | · |k and defining |M|k = ∂ if |M|k does
not exist. This makes | · |k :MN:k → Sk ∪ {∂} a measurable map, where Sk is the space of k × k

column stochastic matrices, that is, S = (Sij ,1 ≤ i, j ≤ k) ∈ Sk satisfies Sij ≥ 0 and S1j + · · · +
Skj = 1 for all j = 1, . . . , k.
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Lemma 4.4. The image S := {(t, St )} ⊆ R
+ × Sk of M := {(t,Mt )} ⊂ R

+ × MN:k by | · |k ,
that is, St := |Mt |k for all atom times t > 0 of M, is almost surely a Poisson point process with
intensity dt ⊗ |μ|k , where |μ|k denotes the image measure of μ by | · |k .

Proof. Let J ⊂ [0,∞) denote the subset of atom times of M. By condition (3.3), J is at most
countable almost surely. By Lemma 4.3, |Mt |k exists μ-almost everywhere for every t ∈ J .
Therefore,

μ

(⋃
t∈J

{|Mt |k = ∂
}) ≤

∑
t∈J

μ
({|Mt |k = ∂

}) = 0,

and S is almost surely a subset of R+ ×Sk . That S is a Poisson point process with the appropriate
intensity is clear as it is the image of the Poisson point process M by the measurable function
| · |k . �

Theorem 4.2. The associated �k-valued process |�| := (|�t |, t ≥ 0) of an exchangeable Lips-
chitz partition process � exists almost surely and is a Feller process on �k .

Proof. By exchangeability of �, the asymptotic frequency |�t | exists for all fixed times t > 0,
with probability one. In order for |�| to exist on �k , we must show that, with probability one,
|�t | exists for all t > 0 simultaneously. Let M be a Poisson point process that determines the
jumps of � by (3.4). For each n ∈ N, let Dn be the dyadic rationals in [0,1]. Then |�t | exists
almost surely on

⋃
n∈NDn, which is dense in [0,1]. Existence of |�| now follows by density,

càdlàg paths of �, the Poisson point process construction of � via M, and Lemmas 4.3 and 4.4.
The Feller property follows from Corollary 3.1 and Lemma 4.4. As in the general case, in

which φ∞ is a Feller process on Lip(LN:k), we can construct a Feller process Q := (Qt , t ≥ 0)

on MN:k such that Qσ := (Qσ
t , t ≥ 0) =L Q, for all σ :N → N fixing all but finitely many

n ∈ N. By Corollary 3.1, the semigroup of � satisfies Pt g(λ) := Eλg(Qtλ). Furthermore, by
Lemma 4.4 and the argument to show that |�| exists, the projection |Q| := (|Qt |k, t ≥ 0) into
Sk exists almost surely and |�| satisfies �t := |Qt |k|�0| for all t > 0. The Feller property is a
consequence of Lipschitz continuity of the linear map S :�k → �k determined by any S ∈ Sk .

�

Remark 4.3. A detailed proof of Theorem 4.2 is technical and provides no new insights. Es-
sentially, existence of |�| is a consequence of regularity of the paths of � and density of the
countable set of dyadic rationals. The Feller property follows by Lipschitz continuity of maps
determined by stochastic matrices. For a blueprint of the proof, we point the reader to [12].

4.5. A non-exchangeable Lipschitz process

The processes in the above examples are exchangeable Lipschitz partition processes. We now
show an example of a Lipschitz partition process that is not exchangeable, and whose directing
measure is not confined to the subspace MN:k .
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Let A := (Mi
j , i ∈ [k], j ≥ 0) be an array of elements in LN:k . Given A, we define FA = F ∈ �

by F(λ) = Aλλ, where Aλ ∈MN:k is defined as follows. For every i ∈ [k], we put

mi :=
{

min{n ∈ N :n ∈ λi}, λi �=∅,
0, otherwise.

(4.12)

For each i = 1, . . . , k, we put Ai
λ = Mi

mi
and let Aλ := (A1

λ, . . . ,Ak
λ) ∈ MN:k . It should be clear

that, as specified, F need not be strongly Lipschitz.

Proposition 4.3. The map FA defined above is Lipschitz continuous.

Proof. Take any λ,λ′ ∈ LN:k and let r = − log2 d(λ,λ′) ∈ N∪{∞}. Let 0 < m(1) < m(2) < · · · <
m(k′) ≤ r and 0 < m′

(1) < m′
(2) < · · · < m′

(k′′) ≤ r be the minima (4.12) of λ and λ′ (respectively)

that are greater than zero but not greater than r . Since I k
r λ = I k

r λ′ by definition (2.7), we must
have k′′ = k′ and m(i) = m′

(i) for all 1 ≤ i ≤ k′. It follows that AλI
k
r = Aλ′I k

r and

FA(λ)|[r] = (
I k
r Aλ

)
λ = (

AλI
k
r

)
λ = Aλ

(
I k
r λ

) = Aλ

(
I k
r λ′) = (

AλI
k
r

)
λ′ = (

Aλ′I k
r

)
λ′ = FA

(
λ′)

|[r].

As this must hold for all λ,λ′ ∈ LN:k , it follows that FA is Lipschitz continuous. �

Now, we construct a measure on Lip(LN:k) using the above observation. In particular, for every
j ≥ 0, let νj be a measure on �k such that

ζ (n)
νj

(
L[n]:k \ {

E
(n)
i

})
< ∞ for all i = 1, . . . , k, for all n ∈ N, (4.13)

where E
(n)
i ∈ L[n]:k is the k-partition of [n] with all elements labeled i, as in the proof of Propo-

sition 4.2. We define the measure μ on k × ∞ arrays of independent k-partitions (as A above)
for which the partition in the ith row and j th column has distribution ζνj

. We then define ϕμ

as the measure on Lip(LN:k) induced by the random array A with distribution μ and the map
F ∈ Lip(LN:k) associated to A by the above discussion. We let F be a Poisson point process with
intensity dt ⊗ ϕμ and construct � on LN:k as in (3.4).

In the following proposition, let F := {(t,F t )} be a Poisson point process with intensity dt ⊗
ϕμ, which is determined by a Poisson point process A := {(t,At )} with intensity dt ⊗ μ, where
each At is a random k ×∞ array. In particular, for each atom time t > 0 of F, we put F t := FAt ,
as defined above.

Proposition 4.4. � constructed from F is a Feller process on LN:k . If, in addition, νi �= νj for
some 1 ≤ i < j < ∞, then � is not exchangeable.

Proof. For every n ∈N and atom time t > 0 of A, the restriction �t |[n] depends only on the first
n + 1 columns of any At . By assumption (4.13) on the underlying directing measures ζνj

, ϕμ

satisfies (3.3). Theorem 3.1 and Proposition 4.3 now imply that � is a Feller process.
Non-exchangeability of � under the stated condition is clear: since νi �= νj implies ζ

(n)
νi

�= ζ
(n)
νj

for all n ∈ N, then the jump rates from a state with mi′ = i and mj ′ = j differ from the jump rates
from a state with mi′ = j and mj ′ = i, for any 1 ≤ i′ �= j ′ ≤ k. �
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5. Discrete-time processes

From our previous discussion of continuous-time processes, we need not prove anything fur-
ther for discrete-time chains; but we make some observations specific to the discrete-time case.
Throughout this section, all measures on Lip(LN:k) and/or MN:k are probability measures.

First, given a probability measure ϕ on Lip(LN:k), we construct a Markov chain � :=
(�m,m ≥ 0) with initial state �0 ∈ LN:k by taking F1,F2, . . . i.i.d. with law ϕ and defining

�m = Fm(�m−1) = (Fm ◦ Fm−1 ◦ · · · ◦ F1)(�0), for each m ≥ 1. (5.1)

Constructed this way, � is a Markov chain on LN:k . Furthermore, by Lipschitz continuity of the
maps F1,F2, . . . , the finite restrictions (�|[n], n ∈ N) are finite state space Markov chains. The
following corollary follows from arguments in the continuous-time case.

Corollary 5.1. Let � constructed in (5.1) be exchangeable. Then we have the following.

• ϕ is supported on F ∩ � and we can assume, without loss of generality, that ϕ is a proba-
bility measure on MN:k .

• The �k-valued Markov chain |�| = (|�m|,m ≥ 0) exists almost surely and can be con-
structed as in (5.1) from S1, S2, . . . i.i.d. |ϕ|k , the measure induced by ϕ on Sk through the
map | · |k . In particular, |�| =L D := (Dm,m ≥ 0), where

Dm := Sm · · ·S1D0, m ≥ 1,

for D0 := |�0| and S1, S2, . . . i.i.d. |ϕ|k .

6. Concluding remarks

To conclude, we remark about the projection of Lipschitz partition processes into PN:k and dis-
cuss more general aspects of partition-valued processes.

6.1. Associated Lipschitz partition processes on PN:k

Let ϕ be the directing measure of a Lipschitz partition process � on LN:k . Intuitively, the pro-
jection B∞(�) := (B∞(�t ), t ≥ 0) into PN:k is, itself, a Markov process as long as ϕ treats the
classes of every λ ∈ LN:k “symmetrically.” In particular, for any permutation γ : [k] → [k], let us
define � ∈ MN:k as the k × k partition operator with entries

�ij =
{
N, γ (i) = j ,
∅, otherwise.

The matrix � acts on LN:k by relabeling classes; that is, for any λ := (λi,1 ≤ i ≤ k) ∈ LN:k ,
�λ := (λγ (i),1 ≤ i ≤ k). Therefore, the projection � := B∞(�) into PN:k is a Markov process if
and only if, for every λ ∈ LN:k and every measurable subset C ⊆PN:k , ϕ assigns equal measure to
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the events {F ∈ � :F(λ) ∈ B−1∞ (C)} and {F ∈ � :F(�λ) ∈ B−1∞ (C)}, for all γ ∈ Sk . Moreover,
if � is a Markov process, then it fulfills the Feller property.

By the preceding discussion, we can generate a Lipschitz partition process on PN:k by project-
ing a process � that treats labels symmetrically. The projection B∞(�) is a Feller process; and,
if � is exchangeable, then so is B∞(�).

6.2. Existence and related notions

Sections 4.3 and 4.5 contain explicit examples of exchangeable and non-exchangeable Lipschitz
partition processes. These examples confirm that Lipschitz partition processes exist, and their
Poisson point process construction lends insight into their behavior. The Poisson point process
construction is also useful in simulation and Markov chain Monte Carlo sampling.

There remain broader questions surrounding existence of measures satisfying (4.7), as well
as more general partition-valued Markov processes. We undertake some of these questions else-
where: we characterize exchangeable Feller processes on PN:k in [10]; we show the cutoff phe-
nomenon for a class of these chains in [11]; and we study exchangeable processes without the
Feller property in [12].
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