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Approximation of a stochastic wave equation
in dimension three, with application to a
support theorem in Holder norm
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A characterization of the support in Holder norm of the law of the solution to a stochastic wave equation
with three-dimensional space variable is proved. The result is a consequence of an approximation theorem,
in the convergence of probability, for a sequence of evolution equations driven by a family of regularizations
of the driving noise.
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1. Introduction

In this paper, we consider a stochastic wave equation with three-dimensional spatial variable,
and we prove a characterization of the topological support of the law of the solution in a space
of Holder continuous functions.

We focus on the stochastic partial differential equation

2
(% - A)M(M) =0 (u(t, ©))M(t, x) + b(u(t, x)),

) (1.1)
u(0,x) = Eu(o,x) =0,

where A denotes the Laplacian on R3, T > 0 is fixed, # €]0, T'] and x € R3. The non-linear
terms are defined by functions o, b: R — R. The notation M (¢, x) refers to the formal derivative
of a Gaussian random field white in the time variable and with a non-trivial covariance in space.
More explicitly, on a complete probability space (€2, G, P) we consider a Gaussian process M =
{M(p), 9 €C° (R!*3)}, where Ce° (R'*3) denotes the space of infinitely differentiable functions
with compact support. We assume that E(M (¢)) = 0 and that the covariance function of M is
given by

E(M(o)M 1)) =/R+ ds /R3 T(dx)(g(s, ) * Y (s, ) (x), (1.2)

[T

where “x” denotes the convolution operator in the spatial argument and &(r, x) =y, —x). We
suppose that I' is a measure on R3 absolutely continuous with respect to the Lebesgue measure
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with density f given by
f@ =k xeR\{0}.€l0.2L (1.3)

Let S(R?) be the space of rapidly decreasing functions on R3. We denote by F the Fourier
transform operator defined by

f¢($)=/IR3¢(X)6XP(—2ﬂi(E -x)) dx,

@ 9

where the notation
also be written as

stands for the Euclidean inner product. The covariance function (1.2) can

]E(M(w)M(W))=/O dS/R3M(dé)fw(S)(é)}"W(S)(S),

where = F 7 f.
We introduce the Hilbert space # defined by the completion of S(R?) endowed with the semi-
inner product

(. ¥)u= fR3 n(d&) FoE)F ().

Assume that ¢ € H is a finite measure. Then [14], Lemma 12.12, page 162, gives

oy =c [ [Fo@iercPae—c

o P@OP@E =y P drdy, (4
- X

for some finite constant C. This identity extends easily to signed finite measures ¢ € H, by
using the decomposition into a difference of positive finite measures. We will apply (1.4) to
¢(dx) :=G(t,dx)Z(t, x), where G (¢, dx) is the fundamental solution to the wave equation (the
definition is given later) and Z (¢, x) is an a.s. finite random variable.

The spaces H and H; := L>([0, t]; H), t €10, T'], will play an important role throughout the
paper. It is useful to introduce an isometric representation of theses spaces, as follows. Consider
a complete orthonormal basis (e;) jen C S (R3) of . Then the mappings

I:H— €  Ir:Hr — L*([0,T]; €)
defined by
I@=(ge)n) e ITr@O =00, e)y) ;0 1€10,T),

respectively, are isometries. This provides an identification of H, Hr with 02, Lz([O, Tl Zz),
respectively.

In a similar vein, the Gaussian process M admits a representation as a sequence (W;(t),t €
[0, T])jen of independent real-valued standard Brownian motions (see, e.g., [9], Proposi-
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tion 2.5). Indeed, this is given by the formula
W;(t) =Ml ne;), jeNte[0,T].

We refer the reader to [7] for a rigorous derivation of M (1o ;e;) from the process M.

Along with the probability space (2, G, P), we will consider the filtration (F;);c[0,7] gener-
ated by the process {W;(¢), j e N, € [0, T]}.

Let G (t) be the fundamental solution to the wave equation in dimension three. It is well-known
that G(¢,dx) = #at (dx), where o;(x) denotes the uniform surface measure on the sphere of
radius ¢ with total mass 4772 (see [11]). We interpret (1.1) as the evolution equation

'
u(t,x) = / / G({t—s,x— y)o(u(s, y))M(ds, dy)
0 JR3

. (1.5)
+ /0 [G(t —5,) *b(u(s, -))](x) ds,
where the stochastic integral (also termed stochastic convolution) in (1.5) is defined as
t
/ / G(t—s,x— y)o(u(s, y))M(ds, dy)
0 Ji (1.6)

t
= Z/O (Gt = 5,0 —0)0 (u(s, ), ej),, Wi (ds).

jeN

The notation on the left-hand side of this identity suggests an integration with respect to the
martingale measure derived from the Gaussian process M, as has been considered in [6], while
on the right-hand side, there is an Itd integral with respect to the infinite-dimensional Brownian
motion W = (W}, j € N). It follows from [9], Propositions 2.6, 2.9, that if Y (¢, x) := o (u(¢, x)),
(t,x) € [0, T] x R3, satisfies SUP(; x)e[0,T]xR? E(Y(t, x)|2) < 00, then both integrals coincide.

Assume that the functions o and b are Lipschitz continuous. With the definition (1.6), Theo-
rem 4.3 in [9] gives the existence and uniqueness of a random field solution to equation (1.5)
satisfying sup(; y)eo,77xR3 E(|u(t, x)|?) < oo, for any p € [1, 0o[. This means a real-valued
adapted stochastic process such that (1.5) holds a.s. for all (¢, x) € [0, T] x R3. In Theorem A.1,
we will give an extension of this result.

In [10], equation (1.5) has been formulated using the stochastic integral introduced by Dalang
and Mueller in [8], and a theorem of existence and uniqueness of a random field solution is
proved. Moreover, it is also established that the sample paths are almost surely Holder continuous
jointly in (z, x), with degree p. For the particular covariance density given in (1.3), p €]0, # [.
Appealing to [9], Proposition 2.11, this property holds for the solution of (1.5) with the choice of
stochastic integral made in (1.6). More precisely, fix o € [0, T'] and a compact set K C R3. For
any p €]0, 1[, and every real function g, set

lg(t,x) — g(t,X)|
Igllp.o.k == sup  |g(t, )|+ sup = —
(t,x)€lto. TIxK (t.x).(F.5)eln.TIxk (T =1+ [x —x])

14T xA£%
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We denote by C”([tp, T'] x K) the space of real functions g such that | gl|, 4,k < oo. Then [10],
Theorem 4.11, shows that, for any p €]0, %[, lullp.r0,xk < c, a.s., where c is a finite random
variable, a.s. This result tells us that the law of the solution of (1.5), when restricted to [7g, T] X K,
is a probability on C?([tg, T] x K), with p €]0, #[.

The analysis of the topological support under different kinds of norms, like the supremum
norm, Holder norm, weighted Sobolev norms, has been extensively studied for diffusion pro-
cesses. As a representative sample of references, let us mention [4,12,13,19]. Inspired by [1],
Millet and Sanz-Solé have introduced a method for the characterization of the support of a ran-
dom vector based exclusively on approximations. For solutions to stochastic equations, such
approximations entail regularizations of the noise. The paper [16] illustrates the suitability of
the method by giving a very simplified proof of an extension of Stroock’s support theorem
for diffusions. Moreover, the method has also been successfully applied to several examples
of stochastic partial differential equations, like a reduced wave equation with d = 1, a stochas-
tic heat equation with d = 1 and a stochastic wave equation with d = 2 (see [3,15] and [17],
resp.).

A motivation to study the support of a stochastic evolution equation lies in the analysis of
the uniqueness of invariant measures. Recently, R. Cont and D. Fournié have proved results
on functional Kolmogorov equations in the framework of a functional It6 calculus (see [5]).
Assumptions concerning the support of some functionals play a crucial role in their results. This
provides an additional motivation for our work.

In this paper, we apply the approximation method of [15] to obtain a characterization of the
topological support of the law of u (the solution to (1.5)) in the Holder norm | - || 5,4,k - The
core of the work consists of an approximation result for a family of equations more general than
equation (1.5) by a sequence of pathwise evolution equations obtained by a smooth approxima-
tion of the driving process M. In finite dimensions, the celebrated Wong—Zakai approximations
for diffusions in the supremum norm could be considered as an analogue. However there are two
substantial differences, first the type of equation we consider in this paper is much more complex,
and moreover we deal with a stronger topology.

For the sake of completeness, we give a brief description of the procedure of [15] in the
particular context of this work, and refer the reader to [15] for further details.

Let (S_Z, G , 1) be the canonical space of a standard real-valued Brownian motion on [0, 7']. In
the sequel, the reference probability space will be (2, G, P) := (Q, G®N, i®N). By the preced-
ing identification of M with (W;, j € N), this is the canonical probability space of M.

Assume that there exists a measurable mapping &; :LZ([O, Tl; 62) — CP([ty, T] x K), and a
sequence w" : Q — L2([0, T]; £?) such that for every & > 0,

tim B{u— & ()], 5 > £} =0. a7

Then supp(u o P~1) C & (L2([0, T; £2)), where the closure refers to the Holder norm | - || 5 4. & -

Next, we assume that there exists a mapping & : L2([0, T1; 22) — CP([tp, T] x K) and for any
h e L*([0, TT; €2), we suppose that there exist a sequence Tnh : Q — Q of measurable transfor-
mations such that, for any n > 1, the probability Po (Tnh)’1 is absolutely continuous with respect
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to P and, for any h € L([0, T]; £2), ¢ > 0,

lim P{[u(T)) —&m]|,, x <} >0. (1.8)

n—oo

Then supp(u o P~1) D & (L2([0, T]; £2)).
For any h € Lz([O, T1; Ez) (or equivalently, & € Hr), consider the deterministic evolution
equation

t

<I>h(t,x)=<G(t—-,x—*)o(@h(~,*)),h>%+/ ds[G(t =5, % (®"(s,))]x). (1.9
0

Similarly as for u, the mapping (¢, x) € [t), T] x K o (1, x) belongs to C* ([tg, T] x K).
Let &1(h) =& (h) = ®" and (w™)>1 be given by (2.1). From (2.2) and the isometric repre-
sentation of Hr, we see that w" : Q — L2([0, Tl; 62). Given h € L2([0, T1; EZ), we define

T'w)=w+h—w". (1.10)

By Girsanov’s theorem, the probability P o (Tnh)’1 is absolutely continuous with respect to P.

According to (1.7), (1.8), the final objective is to prove that

lim & =u, lim u(T)') = o",
n—oo n—oo
in probability and with the Holder norm || - || 5. +,, 7. Then, by the preceding discussion we infer that
the support of the law of u in the Holder norm is the closure of the set of functions {®", h € H7}
(see Theorem 3.1 for the rigorous statement). Notice that the characterization of the support does
not depend on the approximating sequence (w");,eN-

The paper is structured as follows. The next Section 2 is devoted to a general approximation
result. This is the hard core of the work (see Theorem 2.2). We postpone for a while a more ex-
tensive description of its content. Section 3 is devoted to the proof of the characterization of the
support of u. It is a corollary of Theorem 2.2. Section 4 is of technical character. It is devoted to
establish some auxiliary results which are needed in some proofs of Section 2. In the Appendix,
a theorem on existence and uniqueness of a random field solution for a quite general evolution
equation is proved. It provides the rigorous setting for all the stochastic partial differential equa-
tions that appear in this paper. The section also contains two known but fundamental results used
at some crucial parts of the proofs of Sections 2 and 3.

We end this introduction with a more detailed description of Section 2 devoted to the proof of
the approximation result (see Theorem 2.2). The method we use is similar as in [17], where the
case d = 2 was studied. Nevertheless, for d = 3 its implementation entails substantial differences
and new difficulties. The reason for this is that the fundamental solution of the wave equation in
dimension three is a measure and not a real-valued function, as in dimension two.

As was formulated in [3], and further developed in [17], there are two main elements in the
proof of Theorem 2.2: a control on the L” (£2)-increments in time and in space of the processes
X and X, independently of n, and L?(2) convergence of X, (¢, x) to X(¢, x), for any (¢, x).
The precise assertions are given in Theorems 2.3 and 2.4, respectively.
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For the sake of illustration, we sketch one of the difficulties encountered in the proof of Theo-
rem 2.3. Consider either stochastic or pathwise integrals with integrands of the form

[G(t_—s,x—dy)—G(t—s,i—dy)]Z(s,y), 0<t<7i<T,x, xR

where Z (s, y) is a stochastic process. We want estimates of some norms of these expressions in
terms of powers of the increments |f — |, |x — x|. In dimension d = 2, G (¢, dx) = G(¢, x) dx and
the problem is solved using direct computations on the function differences G(f — s, x — y) —
G(t —s,x —y). For d = 3, this approach fails.

In [10], this problem was tackled by passing increments of the measure G to increments of
Z, by means of a change of variables. We shall apply repeatedly this idea throughout the paper.
However, there are some significant differences between the arguments in [10] and those used
here. In [10], the formulation of equation (1.5) is based on Dalang—Mueller stochastic integral — a
functional type integral in the spatial variable developed in [8]. Hence, pointwise arguments in the
space variable are excluded. Instead they use fractional Sobolev norms and Sobolev’s embedding
theorem. Moreover, in [10] a regularization of the distribution G is systematically used and final
results are obtained by passing to the limit. With the selection of the stochastic integral given in
(1.6) it is not necessary to appeal to Sobolev’s embedding theorem. Moreover, applying (1.4) we
avoid the regularization of G. There is yet another difference that deserves to be mentioned. In
[10], non-null initial conditions were considered, while here ug = vg = 0. As a consequence, the
random fields X, and X possess the stationary property described in Remark 2.1. This fact is
frequently used in the proofs.

For an Itd’s stochastic differential equation, smoothing the noise leads to a Stratonovich (or
pathwise) type integral, and the correction term between the two kinds of integrals appears nat-
urally in the approximating scheme. In our setting, correction terms explode and therefore they
must be avoided. Instead, a control on the growth of the regularized noise is used. This method
was introduced in [17] and successfully applied here too. The control is achieved by introducing a
localization in 2 (see (2.10)). With this method, the convergence of the approximating sequence
X, to X takes place in probability.

Let us finally remark that using the method of the proof of Theorem 2.3, a different but simpli-
fied proof of [10], Theorem 4.11, in the particular case of null initial conditions can be provided.

Throughout the paper, we shall often call different positive and finite constants by the same
notation, even if they differ from one place to another.

2. Approximations of the wave equation

Consider smooth approximations of W defined as follows. Fix n € N and consider the partition
of [0, T'] determined by 3—{, i=0,1,...,2". Denote by A; the interval [iz—f, UJE,PT[ and by |A;]
its length. We write W;(A;) for the increment W/((ig,l,)T) — Wj(iz—,T,), i=0,...,2"—-1,jeN.
Define differentiable approximations of (W;, j € N) as follows:

W”:(W;?:/ W;?(s)ds,jeN),
b
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where for j > n, W}“ =0,andfor 1 < j <n,

M2
Wﬂ([): ZZ”T—1Wj(Ai)1A,-+1(l‘) ifle[z_”T, T],
J i=0
0 ift e [0’ 2—nT|:.
Set
w(t,x) =Y Wit)e;(x). 2.1)
jeN

It is easy to check that, for any p € [2, oo],

lw™ ]| Lo o200y = Cnll22"2, (2.2)

In particular, from (2.2) it follows that w” belongs to Hr a.s.
In this section, we shall consider the equations

t
X(t,x) = / f3 G(t—s,x —y)(A+ B)(X(s, y))M(ds, dy)
0 JR
+(G@t =, x =9)D(X (-, %), h)y, (2.3)
13
+/ [G(t -5, *b(X(s, -))](x) ds,
0

t
Xn(t,x):/ /3G(t—s,x—y)A(X,,(s,y))M(ds,dy)
0 JR

+(G(t — X — *)B(X,,(~, *)), w")%

2.4)
+{G( — -, x =) D(Xu (-, ), h)y,
t
+ [ 6= 5.9+ b(xa s )]0 s,
0
where n € N, h € Hy, w" defined asin (2.1) and A, B, D,b:R — R.
Moreover, we also need the slight modification of these equations defined by
In
X, (t,x) =f /R3 Gt —s,x = y)A(Xn(s,y))M(ds, dy)
0
+(G(t =, x =) B(Xu(, %)) 10,4, (), w"
( ' g 2.5)

(Gt =, x =) D(Xn (-, 9) 110,41 ()5 By

In
+ / [G(t —5,)*b(Xpu(s,))](x)ds,
0
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In
X(t. 1y x) = f f3 G(t —s5.x — ) (A + B)(X(s. y)) M(ds. dy)
0 R

G = x =9 D(XC ) 0 (), iy, 2.6)
In

+ [ T6@ =5 b(x )]0 ds
0

where forany n e N, t € [0, T], t, = max{t,, —27"T, 0}, with
t,=max{k27"T,k=1,...,2" = 1:k27"T <1t}. 2.7
We will consider the following assumption.
Hypothesis (B). The coefficients A, B, D, b:R — R are globally Lipschitz continuous.

Notice that equation (2.4) is more general than (2.3) and (1.5). In Theorem A.1, we prove a
result on existence and uniqueness of a random field solution to a class of SPDEs which applies
to equation (2.4).

Remark 2.1. As a consequence of Remark A.2, we have the following translation invariance of
moments:

E(|X(t,x =y —2)— X,y —2)|") =E(|X(t,.x —y) — X, »)|"),

(2.8)
E(|Xu(t.x =y =2) = Xu(t.y = 2)[") = E(| Xat.x = y) = Xa (2, 9)["),
for any x, y, z € R3 and any p € [1, oo[. Consequently, a similar property also holds for X, (t,%)
and X, (¢, t,, *) defined in (2.5), (2.6), respectively

The aim of this section is to prove the following theorem.

Theorem 2.2. We assume Hypothesis (B). Fix to > 0 and a compact set K C R3. Then for any
p €10, L and 5 > 0,

Lim P(| Xy = Xllp..k > 1) =0. 2.9)

The convergence (2.9) will be proved through several steps. The main ingredients are local L?
estimates of increments of X, and X, in time and in space, and a local L? convergence of the
sequence X, (f, x) to X (¢, x).

Let us describe the localization procedure (see [17]). Fix a > 0. For any integer n > 1 and
t € [0, T], define

L) ={ sup sup [ W(A] = an'P272] (2.10)

I<j=sno<i<[2ntT-1-1]*
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where o > (21n2)!/2. Notice that the sets L, (z) decrease with 7 > 0. Moreover, in [17],
Lemma 2.1, it is proved that lim,,_, oo P(L,(¢)€) = 0.
It is easy to check that

lw" . 1L, |5, < CrP122772, @2.11)
Moreover, forany0 <t <t' <T

1/2

[w" 1L, Tl gy, = Cn¥22" 2 —1]

In particular, if [¢,1'] C A; for some i =0, ...,2" — 1, then

Jw™ 1L, 0 Lt [, < €. (2.12)

As has been announced in the Introduction, the proof of Theorem 2.2 will follow from Theo-
rems 2.3 and 2.4 below. We denote by | - ||, the L (£2) norm.

Theorem 2.3. We assume Hypothesis (B). Fix ty €10, T[ and a compact subset K C R3. Let
to<t<t<T,x,x€K.Then,forany p €1, 00) and any p €10, #[, there exists a positive
constant C such that

sup|| [ X, (1, ) = X 0. 0)] 11, |, < C (17 = 1] + 1% — xI)”. (2.13)

n>1
Theorem 2.4. The assumptions are the same as in Theorem 2.3. Fix t € [ty, T], x € R3. Then,
forany p €[1, 00)
lim sup | (X, (t,x) — Xt )1, Hp =0, (2.14)
=00 te(1,T]
xeK (1)
where fort € [0, T],
K@t)={xeR*:d(x,K)<T -1},
and d denotes the Euclidean distance.
The proof of Theorem 2.3 is carried out through two steps. First, we shall consider r = and

obtain (2.13), uniformly in ¢ € [y, T]. Using this, we will consider x = x and establish (2.13),
uniformly in x € K. We devote the next two subsections to the proof of these results.

2.1. Increments in space

Throughout this section, we fix 7o € ]0, 7 and a compact set K C R3. The objective is to prove
the following proposition.
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Proposition 2.5. Suppose that Hypothesis (B) holds. Fix t € [ty, T] and x, x € K. Then, for any
2-8 . :
p €[1,00) and p €10, ==, there exists a finite constant C such that

sup sup ]|| (Xn(t,x) = Xn(t, ) 11,0 ||p <Clx —x|°. (2.15)

n>0telty,T

In the next lemma, we give an abstract result that will be used throughout the proofs. We start
by introducing some notation.
For a function f:R3 — R, we set

Df(u,x) = f(u+x)— fu),
D*f(u,x,y) = fu+x+y)— flu+x)— fu+y) + f),
sz(u,x)=l_)zf(u—x,x,x)=f(u—x)—2f(u)+f(u+x).

Lemma 2.6. Consider a sequence of predictable stochastic processes {Z, (¢, x), (t,x) € [0, T] x
R3}, n € N, such that, for any p € [2, o],

sup  sup  E(|Z,t,0)|") <C, (2.16)
n(t,x)e[0,T]xR3

for some finite constant C. Foranyt € [0, T], x,x € R3, we define

t
L (t, x, %) :=/ ds || Zu(s, D[G(t = 5,x —%) = G(t —5,% — *)]Hit
0
Then, for any p € [2, oo,

E(|1,(t, x, ©)|"'%)

t
< C{Ix _ F|ep/? +/ ds[sup E(|Zu (s, x — ¥) = Zn(s, % — y)\”)] 2.17)
0 yeR3

t 1/2
+x —)2|“1P/2/ ds[sup (| Zu (s, x — y) = Zn(s, % — y)|”)] }
0 yeR3
where a1 €10, 2 — B) A 1[ and o €10, (2 — B)[.
Proof. First, we notice that /, (¢, x, X) is the second order moment of the stochastic integral
t
| [ 2us. 906 = 5.x =) = Gt = 5.5 = m]mcas.ay).
0 JR
We write I, (¢, x, x) using (1.4). This yields
t
I,(t,x,%) = C/ ds/ / Zn(s, 1) Zn (s, 0)[G(t — s, x —du) — G(t — 5, % — du)]
0 R3 JR3

x [G(t —s,x —dv) — G(t — 5, % — dv)]ju —v|7F.
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Then, as in [10], pages 19-20, we see that, by decomposing this expression into the sum of four
integrals, by applying a change of variables and rearranging terms, we have

4
L, x, %) =C Y J/(x, %),

i=1

where, fori =1,...,4,

Jf(x,)f):/tds/ / G(s,du)G(s,dv)h;(x,x;t,5,u,v)
0 R3 JR3
with
hi(x, %t 5,u,v) = f(X—x+v—w)[Zy(t =5, x —u) — Z(t —s5,% —u)]
X [Zp(t —5,x —v) = Zy(t — 5, % — V)],
ho(x,x;t,s,u,v) =Df(v—u,x —x)Z,(t —5,x —u)
X [Zn(t—s,x—v)—Z,,(t—s,)E—v)],
h3y(x,x;t,s,u,v)=Df(v—u,x —x)Z,(t —s,X —v)
X [Z,,(t—s,x—u)—Zn(t—s,)E—u)],
h4(x,)2;t,s,u,v)=—sz(v—u,x—)E)Zn(t—s,x—u)Zn(t—s,x—v).
Fix p € [2, oo[. It holds that

4
E(|1u(t.x. )|"?) < C Y E(|J/ (x, D)|"). (2.18)

i=1

The next purpose is to obtain estimates for each term on the right hand-side of (2.18). Let

u1(x,x)= sup / / G(s,du)G(s,dv) f(x —x +v—u).
s€[0,T]JR3 JR3

We recall that the inverse Fourier transform of f(x) = |x|# is given by wu(d&) = |£|7C~F) dg,
and that FG(t, ¥)(€) = % Hence,

//G(s,du)G(s,dv)f()E—x+v—u)5/ |fG(s,*)(§)|2M(dg)
R3 JR3 R3

[ sin?Q2ms(E])
_/Rs afepp

Consequently, for any 8 € 10, 2[, sup, 3 i1 (x, X) < oo (see [10] for a similar result).



2180 F.J. Delgado-Vences and M. Sanz-Solé

Hence using firstly Holder’s inequality and then Cauchy—Schwarz’s inequality, we see that

E(|J! (. D))

t (p/2)—1
< (/ dsf / G(s,du)G(s,dv)f()E—x—i—v—u))
0 R3 JR3

t

x/ ds/ / G(s,du)G(s,dv) f(x —x +v —u)
0 R3 JR3

xE(|[Zn(t—s,x—u)—Z,,(t—s,i—u)]

5 (2.19)
x [Za(t =5, x —v) = Z,(t — 5, 5 = 0)]|"?)
< Csup i (x,5)"?
X,X
t
X / ds sup E(|Z,(t —s,x —y) — Z,(t — 5, % — y)|")
0 yeR3
1
< C/ ds sup E(!Zn(s,x —y)—Z,(s,x — y)|p).
0 )7§R3
Set
pa(x,X) = sup / / G(s,du)G(s,dv)|Df (v —u,x — X)|. (2.20)
s5€[0,71JR3 JR3
The following property holds: there exists a positive finite constant C such that
pa(x, ©) <Clx =3, a1€]0,2-B)AL[.
Indeed, this follows from a slight modification of the proof of [10], Lemma 6.1.
Using Holder’s and Cauchy—Schwarz’s inequalities, along with (2.16), we have
n t (p/2)—1
E(|J(x,0)|"7) < c(/ ds/ / G(s,du)G(s,dv)|Df (v —u,x —;)\)
0 R3 JR3
t
x f dsf f G(s,du)G(s,dv)|Df (v —u, x — X)|
0 R3 JR3
(2.21)

X E(‘Z,,(t—s,x —w)[Zy(t —5,x —v) = Z,(t — 5, X —v)]’p/z)

<Clx —;|“1P/2/

' 1/2
A ds[sup E(|Zn(s,x —y)—Zy(s,x — y)|p)] ;

yeR3

with a1 €10, (2 — B) A 1[.
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Similarly,

t 1/2
E(| /4 (x, 5)|""?) 5C|x—i|°‘1p/2/ ds[sup3]E(|Zn(s,x—y)—zn(s,)z—y)|f’)] )
0 yeR

with o €]0, (2 — B) A 1].
Let

ua(x,X) = sup f / G (s, du)G(s,dv)| D* f(v —u, x — ¥)|.
5€[0,7]JR3 JR3
Following the arguments of the proof of Lemma 6.2 in [10], we see that, for any o €10, (2— B)I,

pa(x, X) < Clx — x|*2.

Then, Holder’s and Cauchy—Schwarz’s inequalities, along with (2.16), imply

t (p/D—1
E(\Jj(x,)z)V’/Z)gC(/ ds/ / G(s,du)G(s,dv)wa(v—u,x—;2)\)
0 R3 JR3

t
x/ ds/ / G(s,du)G(s,dv)| D* f (v —u, x — %)
0 R3 JR3

X B(|Zu(t —5,x =) Zn(t — 5, % — v)|"?) (2.23)
t
<Clx —)E|°‘21’/2/ ds sup E(|Z,(t —s5,y)|")
0 yeR3
< Clx — x|%2P/?,
From (2.18), (2.19), (2.21), (2.22) and (2.23), we obtain (2.17). O

Foranyt e[t,T], x,x € K, p €[1, oo[, we set
on (. x, %) =E(|Xa(t. x) — X, (t.5)|" 11,0
P p (6%, %) =E(|X, (0, %) = X, (0,5 11,),
On p(t,x, %) = @01, x, %) + ¢, (1, x, X).

Proposition 2.5 is a consequence of the following assertion.

Proposition 2.7. The hypotheses are the same as in Proposition 2.5. Fix t € [tg,T], x,x € K.
Then, for any p € [1, oo[, p €]0, #[,

SUp @, p(t, x,X) < Clx — x|°P. (2.24)

n>0
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The proof of this proposition relies on the next lemma and a version of Gronwall’s lemma
quoted in Lemma A.3.

Lemma 2.8. We assume the same hypotheses as in Proposition 2.5. For any n > 1, t € [ty, T],
x,x € K, p €[2,00[, there exists a finite constant C (not depending on n) such that

t
Onp(t,x, %) < C[fn + |x — x|2r/? +f ds(¢n, p (s, x, X))
0 (2.25)

t
=7 s 65,0+ fop 5501 |

where (f,,,n > 1) is a sequence of real numbers which converges to zero asn — 00, a1 € [0, (2—
BAD[az€]0,2 - B[

We postpone the proof of this lemma to the end of this section.

Proof of Proposition 2.7. Fix r € [t), T], x,x € K, p € [2, co[. From Lemma 2.8 along with
Jensen’s inequality, we have

t

On,p(t, 6, 5)% < C{f,f +|x — [P +/0 ds (¢n,p (s, x, ©))

t
_ —\11/2 _ —\11/2\2
—I—I)c—)cl"‘”’/0 ds([go,?’p(s,x,x)]/ +[<pn’p(s,x,x)] /) }
! 2
sc{f,3+|x—;z|“zp+/ ds (@n, p(s, x, %))

0

+ |x — x| /Ot ds(%,p(s,xj))}.
Since the sequence (f;,,n > 1) is bounded, there exists a constant Cy satisfying
sup f;7 < Cotp < Cot < C/()t ds[1+ (¢np(s, %, )]
n
for any ¢ € [fg, T]. Thus, for some positive constant C,

t
14 @p p(t, x, %)% < C{|x — x|%2P +/ ds[1+ (gon,,,(s,x,;z)f]
0

t
+ Ix —)E|mp/ ds[1 +‘Pn,p(s’x’f)2]1/2}.
0

We apply Lemma A.3 in the following particular situation: u(?) = @, ,(z, X2 +1,a=
Clx — [P, b(s) = C, k(s) =C|x — ¥|"'P, p =G = %, @ =0, p = T. This yields

Onp(t, %, 5)* +1 < Cllx — %17 + |x — ¥[*2P],
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which trivially implies
O p(t, x, %) < C[|x — |17 + |x — x[*2P/2]. (2.26)
We recall that oy €]0, (2— ) A1[ and oy € ]0, (2 — B)[. Therefore, (2.26) implies (2.24). This
ends the proof of Proposition 2.7. O

Proof of Lemma 2.8. Fix p €[2, oo[. From (2.4), we have the following:

6
o (6. x. %) = E(|Xu(t, x) = X, (t. )| 11,00) <C Y Rt x, %),
i=1

with

P
R (1, x,%) = ( Rg[G(t—s,x—y)—G(t—s,)_c—y)]A(X,l(s,y)) 1Ln(,)>,
R2(t,x, %) =E(|([Gt —-,x —%) — G(t — -, ¥ — )] B(X,, (-, %), w')y, "1,

(
Ry(t,x, ) =E([([G(t —-,x =% = G(t — -, X = 0 ][ BXw) = B(X,,))] ¢, 0, w")yy ["11,00),
E(

Ryt x, 5) =E(|([G(t — -, x = %) = Gt =, = 9] D(Xa(,0)), k) | 11,0))

P
an(o)-

P
1Ln<t>)

RS(t,x,i):IE(

- [G(t —s5,x—dy) —G({t —s,x — dy)]b(Xn(s, y)) ds

Using Burkholder’s inequality and then Plancherel’s identity, we have

R, x,%) :E(

2

[G(t —s.x —y) = G(t —s5,% — V) ]A(Xu (s, y))

R3

Z/ Gt —s,x — %)

jeN

— Gt —5,% = %) A(Xn(s, %)), ex (), dW; ()

P
Iz, (z))

(2.27)

<CIE([/ dsZ| Gt —s,x — %)

jeN

r/2
— G(t — S, X — *)]A(Xn(s’ *))1 ek(*))’}-{}zll‘n(s)i|>

r/2
1Ln(s)> .

The process {Z,,(t, x) := A(X, (t, x))1 1,1, (¢, x) € [0, T] x IR3} satisfies the assumption (2.16).
Indeed, this is a consequence of the linear growth of A and (4.9). Then, by applying Lemma 2.6

t
= cza(‘/ ds|[G(t —s,x — %) — Gt — 5, % —0)]A(Xa(s,0) |5,
0
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and using the Lipschitz continuity of A, we obtain

Rl(t,x,%) < C{|x — x|®2p/?

t
+/ ds[ sup E(| X, (s, x — y) — X (s, ¥ — y)|P1Ln(S))] (2.28)
0 )7€R3

_ 4 _ 1/2
+|x—x|“”’/2/ ds[sup E(|Xn(s,x—y)—Xn(s,x—y)|pan(S))] }
0 yeR3

with a1 €10, (2 — ) Al[ and ap €10, (2 — B)[.
For a given function p: [0, T] X R3 > Randt € [0, T, let 7, be the operator defined by

T(p)=p((s+27") At,x). (2.29)
Let &, be the closed subspace of Hr generated by the orthonormal system of functions
2T Mp()®ej(x),  i=0,...,2"—1, j=1,...,n,

and denote by 7, the orthogonal projection on &,. Notice that 7, o 7, is a bounded operator on
‘Hr, uniformly in n.
Since X, (s, ) is Fy,-measurable, by using the definition of w” we easily see that

t
R2(t,x,%) = E(‘/O /R3(nn o) ([GUt— -, x —%) =Gt — -, % —%)]

P
1Ln (“)) .

By Burkholder’s inequality and the properties of the operator m, o t,, this last expression is
bounded up to a constant by

X B(X;(ﬂ *)))(Sv y)M(dS’d}’)

p/2

t
JE(/O ds[[([G(t —s5.x —%) — G(t — s, % —%)|B(X,, (s, *)))|\§{1Lm)

The properties of the function B along with (4.9) imply that the process {Z,(t,x) :=
B(X, (t,x)11,@), (t,x)€[0,T] x R3} satisfies the hypotheses of Lemma 2.6. This yields

R3(t,x,%) < C{|x — x|®2pr/?

t
+/ ds[ sup E(| X (s, x — y) — X (s, % — y)|”1Ln(S))] (2.30)
0 yeR3

. ' B L 12
+|x—x|“‘”’/2/0 ds[supaE(|Xn (s,x—y)— X, (s,x—y)}panm)] },
yeR

where as before, a1 €10, (2 — 8) A 1[ and @ €]0, (2 — B)[.
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Cauchy—Schwarz’s inequality along with (2.11) yield

R3(t,x,%) < Cn3P/2pmr/2

t
xIE(/ ds|[G(t —s,x —%) = G(t —5,% — %)]
0

) p/2
x [B(Xa) = B(X;)] 5. 9) 11,0 ||7—[,) :

Notice that an upper bound for the second factor on the right-hand side of the preceding inequal-
ity could be obtained using Lemma 2.6 with Z, (¢, x) := [B(X, (¢, x)) — B(X, (¢, x))]11,(t).
However, this would not be a good strategy to compensate the first factor (which explodes when
n — 00). Instead, we will try to quantify the discrepancy between B(X,, (¢, x)) and B(X, (¢, x)).
This can be achieved by transferring again the increments of the Green function to increments of
the process

B(X,(t,x)) = [B(Xa(t, %)) — B(X,, (t,))]. 2.31)

in the same manner as we did in the proof of Lemma 2.6 (see [10], pages 19-20).
Indeed, similarly as in (2.18), we obtain

4
R, x, %) < Cn®P22" 2 S E(|K e, 0| 1L,00), (2.32)
i=1

where for any i =1, ..., 4, Ki’(x,i) is given by Jit(x,)_c) of Lemma 2.6 with Z,, replaced by
B(X,).
Using Remark 2.1, we have

E(|Xn(t,x —y) — Xp(t,X = )| 11,0) =E(| X (t, x) = X, (2,5 | 11, ))- (2.33)
With this property and the definition of E(Xn) given in (2.31), we easily get
E(|B(Xa (s, x =) = B(Xa (s, % = )| 11,0)
< C[E(|Xu(s,x —y) = X, (s.x = )| 11,(5))

FE(| X (s, % =) = X (5,5 = 0| 11,0)]
< Cn3p/227np(3fﬂ)/2,

(2.34)

uniformly in (s, x, y) € [0, T] x R3 x R3, where the last bound is obtained by using (4.10). This
estimate will be applied to the study of the right-hand side of (2.32).
Fori =1, (2.19) with Z, (s, y) := B(X,. (s, ¥))1L,(s), along with (2.34) yields

B(| K (x, 5" 11,0 < CnPP/227wC=P)/2, (2.35)



2186 F.J. Delgado-Vences and M. Sanz-Solé

Let u2(x, X) be as in (2.20). Since x, x € K, and K is bounded,

sup pa(x,x) < C,

x,xeK

for some finite constant C > 0. Hence, (2.21), (2.22) (with the same choice of Z, as before)
together with (2.34) gives

E(| K50, )" 1,0) + E(| Ky, 5|7 11,0)) < CnPP/227mwC=H12, (2.36)

Proceeding as in (2.23), but replacing Z, (s, y) by E(Xn (s, y)1L,(s), we obtain

t
E(| K}, 5" 11,0) < Clx —)EI“‘”’/Z/O ds sup E(|B(X(5.)|"11,0).
yeR?

By the definition of I§(X n), and applying (4.10), we have

sup  E(|B(Xa(s, )| 11,)) < CrPP/227wG=H/2,
(s,)€[0,T]xR3

Thus,
E(|Kix, ©)["*11,0) < Cn¥P/22=wC=P)12, (2.37)
Putting together (2.32) and (2.35)—(2.37) yields
R3(1,x,%) < Cfy, (2.38)

where f, = n3P27PIG=P)/2=1/21 Since B €10, 2[, lim,_ o0 f =0.

The last part of the proof consists of getting estimates for the term R;‘,(t, x, x). This is done
using first Cauchy—Schwarz’s inequality and then, applying Lemma 2.6 with Z, replaced by
D(X,)1,. The Lipschitz continuity of D along with the estimate (4.9) ensure that assumption
(2.16) is satisfied. We obtain

Rix.5) < 15, B(|[[GG — - x —#) = Gt = .5 = 0] D(XuC0) 1,0 5, |7)

t
< C{|x — x|2p/? +/ ds sup E(| X, (s,x —y) = Xu(s, 3 = 0| 11,)  (2.39)
0 yeR3

_ ¢ _ 1/2
+ |x —xl"‘”’/zf dS[SUP E(|Xn(s,x — y) — Xn(s, X _)’)|p1L,,(s)):| }
0

yeR3

where @1 €10, (2 — B) Alland a2 €]0, (2 — B)I[.
After having applied the change of variable u > x — x + y, we have

Rj(t,x,i):E(

t
//3G(t—s,x—dy)[b(Xn(s,y))—b(Xn(s,y—x+)E))]ds
0 JR

P
1Ln(t>>-
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Applying Holder’s inequality, we obtain

R(t,x,%)

t p—1
=< </ / G(t—s,x—dy)ds)
3
0 /K (2.40)

t
X /0\ /l’{:; G(t - S,)C _dy)E(|b(Xn(sa Y)) _b(Xn(s, y — X —I—)?))|p1Ln(Y)) dS

t
< C/ ds sup E(| X (s, x = y) = Xu(5, X = )| 11,(9)-
0 yeR3

Bringing together the inequalities (2.28), (2.30), (2.38), (2.39) and (2.40), yields

E(|Xn(t, x) = Xu(t. )| 11,0))

t
< c{f,, + |x — x|*2P/? +/ ds[ sup E(| X, (s, x — ) — X (s, % — y)’plL”(s))]
yeR3

_ ! _ 1/2
+lx = x|“1p/2/ ds[ sup E(| X, (s,x — y) — X (s, X — y)|p1Ln(S))]
0 yeR3

t
+/0 ds[sup IE(|X,1_(s,x —y) =X, (s, x —y)|pan(S))]

yeR3

) 1 ~ o 12
—l—lx—xl‘)‘”’ﬂ/0 ds[suszE(’Xn (s,x —y)— X, (s,x—y)]pan(s))] }
yeR?

By Remark 2.1, the right-hand side of this inequality is equal (up to a constant) to
13
fu+ Ix —)E|“21’/2+/0 E(|Xn (s, x) — Xu(s,%)|"11,5)) ds
t
+/0 E(|X;, (s, x) — X, (5,%)|" 11, (s)) ds
zleip/2 ' —\|P 1/2
+ |x — | [E(|Xn(s. x) = Xu(s. X)|"11,0))] " ds
0
t
+|x—i|“”’/2/0 [E(|X; (5, %) = X, (5, )| 11,0)) ]/ ds.

With this, we see that (pg’ p(t, x, X) is bounded by the right-hand side of (2.25).

Finally, we prove that the same bound holds for @, p(t,x,i) too. Indeed, For every i =
1,...,5, we consider the terms R} (¢, x, X) defined in the first part of the proof, and we replace
the domain of integration of the time variable s ([0, 7]) by [0, #,]. We denote the corresponding
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new expressions by S,i (t, x, x). From (2.5), we obtain the following

5
Op p(t.X,X) SC DSt x.%).

i=1

Since #, < t, it can be checked that, similarly as for R (t,x,%), S (t,x,%), i = 1,...,5,
are bounded by (2.28), (2.30), (2.38), (2.39), (2.40), respectively. This ends the proof of the
lemma. O

2.2. Increments in time

Throughout this section, we fix #y €10, T'], and a compact set K C R3. We shall prove the fol-
lowing proposition.

Proposition 2.9. Assume that Hypothesis (B) holds. Fix t,t € [ty, T]. Then for any p € [1, 00)
and p €10, #[, there exists a finite constant C such that

sup sup | (X (7, x) = X (7, 1)) 11, |, = Clt —171°. (2.41)

n>1xekK

The next lemma is meant to play a similar role than Lemma 2.6 but in this case, for integrals
containing increments in time of the Green function G (7).

Lemma 2.10. Consider a sequence of stochastic processes {D,(t, x), (t,x) € [0, T] x R3}, n >
1, satisfying the following conditions:
For any p €2, oo,

sup sup E(|Da(t. 0)|") < C. (2.42)
n(t,x)elty, TIxR3

There exists p1 > 0 and for any x,y € K,

sup sup ]E(|D,,(t,x)—Dn(t,y)|p) < Clx — y|P'P, (2.43)

n telt,T]

where C is a finite constant and p1 > 0.
For0<ty<t<t<Tandx €K, set

t
Tt 1, x) =/ ds | D (x, 9)[G(F — 5,5 — %) — Gt —5,x — 9)]|3,-
0
Then, for any p € [2, oo there exists a finite constant C > 0 such that
E(J(t, 7, x)P/2) < C(If = t|P1P + |F — ¢|PHO0P/2 4 |F — g |o2p/2) (2.44)

withay €10, 1 A 2 — B) and a2 €10, 2 — B)I[.
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Proof. First of all we notice that, as a consequence of Burkholder’s inequality, the L”-moment
of the stochastic integral

t
./0 /R3 Dy (x, y)[G(t_—s,x -y -Gt —s,x— y)]M(ds,dy),

is bounded up to a positive constant, by E(J,(z, £, x)P/?).
We write J,, (¢, f, x) using (1.4). This gives

t
Jn(t,t_,X)=C/ dS/ / Dy(x, )G —s5,x—y) =Gt —s,x—y)]
0 R3 JR3
X Dy(x,)[G(I —s,x—2) =Gt —s,.x = 2)]ly — 2| P.

Then, as in [10] page 28 (see the study of the term T2" (t, 7, x) in this reference), we have

4
E(Ju(.7,0)"?) < C Y E(|Q (. 7.0)|"), (2.45)

k=1

where fori =1,...,4,

‘ t
Q'(t,1,x) :=/ ds/ / G —s,du)G(t —s,dv)r(t,t,s,x,u,v) (2.46)
0 R3 JR3

_ r—s f—s f—s
ri(t,t,s,x,u,v) = f(v— —u) |:Dn<s,x— u) —D,,(s,x—u)]
t—s r—s r—s

- 2 - - -
rz(t,t_,s,x,u,v):={<§:z) f(;:z(v—u)>—§:if<v;:z—u)}
r—s r—s
xD,,(s,x— u>|:Dn(s,x > D, (s,x — v)],
t—s t—
_ f—s\2> [i—s t—s
m(t,t,s,x,u,v)::{(t_s) f<t_s(v—u)) < t—s)}
r—s
X[Dn 8, X — — > D, (s,x — u)]Dn(s X —
— S . t
_S(v u)) (Ut—s )

_ 2 —
ra(t, 1,8, x,u,v) = {(i :::) f(i
:j) + f(v —u)}Dn(S,)C —u)Dy(s,x —v).

and

f v —

f
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I—s r—s
—sf<vt—s —u>.

_ t
vi(s,t,t) :=/ / Gt —s,du)G(t —s,dv)
RrR3 JR3 1

Following the arguments of the proof of Lemma 6.3 in [10] (with G,, replaced by G), we see that

2190

Let

sup  vi(s,t,1) < oo. (2.47)

0<s<t<t<T

Applying Holder’s and then Cauchy—Schwarz’ inequalities, along with (2.43) yield

p/2—1

]E(|Ql(t,t_,x)|p/2) < ( sup vl(s,t,t_))

0<s<t<t<T

/dsf / G(t—sdu)G(t—sdv) Sf( —u)

R3JR3 t—s
p

<=
><|:]E<‘Dn<s,x—t__sv)—Dn(s,x—v)
t—s
< /ds/ / Gt —s,du)G(t — s, dv)
R3 JR3

p1p/2

t—s
Dn<s,x— u) — Dy (s, x —u)

t—s

] 172
(2.48)

|
-
(e

t—=s

r—t
t—s

X u v

The support of the measure G(¢) is {x € R3:|x| = t}. Using this property and (2.47), we obtain

E(|Q' ¢, 7, 0)|"?) < Cle — i), (2.49)

Let

vz(s,t,t_):zf / Gt —s,du)G(t — s, dv)

R3 JR3

f—s\> [f—s f—s (f—s ~ )‘
<t—s) f(t—s(v_u))_t—sf —s. "))

A slight modification of Lemma 6.4 in [10] (where G, is replaced by G), yields

X

sup va(s,t, 1) <C|t —t|™, (2.50)

s<t<t<T
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with a1 €]0, (2 — B) A 1[. Then, Holder’s and Cauchy—Schwarz’s inequalities along with (2.42),
(2.43) and (2.50) imply

_ t
(|00l = (  sup vz(s,t,t'))p/2 1/0 ds/R3 A{}G(f—s,du}G(t—s,dv)

0<s<t<t<T
- 2 - - -
t—s r—s tr—s r—s

X J— J— J—
(=) (o)~ ()
r F— N\ 71/2

X <E’Dn(s,x— su) >]

i r—s

i r—s

X <E’Dn(s,x—t v)—Dn(s,x—v)

-5

_ _\P/2
<Cli—t|”P?(  sup vz(s,t,t)>

1/2
)] (2.51)

0<s<t<t<T
S C|f_ t|(pl+al)p/2’ (252)
with ;1 €10, 1 A 2 — B)[.
Similarly,
E(|Q3t.7,)|"%) < | —p|ertenr’2, (2.53)
a1 €10, 1A Q2—PB)[.
Define
va(s, t, 1) = / / Gt —s,du)G(t — s, dv)
R3 JR3
f—s 2f r— s( )
X v—1u
r—s t—s
r— r— r— r—
- sf(v S—u)— sf(v—u S)—i—f(v—u)}.
t—s r—s t—s t—s
Replacing G, by G in [10], Lemma 6.5 yields
sup (s, t,1) < C|t —t]*?, (2.54)

s<t<r<T

where a2 €10, 2 — B)[.
By applying Holder’s and Cauchy—Schwarz’s inequalities along with (2.42), we get

E(|0*a, i, 0)|"?)

\p/2-1 [t
5( sup V4(s,t,t)> fo dsz3 fR3G(t—s,du)G(t—s,dv)

0<s<t<t<T
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f—s\> [f—s r—s r—s
X {(t—s) f(t—s(v_u))_t—sf<vt—s —u)

t—s r—3s
- f(v—ut )+f(v—u)}

t—s -5
2 2

x [E(|Dus, x — )" 11,06)) ] [E(| Duts, x — )|*)]" (2.55)

_\P/2

< C( sup  wva(s, t, t))p
0<s<t<t<T
< C|i —1|%2P/?, (2.56)
with ay €10, (2 — B)[.

The inequalities (2.49), (2.52), (2.53), (2.56), together with (2.45) imply (2.44). U

Proof of Proposition 2.9. Fix0<r<7<T,x € K, p € [2, o[, and according to (2.4) consider
the decomposition

6
E(|Xn (. x) — Xu(t.0)| 11, 3) <C Y RL(t.. %),

i=1

where

r
/() /R3[G(f—s,x—y)—G(t—s,x—y)]

p
1Ln<f>)a

RXt,1,x) =E([[GF =, x —%) — G(t —-,x — )] B(X,, (-, %)), w")H[_|P1Ln(t—)),

Ri(t,t’,x):E(

X A(Xn(sv y))M(d&d)’)

Ryt 5,.x) =E(|[GF - x —%) = G(t —-,x —%)]
x [B(Xn) = B(X;)] (o0, w")y ["11,0).

Ryt 1) =E([[GT = x =% = Gt =+, x = )] D(Xa(, ), Ay, |"11,0);

P
1Ln<z‘))-

Similarly as for the term R,i (t, x, x) in the proof of Lemma 2.8 (see (2.27)), we have

r
Rg(t,z‘,x)zE(/o fR3[G(f—s,x—dy)—G(t—s,x—dy)]b(x,,(s,y))ds

r
Ry(t,7,x) < CIE</ ds|[G (T —s5,x — %)
0

2.57
/2 (2.57)

—G(t —s,x —0)]A(Xn(s, %) ||f2H1Ln<s>>
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This is bounded up to a positive constant by RN, T x) + R,i’z(t, f,x), where

)17/2

r
Ry (t,T,x) = E<‘/ |G — 5.5 =0 A(Xu(s, ) |5, 11,(5) ds
t

, (2.58)
—t ~ ) p/2
= E(‘/O |G (s, x =) A(Xn (7 = 5,9) |3 1L, (s) ds >
and
t
RY2(1,7,x) = ]E('f ds|[G( —s,x — %)
0
2 o (2.59)
— Gt —s5,x = 0)]A(Xa(s,0) |51 L5) ) .
Set
r—t
wi(t, t, x) ::/ ds/ dEIFG(s)(E)Izu(dE)-
0 R3
Lemma 2.2 in [10] shows that
wi(t, 7, x)<Cli—1>~. (2.60)

Then, using Holder’s inequality, the linear growth of A and (4.9), we obtain

- - 2
Ryt 7.x) < (i (1. 7,1))" (1+ sup E(!Xna,x)!”u,,(,))) 2.61)
(t,x)e[0,T]xR3

<Cli —1|PC=P/2, (2.62)

Set D, (t,x) = A(X,(t,x))1,1). Owing to Hypothesis (B), (4.9) and Proposition 2.5, the
conditions (2.42), (2.43) of Lemma 2.10 are satisfied with p; €]0, #[. Thus,

Ry2(t,1,2) < C(IT = 1|77 4 |7 — 1| O1He0P2 |7 — g 2P/2), (2.63)

with p1 €10, 252, @1 €10, 1 A (2 — B)[ and @2 €10, (2 — B)I.
It is easy to check that # 4+ (1 AQ2—-p))>(2—p). Hence, from (2.63) we obtain

_ _ 2—
RY2(1,7,x) < Clt —1]°P, pE }O,T[. (2.64)

Since 252 > 28 (2.62) and (2.64) imply

_ _ 2—
R(t,7,x) < C|t —1|°P, pE ]0, Tﬂ[ (2.65)
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With the same arguments as those applied in the study of the term R 2(t, x, x) in the proof of
Lemma 2.8, we have

f p/2
R2(t,7,x) < CE(/ ds|[[G(E —s,x+%) — Gt —s,x —%)|B(X, (s, %)) ||§{1Ln(s)> .
0

This yields R2(z, 7, x) < C(Ra' (¢, 7, x) + RF%(1,7, x)), where
B t ~ 5 p/2
R2(t,7,x) = IE(/ ds|[G(T —s,x +%) — G(t —s,x —*)|B(X,, (s, *))HHan(S)) ,
0

R22(t,7, x) —E</;_1HG(S x —0)B(X; (s, 9)]51 )p/z
n b - 0 ’ n ’ H Ly(s) .

The term R,%’l(t,t_,x) is similar as R,%’z(t,t_,x), with A(X,) replaced by B(X, ). Hence
both can be studied using the same approach. First, we see that the process D, (¢, x) :=
B(X,, (t,x))1L,«) satisfies the hypothesis of Lemma 2.10 with p; €]0, #[. In fact, this is a

consequence of (4.9) and Proposition 2.7. Therefore, as for R,i’z(t, f,x), we have

_ _ 2
R2(1,7,x) < C|f —1|°P, ]o Tﬂ[ (2.66)

As for Rﬁ’z(z‘, f, x), it is analogous to R,i’l with A(X,,) replaced by B(X, ). As in (2.62), we
have

R22(t,7,x) < C|f —t|PC=P)/2, (2.67)
Consequently, from (2.66), (2.67), we obtain
_ _ 2
R2(t,1,x) < Cl|t — 1P, }0 Tﬂ[ (2.68)

Let é(X 2 (-, %)) be defined by (2.31). Using Cauchy—Schwarz’s inequality and (2.11) we have

R(t,7,x) < Cn P22 P2 [R3 (1,1, x) + Ry (1,1, %)], (2.69)

)P/2

where

R3(1,1,x) = (‘f ds|[G(F —s,x —%) — G(t —3s, x—*)] (X (s, *))||%1Ln(g)
)P/2

sup E(|B(Xu(t,))| 11,0 < CnP/227mPB=P)/2, (2.70)
(t,x)€[0,T xR3]

—t
R>%(1,7,x) = IE(‘/O ds||G (s, x — %) B(X, (@ — s, *))||ZA1LH(S)

From (4.10), it follows that
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_ Let us study R3’2(t, 7,x). This term is similar to R>''(z, 7, x) with A(X,)) replaced here by
B(X},). Hence, as in (2.61) we have

- _ , )
R32(t,1,x) < (11 (2, t,x))l’/ < sup ]E(|B(Xn(t’x))‘pan(t))>
(t,x)€[0, T]1xR3
@.71)
<Cl|t — t|p(3*/3)/2n3p/227np(3,ﬁ)/2,

where in the last inequality we have applied (2.70).

The analysis of Rﬁ'l relies on a variant of Lemma 2.10 where the process D, is replaced by
E(X,,). By (2.70), this process satisfies a stronger assumption than (2.42). This fact is expected
to compensate the factor n3r/227P/2 in (2.69).

As in the proof of Lemma 2.10 (see also [10], page 28), we consider the decomposition

4
Ry .70 < Y E(1QN (0|, 0),
k=1

where Qi(t, f,x),i=1,...,4,are defined in (2.46) with D, := E(X,,)IL".
From (2.70) and the triangular inequality, we obtain

E(‘E(Xn <s,x — j:ju>> — B(Xn(s,x — u))

Consider the expression (2.48) with D,, = é(X,,) 11, . The above estimate (2.72) yields

p

an(s)) <Cn3r27G=R2 - (272)

E(|Q'¢.7.0"1,, ¢)

! r— r—
< Cn3p/22_"p(3_’3)/2/ ds/ / Gt —s,du)G(t — s, dv) sf(v S u)
0 R3 JR3 t—s t—s

Along with (2.47), this implies

E(|Q' ¢, 7, 0|1y, i) < CnPP/P2wC=H)2 2.73)

Consider the expression (2.51) with D,, = B(X)1 L, Using (2.31), the Lipschitz property of
B and (4.10), we obtain

E(| Qz(t, 7 x)|P/21L,,(t’)) < Cn3pP/2y—np(3—p)/2 (2.74)
Similarly,
E(|Q%(t,7,0)["*1,,¢) < Cn?P/227mw =12, 2.75)

Let us now consider the expression (2.55) with D, = B (X»)1y,. Appealing to (2.70), we
obtain

E(|Q*,7,0)["*1,,¢) < CnP/227mw G-, (2.76)
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From (2.73)—(2.76) it follows that
R>(1,1,x) < Cn3P/22=CB=P)/2, (2.77)

where C is a finite constant.
Set f,, :=n3P27"P(G=A/2=1/2) From (2.69), (2.71), (2.77), it follows that

- - 2—
Rg(t’t’x)fcv_t'pp_l_cfnv pE ]O’ Tﬂ[ (278)

By applying Cauchy—Schwarz’s inequality, we see that

i p/2
Ry(t,x,%) < CIE(f ds||[G(F —s,x —%) — Gt —s5,x — )| D(Xu(s, %)) Hian(s)) .
0

The last expression is similar as (2.57) with the function A replaced by D. Therefore, as in (2.65)
we obtain

B} B} 2
Ri(t,7,x) < Clf —1]°P, }0 Tﬂ[ (2.79)

Finally, we consider RZ (t,1,x). Clearly,
Ry(t,7,x) < C[RY'(t.7,x) + R)*(t,7,%)],

where

t
RS’I(I, £,x) = E(‘fo /R3 [G(t_— s, x—dy)— G —s,x — dy)]b(X,,(s, y)) ds

p
1Ln<t'))-

Applying the change of variable, y — y + xand y > -— + x, we see that

p
1Ln(t))’

t
R32(1,1, x) :=IEI< G —s,x —dy)b(X,(s, ) ds
R3

RNz, 7, x) =E(|T1(t, f,x)—D(t,1, x)|”1Ln(;)),

where

t
Tl(t,t_,x)zf (f—s)/ G(1,x —dy)b(Xu(s, (7 —5)(y —x) +x)) ds,
0 R3

t
Tz(t,t_,x)zf (t—s)/}G(l,x—dy)b(X,,(s, (t—s)(y—x)—i—x))ds.
0 R’

By adding and subtracting ¢ in 77 we get

t
Tl(t,t_,x)zf (t_—t)/sG(l,x—dy)b(Xn(s,(t_—s)(y—x)+x))ds
0 R

t
+/ (t—s)/3G(l,x—dy)b(Xn(s,(t_—s)(y—x)+x))ds
0 R
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Then, Holder’s inequality yields

R (1,1, x)

t
SCE—HP/(h/3GUJ—dﬁEUHXA&G—JXy—M+WDVMMM
0 R
t
+C/‘V—ﬂﬁh/ G(1,x —dYE(|b(Xu(s, T — s)(y —x) +x))
0 R3

— b(Xn(S, t—s5)(y—x) +x))|p1Ln(S)).

Owing to (4.9), the first term on the right hand-side of the last inequality is bounded up to a
constant by |z — 7|”. For the second one, we use the Hypothesis (B) along with (2.15) to obtain

t
/|t—s|‘"ds/ G(l,x —dy)
0 R3

x E(|b(Xn(s, @ — )y —x) +x)) = b(Xn (s, (t =) —x) +x))|"11,)

t
SC/ ds/ G(1,x —dy)
0 R3

X E(‘Xn(s, T —s)(y—x) ~|—x) - X, (s, @t —s)(y—x) —I—x)’pan(s))
<Clt 1",

with p €10, 2521
Holder inequality along with (4.9) clearly yields

r
Aﬁlﬁjﬁ)§Cﬁ—tW4/n/ Gt —s,x —d)E(|b(Xn(s, )| 11,)) ds
t JR3

_ (2.80)
<Clt —t|’.
Hence, we have proved that
_ _ 2—
R3(1,7,x) < C|f —t|°P, pe]Q—Eﬁ{ (2.81)

With the inequalities (2.65), (2.68), (2.78), (2.79) and (2.81), we have
E(| X (. x) = Xu (6, x)|" 11, y) < C[IT =117 + f].

with p €10, 2521
For a given fixed 7 € [y, T], we introduce the function

Wl O =E(| X0 (%) = X6, 0| 11, 0).

fortg <t <t.
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Notice that lim,—,  f;; = 0 and thus, sup,, f, < C. Thus, there exists a constant 0 < Cp < o0,
such that

t -
sup fu < Coto < Cot < Co/ ds[1+w, ()]
n 0

With a similar argument, there exists 0 < C1 < oo such that

t

1<Citg<Cii < C) / ds[1+% . )]
0
Therefore,

_ P i
1+, 0 < C{|t'_ Ml +/ ds[1+ w,;,x’p(s)]}_
0

Then, by Gronwall’s lemma,

L+ w0 <C(T—1]P),
where p €]0, #[. This finish the proof of the proposition. (|

2.3. Pointwise convergence

This section is exclusively devoted to the proof of Theorem 2.4. Using equations (2.3), (2.4), we
write the difference X, (f,x) — X (¢, x) grouped into comparable terms in order to prove their
convergence to zero. The main difficulty lies in the proof of the convergence of (G(t — -, x —
%) B(Xn (-, %)), W)y, tO f(; Jr3 B(X (s, y))M (ds, dy). We write

8
Xu(t.x) = X(t,x) =Y _Uk(t. ),

i=1

where
t
Ult,x) = /0 fR3 G(t—s,x = [(A+ B)(Xu(s,y)) — (A+ B)(X (s, y))|M(ds, dy),
Ug(t,x) = (G(t — -, x —%)[D(Xn (-, %) — D(X (-, %)], h)%,

1
U,f(t,x) =/0 ds /R3 G({t—s,x— dy)[b(Xn(s, y)) - b(X(s, y))],

Uy(t,%) = (G(t = -, x = 0)[B(Xa(, %) = B(X, (-, 0)], w"),,

Uy, %) = (Gt =, x —=0)[B(X, (., ) = B(X™(,%)], w"),, ,

Up(t, ) =(G(t =, x =) B(X (-, %), w")y,
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t
—/ / Gt —s,x —y)B(X (s, y))M(ds, dy),
0 JR3
t
Ul(t,x) = /0 /RS G(t—s,x —y)[B(X ™ (s,y)) — B(X,, (s, ) |M(ds,dy),

t
Uf(t,x) = /0 /1;3 Gt —s,x— y)[B(X;(s, y)) — B(Xn(s, y))]M(ds, dy).

Here, we have used the abridged notation X (-, *) for the stochastic process X (¢, x) :=
X (¢, t,,x) defined in (2.6). Notice that, although this is not apparent in the notation X~ (-, %)
does depend on n.

Fix p € [2, ool. Clearly,

8
E(|Xa(t, %) = X (¢, 0| 11,0)) < C Y E(|Us 2, )| 11,01)-
i=1

Next, we analyze the contribution of each term U,i (t,x),i=1,...,8.
Burkholder’s and Holder’s inequalities yield

t
ds[ sup E(|X,,(s,y)—X(s,y)|p1Ln<S))]. (2.82)

B0} 0.0l 1) <C
yeK (s)

0
Cauchy—-Schwarz’s inequality implies
E(| U260 1 1,0) < 1815, B(|G@ = x = 0)[D(Xa (. 0) = D(XC0) [1n,0]5,)"

Then, by using Holder’s inequality we obtain
t
E(|U2(t, )| 11,0) < c/ ds| sup E(|Xu(s, ) = X, 0| 11,60) (2.83)
0 yeK (s)
For U,f (t, x), we apply Holder’s inequality. This yields

t
ds[ sup E(|Xu(s. y) —X(s,y)|pan(S))]. (2.84)

B30 1n0) <€ [
YEK(s)

0

Let 7, and 7, be the operators defined in the proof of Lemma 2.8 (see (2.29) and lines there-
after). Let I, be the identity operator on H,. Y, := (7, o 7,) — I3y, is a contraction operator
on H;.

After having applied Burkholder’s inequality, we obtain

E[(|U2(t, x) + U (¢, )" ) 11,0)]
< CE(| 1[Gt =, x =0{B(X;) = B(X )]0 1,0 [5,)

t p/2
< CIE(/O ds|[[G(t — s, x —x){B(X,) — B(X")}](s. %) 1L, ||§[> :
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Similarly as for U,%(t, x), we have

E[(|U3¢, %)+ Ul 0)|")L,0] (2.85)

t
EC/ dSI: sup E(‘Xn_(s,y)—X_(S,y)}pan(s)):I
0 yeK(s)

This clearly implies

t
E[(|U) . x) + U] (2. )" )1 L,0] SC{[ dS[ sup E(|X;(S’y)_X"(S’y)|p1Ln(S)):|
0 yeK(s)

t
+/ ds[ sup E(|X,,(s,y)—X(s,y)IplL,xs))]
0 yeK(s)

t
+/O ds[ sup E(|X(S,y)—X(Ss)’)|p1Ln(s))]}'

yeK (s)

Recall that X~ (s, y) = X (s, sn, ¥). By applying (4.1) and (4.10), we obtain

T
E[(|U3 @, x)+ U (t, )" )11,0)] §C/ ds[ sup E(\X,,(s,y)—X(s,y)|”1L"(S>)]

0 yeK (s)
(2.86)
4 CndPI2 - Gp)2
Next, we will prove that
lim ( sup  sup 1E(|U,§(z,x)|”1Ln(,))) =0, =468 2.87)
n—0o0

te[0,T]xeK (1)

Consider i = 4. Cauchy—Schwarz’ inequality along with (2.11) implies
E(|U; . 0| 1L,0)
t 5 p/2
< Cn3p/22”p/2E</ ds|G(t — s, x —)[B(X») — B(X,,)](s.8) 11, () ”H) )
0

Then, the Lipschitz continuity of B and (4.10) yield

t
E(|Uyt, )| 11,0) < Cn3p/22"1’/2/0 ds[sup3JE(|Xn(s,y) - X;(s,y)}pan(S))]
yeR

< Cn3p—mplG=p)/2-1/2]

Since B €]0, 2[, this implies (2.87) for i =4.
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The arguments based on Burkholder’s and Holder’s inequalities, already applied many times,
give
t
E(|USt, 0| 11,0) < C/ ds sup E(| X, (s,¥) — Xn(s, )| " 11,5))
0 yeR3

< Cn3P/2p=1G=P)/2,

where, in the last inequality we have used (4.10). Thus, (2.87) holds for i = 8.
Let us now consider the case i = 6. Define

t
USl(t, x) =/0 /R}{nn[tn[G(t— W x = %) B(X™(,%)]

—G(t = x —0T[B(X™¢.0)]]6. »)}Mds, dy),

t
US2(t, x) =/0 /Rg TGt — - x — %) T [B(X (-, %)]

-Gt —-,x— *)B(X_(-, *))](s, y)M(ds, dy),

t
UI?’:;(I’X) = / / {7T,1[G(l — X — *)B(Xf(’ *))]
0 JR3
-Gt —s,x— y)B(X_(s, y))}M(ds, dy).

Clearly,
US(t,x) =US (1, x) + US2 (1, x) + US3 (1, x).

To facilitate the analysis, we write U,? o1 (t, x) more explicitly, as follows

Ubl(e,x) = t {ma[G(t =, x =) B(X™ (. 0)]((s+27") At,y)
3
0 JR (2.88)
— Gt — - x —0)B(X((-4+27") At, %))](s, y) | M (ds, dy).

We are assuming that ¢ > 75 > 0. Hence, for n big enough,  — 27" > (. Consider the first integral
on the right-hand side of (2.88). We have

t
/ /37rn[G(t —x —%)B(X"(,%)]((s +27") A1, y)M(ds,dy)
0 JR
t—27"
=/ /Bnn[G(t— X —#)B(X (¢, %)](s +27", y)M(ds, dy)
0 R

t
+/ /3 TGt — -, x —%)B(X™(-,%))](z, y) M (ds, dy) (2.89)
t—=27" JR
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t=27"
= / /3 Ta[G(t — -, x —)B(X™ (-, %))](s +27", y) M (ds, dy)
0 R

'
= /2_n /R3 JTn[G(t — X — *)B(X_(s, *))](s, y)M(ds, dy).

Indeed, the integral on the domain [r — 27", ¢] vanishes, and we have applied the change of
variable s > s +27".

For the second integral on the right-hand side of (2.88), we split the domain of integration of
the s-variable into three disjoint sets, as follows:

t
/ / Gl x =B ((+27) A1 #)](s. 1) M(ds, dy)
0 JR’

o-n
= / /z nn[G(t — X — *)B(X_(~ +27", *))](s, y)M(ds, dy)
o UK (2.90)

t—27"
+/ / Ta[G(t — -, x — ) B(X™(-+27",%))](s, y) M(ds, dy)
R3

—n

t
+/ /Sml[G(t — - x —%)B(X7(1,%)](s, y)M(ds, dy).
t—27"JR

Then (2.89), (2.90) yield
2*”
USl(,x) = —/ f T [G(t — - x —%)B(X™(-+27", %))](s, )M (ds, dy)
0 R3
t—27"
+ / TGt — -, x — %) (B(X™ (-, %)
—n Rfa
— B(X~ ( 427" *)))](s, y)M(ds, dy)
t
—/ / ma[G(t — -, x —%)B(X ™ (1,%))](s, y)M (ds, dy)
t—2-n JR3
t
+/ / TGt — -, x —%)B(X™ (-, %))](s, y)M(ds, dy).
t—2-1 JR3
From this, we see that E(|US" (1, x)|P 11,4)) < C Y0_, Vi (¢, x), where

1_2—"
/ / Ta[G(t — -, x — %)
0 R}

x {B(X~(,%) = B(X™(-+27",%))}](s, y)M(ds, dy)

VOl x) =]E(

p
an(t)> ,
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).

p
)

2—n
VE2(t, x) =E<f0 /R} T [G(t — -, x =) B(X™(,%))](s, y)M(ds, dy)

t
V3 (t, x) =E</ Gt — - x —*)B(X_(t,*))](s,y)M(ds,dy)D
t—=27"

)

t
V,f*‘*(r,x):E( / L, TalG = x =0 B(X™(. )]s, )M (@5, dy)
r— —n

By Burkholder’s and Holder’s inequalities, we have

t
VoL, x) < cf ds sup E(|X (s, 3) — X (s +27",¥)|"11,0)
0 yeR3

'
= C/ ds sup E(|X(s,sn,y) —X_(s—|—2_”,s,, +2_",y)|p1Ln(t)) <Cc27"P,
0 yeR3

with p €]0, # [. Indeed, the last inequality is obtained by using the triangular inequality along

with (4.1) and (2.41).
Fors € [0,27"], X~ (s, y) = X (s, i, y) = 0. Therefore,

2 p/2
Vnﬁ,z(t, .X) < C(/ dS/ M(d$)|fG(t —s, *)($)|2> < C2*”P/2’
0 R3

where in the last inequality we have used the property

fR (@) F(Gr, 0) )| =crt,
In a rather similar way,

VO3, x) + VO (e, x)

27" ) p/2
sc(1+ sup E|X(t,tn,x)|p)</0 ds/RSu(dé)|}'(G(s,*))(§)|>

(t,x)€[0,T1xR3

< C2—"PB=P)/2

Thus, we have established the convergence

lim sup  E(|US' (. 0)|"1L,0)) =0. (2.91)
00 (1,x)€l0, TIx K (1)

Next, we consider the term U,? ’z(t, x). As usually for these type of terms, we apply Burkholder’s
and then Holder’s inequalities, along with the contraction property of the projection ;. This
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yields,
E(|US*(t, )| 11,0))

:E< /OI/H@ [ Gt — - x — ) {B(X™((-+27") At %)) — B(X~(.9)}] (5. )

1Ln(r)>

t
< c/ sup E(|X((s +27") At (50 +27") AL x) — X (5. 500)]).
0

xeR3

x M(ds, dy)

Equation (2.3) is a particular case of equation (2.4). Therefore, Proposition 2.9 also holds with
X, replaced by X. Then, by virtue of (4.1) and (2.41), this is bounded up to a constant by
2-nmPG=B)/2 4 2P with p €], #[. Consequently,

lim sup  E(JUS*(t, )| 11,0) =0. (2.92)

00 (4 x)el0,T1x R3

For Un6 ’3(t, x), after having applied Burkholder’s inequatily we have
E(|UR2 .| 11,0) < CE(|| 6t = Iy)[G( = x =0 B(X™C.0) 11,0 [17,):

We want to prove that the right-hand side of this inequality tends to zero as n — oo, uniformly
in (t,x) € [ty, T] x K(t). For this, we will use a similar approach as in [17], pages 906-909.
Set

Zu(t,0) = || Gtn = I )[G(t = x =0 B(X™ ) 11,0, -

Since 1, is a projection on the Hilbert space H,, the sequence {Zn (¢, x),n > 1} decreases to zero
as n — 0o. Assume that

E(sup| Gt =, x =9 B(X™ (. 0)11,00 |5, ) < 0. (2.93)

Remember that X~ (s, y) stands for X (s, sn, y), defined in (2.6), and therefore it depends on n.
The;n, by bounded convergence, this would imply lim,— o E(Z,(t, x))? = 0. Set Z,(t,x) =
E(Z,(t, x))?. Proceeding as in the proof of Lemmas 2.6, 2.10, we can check that

(Za(t,00) P = (22, 0) 7| < C(It = 71 + 1x — %),

with p €10, Z2[.
Hence, (Z,), is a sequence of monotonically decreasing continuous functions defined on
[0, T] x R3 which converges pointwise to zero. Appealing to Dini’s theorem, we obtain

lim sup E(Z(t,x))" =0. (2.94)

=00 (¢t x)elto, T1x K (1)

This yields the expected result on U,? 3,
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It remains to prove (2.93). We will sketch the arguments, leaving the details to the reader.
As usually, we write [|G(t — -, x — %) B(X ™ (-, %))11,()ll%, using the identity (1.4). By applying
Holder’s inequality with respect to the measure on [0, 1] x R? x R3 with density G(t — s, x —
YG(t —s,x —z)|y — z| P ds dy dz, and using the linear growth of the function B, we obtain as
upper bound for the left-hand side of (2.93)

c[t+ s E(sup|X@00")]. (2.95)
£,x€[0,T]xR3 n

Looking back to the definition of X (¢, t,,, x), we see that for the second and third terms in (2.6),
the supremum in n can be easily handled, since they are defined pathwise. For the stochastic
integral term, we consider the discrete martingale

17
{/ / G(so—s,x—y)(A—i—B)(X(s,y))M(ds,dy),}',n,nEN},
0 R3

where 59 €0, T'] is fixed. By applying first Doob’s maximal inequality and then Burkholder’s
inequality, we have
)

t)l
E(sup /0 /R3 G(so—s,x —y)(A+ B)(X(s, y))M(ds, dy)
)

<k
2
< CE(|G(so = x — %) (A + B)(X(.0) [57).
Finally, we take 5o := s. Using the property sup, ye[0,71xr3 E(1X (7, x)|?), we obtain that the
expression (2.95) is finite.

Owing to (2.91), (2.92) and (2.94), we have

t
[ [ 660 =s.x =+ (x5, Mds, 0

lim sup  E(|USt, )| 11,4 =0. (2.96)
=00 (1,x)€[0,T1x K (1)

In order to conclude the proof, let us consider the estimates (2.82), (2.83), (2.84), (2.86), along
with (2.87). We see that

t
dS|: sup E(‘X”(S, x) - X(s’x)|p1Ln(S))]’

E(|Xn(t, x) — X(t,x)|"11,0) < C16, + czf
xeK(s)

0

where (6,,n > 1) is a sequence of real numbers which converges to zero as n — oco. Applying
Gronwall’s lemma, we finish the proof of the theorem. O

2.4. Proof of Theorem 2.2

Fix 79 > 0 and a compact set K C R3. Let Y, (s, x) := X, (¢, x) — X(t,x) and B, (¢) := L, (1),
n>1,(x) €, T] x K, pell,oo[. From Theorems 2.3 and 2.4, we see that the conditions
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(P1) and (P2) of Lemma A .4 are satisfied with § = pp — 4, for any p € ]0, # [. We infer that

. p
Tim B(1X0 = XID i 1,0)) =0, (2.97)

for any p € [1, oo[ and p €]0, Z_Tﬁ[.
Fix ¢ > 0. Since lim,_, o P(L,()°) = 0, there exists Ny € N such that for all n > Ny,
P(L, (1)) < &. Then, for any A > 0 and n > Ny,

B(1Xn = Xllp sk > 2) < &+ B((1Xn = Xllpsok > 2) N La(1)
<e+APE(1X0 — X1,k 1La)-

Since ¢ > 0 is arbitrary, this finishes the proof of the theorem. ]

3. Support theorem

This section is devoted to the characterization of the topological support of the law of the random
field solution to the stochastic wave equation (1.5). As has been explained in the Introduction,
this is a corollary of Theorem 2.2.

Theorem 3.1. Assume that the functions o and b are Lipschitz continuous. Fix ty €10, T[ and
a compact set K C R3. Let u = {u(t, x), (t, x) € [to, T] x K} be the random field solution to
(1.5). Fix p €]0, #[. Then the topological support of the law of u in the space CP ([tg, T]1 x K)
is the closure in C°([tg, T1 % K) of the set of functions {®", h € Hr}, where {®" (¢, x), (t, x) €
[to, T] x K} is the solution of (1.9).

Let {w",n > 1} be the sequence of Hr-valued random variables defined in (2.1). For any
h € Hr, we consider the sequence of transformations of €2 defined in (1.10). As has been pointed
out in Section 1, P o (T,f’)’1 < P.

Notice also that the process v, (¢, x) := (4 o Tnh)(t, x), (t,x) €ltg, T] x R3, satisfies the equa-
tion

t
v (t,x) = / / G({t—s,x— y)o(v,,(s, y))M(ds, dy)
0 JR3
. (3.1)
+(G@t — -, x =00 (vp (-, %)), h — w”)Ht +/ ds[G(t — 5, ) % b(va(s, )] ).
0

Proof of Theorem 3.1. According to the method developed in [15] (see also [3] and Section 1
for a summary), the theorem will be a consequence of the following convergences:

n

Jim P{flu—o™ | o >n}=0, (3.2
Jim Plluo 7l —o"| o >n}=0, (3.3)

where 7 is an arbitrary positive real number.
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This follows from the general approximation result developed in Section 2. Indeed, consider
equations (2.3) and (2.4) with the choice of coefficients A = D =0, B = . Then the processes
X and X, coincide with u and ®¥", respectively. Hence, the convergence (3.2) follows from
Theorem 2.2. Next, we consider again equations (2.3) and (2.4) with a new choice of coefficients:
A =D =0, B=—o0. In this case, the processes X and X,, are equal to ®" and Uy i=uo Tnh,
respectively. Thus, Theorem 2.2 yields (3.3). g

4. Auxiliary results

The most difficult part in the proof of Theorem 2.2 consists of establishing (2.13). In particular,
handling the contribution of the pathwise integral (with respect to w”) requires a careful analysis
of the discrepancy between this integral and the stochastic integral with respect to M. This section
gathers several technical results that have been applied in the analysis of such questions in the
preceding Section 2.

The first statement in the next lemma provides a measure of the discrepancy between the
processes X (¢, x) and X (¢, t,,, x) defined in (2.3), (2.6), respectively.

Lemma 4.1. Suppose that Hypothesis (B) is satisfied. Then for any p € [1, 0c0) and every integer
n>1,

sup [ X (1, 0) = X (1,1, )|, < C27"CP @.1)
(t,x)€[0,T]xR3

and

sup sup X . tn, x)”p <C <00, 4.2)
n>1 (¢,x)€[0, T1xR3

where C is a positive constant not depending on n.
Proof. Fix p €[2, oo[. From equations (2.3), (2.6), we obtain
X x) = Xt ta, 1)) < C(Vilt, x) + Valt, x) + V3 (1, ),

where

p

’

Vi(t,x) = ‘
p

t
/ fR Gt — s, x — (A + B)(X(s. ) M(ds. dy)
th -

Va(t,x):= |Gt — -, x =) D(X (. %) 11,.00), h)y, |

P
p’

P
Vs(t, x) i= ‘

/t G(t—s,-) *b(X(s, ~))(x) ds
In

p
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Applying first Burholder’s and then Holder’s inequalities, we obtain

! p/2
vl(r,x)sC</ ds[%@u(ds)vG(t—s)(@Iz) sup  E(|(A+B)(X(t,1)[")
th .

(t,x)€[0,T1xR3

t 5 p/2
5c<f ds[l;u(dé)|]-"G(t—S)($)| ) (1+ sup ]E(|X((t,x)|”)).
th -

(t,x)€[0,T1xR3
Applying the inequality (2.60) along with (A.3), imply
Vi(t,x) < C27"PG=P)/2,

For the study of V;, we apply first Cauchy—Schwarz inequality and then Holder’s inequality.
We obtain

t p/2
Vz(t,x)§th[,m,]()H%QE(/O dsHG(t—s,x—*)D(X(s,*))1[,n,t](s)”§_[> .

Hence, similarly as for V; we have
Va(t,x) < C27"PG=P)/2,

By applying Holder’s inequality, we get

t p—1 pt
V3(t,x)§(/ ds/ G(t—s,x—dy)) /ds/ Gt —s,x —d)E(|b(X (s, »)]")
tn R3 tn R3
t p
5c</ ds/ G(t—s,x—dy)) (1+ sup E(|X(s,y)|”))
th R3

(t,x)€[0,T1xR3

<27,

The condition B € ]0, 2[ implies 2-2np - 2=np(3=F)/2 Thys from the estimates on Vilt,x),i =
1,2, 3 (which hold uniformly on (¢, x) € [0, T] x R3) we obtain (4.1).
Finally, (4.2) is a consequence of the triangular inequality, (4.1) and (A.3). U

The next result states an analogue of Lemma 4.1 for the stochastic processes X, X, defined
in (2.4), (2.5), respectively, this time including a localization by L,,.

Lemma 4.2. We assume Hypothesis (B). Then for any p € [2,00) and t € [0, T],

sup  E(|Xu(s,y) — X, (5, 0| 11, 5))
(s,y)€[0,1]xR3
4.3)

< Cn3[’/22—n[7(3—}3)/2|:1 + sup E(‘Xn(s, y)|p1L;l(S))]'
(s,y)€[0,1]xR3
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Proof. Fix p € [2, co[ and consider the decomposition

E(| X, x) — X, (t,x)| 11, 0)) < CiT,{ﬁi(z,x), (4.4)
i=1
where
T1(t.x) = ( Gt =s.x = A(X(s.7)) "1, m)
Tna(t,x) = IE(|(G(’— s X = #)B(Xn (0 15,y w" gy |7 11,00),
T3, %) = B([{G =+, x =9 D(XaC 9) sy 1), Ry [ 11,0)
T4t x) =E (ft Gt —s,) % b(X(s, ) (x)ds 1Ln(t)>.

By the same arguments used for the analysis of Vj (¢, x) in the preceding lemma, we obtain

Tn,l(t,x)gczfnl’efﬂ)/zx[1+ sup E(|Xn(s,y)|p1Ln(s))]. (4.5)
(s,)€[0,1]xR3

For T, 2(¢, x), we first use Cauchy—Schwarz’ inequality to obtain

Tn,z(ts x)

<E(|[w" 11.012,0 [, |G = x =0 B(Xa € 0) s, 1O 1L, 0 |54, 17)-

p/2>

We can now proceed as for the term V,((¢, x) in the proof of Lemma 4.1. We obtain

Appealing to (2.12), this yields

Tpo(t,x) < Cn3p/2]E<

t
f ds|[ Gt —s.x — 9 B(Xu(s. ) ) 11,0 |5,

In

Too(t,x) < Cu3P/227mPG=P2[1 4 sup ]E(‘Xn(s,y)|p1Ln(S))]. (4.6)
(s,y)€[0,1]xR3

The difference between the terms 7, 3(¢, x) and T, 2(¢, x) is that w” in the latter is replaced
by 4 in the former. Hence, following similar arguments as for the study of 7, »(¢, x), and using
that ||h 1y, q1L,0)ll, < 00, we prove

T,,,3(t,x)5c2—"l’<3—ﬂ)/2x[1+ sup E(|X,1(s,y)|p1Ln(s))]. 4.7
(s,y)€[0,1]xR3
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Finally, we notice the similitude between T}, 4(¢, x) and V3(¢, x) in Lemma 4.1. Proceeding as
for the study of this term, we obtain

, P
Tya(t, x) < C(/ dS/ G(t—s,x— dy)> [1 +  sup (X, y)|p1L"(S))]
t R3 (5,9)€[0,7]xR3
4.8)

< Cz—n[’(3—ﬂ)/2 14 sup E(‘X,,(s, y)‘pan(S))iI
(s,y)€[0,t]xR3

From (4.4)-(4.8) we obtain (4.3). O

Lemma 4.3. We assume Hypothesis (B). Then, for any p € [1, 00), there exists a finite constant
C such that

sup  sup  E[(|Xnt. 0" + X, (t,0|")1,0] = C. 4.9)
n>1(r,x)e[0,T]xR3

Moreover,

sup [[(Xu(t, %) — X, (6, 0)) 11,0 ||, < Cn¥/227nC=P/2, (4.10)
(t,x)€[0,T1xR3 P

Proof. For 0 <r <t, define
Xn(t,r;x) = /0 /Rg Gt —s.x — ) A(Xu(s, y))M(ds. dy)
+(G@t — -, x =% B(Xn (-, %)) 110, (), w")%
+(G( =, x =0 D(Xu (-, 0) 1101 (), h)y, + /0 G(t —s,-) %b(Xn(s, ) (x)ds.

Fix p € [2, oo[ and consider the decomposition

5
E(|Xn(t,r; 0| 11,00) £C Y Toilt,r; ),

i=1
P
1Ln(z)),

Taa(t.r;x) =E(|(Gt — -, x =% B(X, ¢, %) 10,,(). w")%|p1Ln(z)),
To3(t,r30) =E(|(G(t — - x = 0[B(Xa (. ) = B(X; (. 0) 10,1 O w")yy [P11,0),
(

Toa(t,r; ) = E(|(G(t — -, x = ) D(Xu (-, 9)10,11C) hyy | 1L,00),

P
1Ln(r)>-

where

Tua(t,r;x) =E(‘/r/3 G(t —s5,x — ) A(Xu(s, y)) M (ds, dy)
0 JR

Ty s(t.rix) =E(‘/rc<t —5,-) % b(Xu(s, ) (x) ds
0
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Similarly as for the term V (¢, x) in Lemma 4.1, we have

, N
Tot(t i %) < c(/o ds/WMds)!fG(r—s)@)\ )

,
x/ ds[l—l— sup E(|Xn(§,y)‘p1Ln(§))]

0 (5,)€[0,5]xR3
(4.11)

x (fR Hds)| FG —s)<s>|2>

,
§Cf ds[1+ s E(X6 0| 11,6) ]
0 (5,y)€l0,s]xR3

Let 7, and 7, be as in the proof of Lemma 2.8 (see (2.29) and the successive lines). Since
X, (s, y) is F§, -measurable, the definition of w" implies

Tn,z(ta r; x)
p
o )

Then, applying Burkholder’s inequality, using the boundedness of the operator r;, o 7,,, and sim-
ilar arguments as for the term 7,, | (¢, r; x) we obtain

t
[ [ w0 w6 =x =BG ()50 101 (OM s 0

ds[l +  sup E(X;G, y)|pan(§))]. (4.12)
(8,y)€[0,s]xR3

Tyo(t,r;x) < Cf

0
To study 7, 3(¢, r; x), we apply Cauchy—Schwarz and then Holder’s inequality. This yields

T 3(t,r; x)

<E(||w"10.n1L,0 ||§{, |G@ - x = 9[BXn) — B(X;)]¢.0) 1.1 O 1L, ||§{, 772
t p/2
< Cn3”/22"”/2E</0 ds |Gt — 5, x — 9)[B(Xa) — B(X;)] (s, 910,015 11, 5) Hi)
r 2 p/2-1
5cn3f’/22""/2</ ds/3u(d€)|]—"G(t—s)| (s))
0 R

,
x/ ds  sup  E(|X.G, ) - X, G0 1,6)
0 (8,y)€[0,5]1xR3

x (f u(ds>|fc<r—s)|2(s>),
R3
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where we have used (2.11) and the Lipschitz continuity of the function B. By applying (4.3), we
obtain

T, 3(t.r: x) < Cn3P2—"PLG=P)/2=172] /

.
Ods[1+ sup E(}Xn(&y)|p1Ln<s>)]

(8,y)€[0,s]xR3

.
gcf ds[1+ sup E(|X,,(§,y)|pan(§))],
0 (8,y)€[0,s]xR3

where in the last inequality we have used that sup, {n3P2~"PLG=A)/2=1/21} < 0,
We now consider T, 4(t,r; x). With similar arguments as those used in the analysis of
T,.3(t,x) in Lemma 4.2, we prove

,
ds[1+ s E(|X06 0| 11,0)] (4.13)
(8,y)€l0,s]xR3

Tya(t,r;x) < C/

0

Finally, we notice that T, 5(¢, r; x) is very similar to 7, 4(¢, x) in Lemma 4.2. With similar argu-
ments as those used in the analysis of this term, we have

,
ds[1+ s E(|X06 0| 11,0)] (4.14)
(8,y)€l0,s]xR3

Ths5(t,r;x) < C/

0
Bringing together (4.11), (4.12)—(4.14) yields

E(|Xa(, 5 0[ 11,0)

. (4.15)
< C{l +/ sup  E({|X. . 0|” + X, G| He,e)ds .
0 (5,y)€[0,5]xR3
Notice that X,,(z, t; x) = X,, (¢, x). Hence, for r :=¢, (4.15) tells us
E(|Xn (.0 11,0) @16

t
§C{1+/ sup  E({|Xa G, | + X, G| L) ds ¢
0 (5,y)€[0,s]1xR3

Next, take r := 1, and remember that X, (¢, t,,; x) = X, (¢, x). From (4.15), and since #, < t, we
obtain

E(|X, (0,0 11,0)) (4.17)

t
§C{1+/ sup  E({|X.G. »|" + X, G| i, i) dst.
0 (8,y)€[0,5]xR3

Fort € [0, T], set

o= sup  E[(|XnCs, 0" +[X, s, 0)|) L]
(s,y)€[0,1]xR3
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The inequalities (4.16), (4.17) imply ¢, () < C{1 + fol ©n(s)ds}. By Gronwall’s lemma, this
implies (4.9). Finally, the inequality (4.10) is a consequence of (4.3) and (4.9) ([l

Appendix

We start this section with a theorem on existence and uniqueness of solution to a class of equa-
tions which in particular applies to (2.3), and therefore also to (1.5), and to (2.4). For related
results, we refer the reader to [6], Theorem 13, [9], Theorem 4.3 and [18], Proposition 4.0.4. In
comparison with these references, here we state the theorem in spatial dimension d = 3, and we
assume that G is the fundamental solution of the wave equation in dimension three.

Theorem A.1. Let G denote the fundamental solution to the wave equation in dimension three
and M a Gaussian process as given in the Introduction. Consider the stochastic evolution equa-
tion defined by

t
Z(t, x) =/ /3G(r —s,x —y)o(Z(s, y))M(ds, dy)
0 JR

H(G@ = x =8(Z(, %), H)yy (A.1)

t
+ /0 [G(t —s,)xb(Z(s,))](x),

where the functions o, g, b:R — R are Lipschitz continuous.

(1) Assume that H = {H;,t € [0, T} is an H-valued predictable stochastic process such that
Co:= sup,, ”H(a))“'HT < Q.
Then, there exists a unique real-valued adapted stochastic process Z = {Z(t, x),
(t,x)e[0,T] x R3} satisfying (A.1), a.s., for all (t,x) € [0, T] x R3. Moreover, the pro-
cess Z is continuous in L* and satisfies

sup E(|Z(t,x)|p)§C<oo,
(t,x)€[0,T1xR3

for any p € [1, oo[, where the constant C depends among others on Cy.

(i) Assume that there exist an increasing sequence of events {Q,,n > 1} such that
limy,—, o0 P(2,) = 1, and that H, = {H,(t),t € [0, T} is a sequence of H-valued pre-
dictable stochastic processes such that Cy, := sup,, |H(w)1lq, (®) |4, < oo. Then, the
conclusion on existence and uniqueness of solution to (A.1) stated in part (1) also holds.

The process Z is termed a random field solution to (A.1).

Sketch of the proof. We start with part (i). Consider the Picard iteration scheme

Z%t,x) =0,
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t
Z® D¢, x) = f / Gt —s,x —y)o (2P (s, y))M(ds, dy)
0 JR3

t
+(Gt =, x —%g (2P, %), H),. +/ (Gt —s,)xb(Z20(s5,))]x),
0

k> 0.
Fix p € [2, oo[. First, we prove by induction on k > 0 that

sup  E(|ZF@,0)|") < € < o0, (A.2)
(t,x)€[0,T1xR3

with a constant C independent of k. Second, we prove that

sup E(|z*HV ¢, x) — z® (¢, x)|")

xeR3

t
< C(1+ Cp) U ds sup E(|Z® (s, y) — 2%, y)|”)}.
0 yeR3

With this, we conclude that the sequence of processes {Z(k) (t,x),(t,x) €0, T] x R3}, k>0
converges in L?(€2) as k — oo, uniformly in (¢, x) € [0, T'] x R3. The limit is a random field
that satisfies the properties of the statement. We refer the reader to [6,9,18], for more details on
the proof.

The proof of part (ii) is done by localizing the preceding Picard scheme using the sequence
{2y, n > 1} O

In comparison with the equation considered in [9], Theorem 4.3, (A.1) has null initial condi-
tions, and the extra term (G(¢t — -, x — %) g(Z(-, %)), H), .
Part (i) of Theorem A.1 can be applied to (1.5), (2.3). Therefore, we have

sup  E(|Xt,x0)]") < oo. (A3)
(t,x)€[0,T1xR3

Let 2, = L, (¢) as given in (2.10). The sequence H,, := w" defined in (2.1) satisfies the assump-
tions of part (ii) of Theorem A.1 (see (2.11)). Therefore the conclusion applies to the stochastic
process solution of (2.4).

Remark A.2. Set Z® (s, x))=Z(s,x +2), z€ R3. Similarly as in [6], we can argue that the
finite dimensional distributions of the process {Z(Z)(s, x), (s,x) €[0,T] x R3} do not depend
on z. This is a consequence from the fact that the martingale measure M has a spatial stationary
covariance, and that the initial condition of the SPDE vanishes.

At several points, we have applied the following version of Gronwall’s lemma whose proof
can be found in [2], Theorem 4.9.
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Lemma A.3. Let u, b and k be nonnegative continuous functions defined on the interval J =
o, B]. Let p >0, p # 1 and a > 0 be constants. Suppose that

t t
u(t)§a+/ b(s)u(s)ds—i—/ k(s)uP(s)ds, telJ.

B _ B s 1/q
u(t) < exp(/ b(s)ds) [aq + c]/ k(s) exp(—q’/ b(r)dr) dsi| , (A.4)

for every t € [a, B1), where ¢ = 1 — p and By is choosen so that the expression between [-- -] is
positive in the subinterval [«, B1) (B1 = B if g > 0).

Then

In the proof of Theorem 2.2, we have used the lemma below. For its proof, we refer the reader
to Lemma A.2 in [17], with a trivial change on the spacial dimension (d = 3 in [17], while d =4
in Lemma A .4).

Lemma A.4. Fix [ty, T] with to > 0 and a compact set K C R3. Let {Y,(,x),(t,x) €, T] x
K,n > 1} be a sequence of processes and {By(t),t € [ty, T1} C F be a sequence of adapted
events which, for every n, decreases in t. Assume that for every p €11, oo the following condi-
tions hold:

(P1) There exists 8 > 0 and C > 0 such that, forany to <t <t <T,x,x €K,
SUpE([Y, (1, = ¥a(0, | 15,9) < C (I =71 + | —x[)**.
(P2) Forevery (t,x) €[ty,T] x K,
nl_i)r&E(|Yn(t,x)|p13,l(l)) =0.
Then, for any n €10,/ pl and any r € [1, p|,

Jim B(1Yul7 4, & 18,1) =0.
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