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Weak convergence of the empirical copula process is shown to hold under the assumption that the first-
order partial derivatives of the copula exist and are continuous on certain subsets of the unit hypercube.
The assumption is non-restrictive in the sense that it is needed anyway to ensure that the candidate limiting
process exists and has continuous trajectories. In addition, resampling methods based on the multiplier
central limit theorem, which require consistent estimation of the first-order derivatives, continue to be valid.
Under certain growth conditions on the second-order partial derivatives that allow for explosive behavior
near the boundaries, the almost sure rate in Stute’s representation of the empirical copula process can
be recovered. The conditions are verified, for instance, in the case of the Gaussian copula with full-rank
correlation matrix, many Archimedean copulas, and many extreme-value copulas.
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1. Introduction

A flexible and versatile way to model dependence is via copulas. A fundamental tool for infer-
ence is the empirical copula, which basically is equal to the empirical distribution function of the
sample of multivariate ranks, rescaled to the unit interval. The asymptotic behavior of the empiri-
cal copula process was studied in, amongst others, Stute [29], Gänssler and Stute [10], Chapter 5,
van der Vaart and Wellner [32], page 389, Tsukahara [30,31], Fermanian et al. [9], Ghoudi and
Rémillard [15], and van der Vaart and Wellner [33]. Weak convergence is shown typically for
copulas that are continuously differentiable on the closed hypercube, and rates of convergence
of certain remainder terms have been established for copulas that are twice continuously differ-
entiable on the closed hypercube. Unfortunately, for many (even most) popular copula families,
even the first-order partial derivatives of the copula fail to be continuous at some boundary points
of the hypercube.

Example 1.1 (Tail dependence). Let C be a bivariate copula with first-order partial derivatives
Ċ1 and Ċ2 and positive lower tail dependence coefficient λ = limu↓0 C(u,u)/u > 0. On the
one hand, Ċ1(u,0) = 0 for all u ∈ [0,1] by the fact that C(u,0) = 0 for all u ∈ [0,1]. On the
other hand, Ċ1(0, v) = limu↓0 C(u, v)/u ≥ λ > 0 for all v ∈ (0,1]. It follows that Ċ1 cannot be
continuous at the point (0,0); similarly for Ċ2. For copulas with a positive upper tail dependence
coefficient, the first-order partial derivatives cannot be continuous at the point (1,1).
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Likewise, for the Gaussian copula with non-zero correlation parameter ρ, the first-order partial
derivatives fail to be continuous at the points (0,0) and (1,1) if ρ > 0 and at the points (0,1)

and (1,0) if ρ < 0; see also Example 5.1 below. As a consequence, the cited results on the
empirical copula process do not apply to such copulas. This problem has been largely ignored in
the literature, and unjustified calls to the above results abound. A notable exception is the paper
by Omelka, Gijbels, and Veraverbeke [22]. On page 3031 of that paper, it is claimed that weak
convergence of the empirical copula process still holds if the first-order partial derivatives are
continuous at [0,1]2 \ {(0,0), (0,1), (1,0), (1,1)}.

It is the aim of this paper to remedy the situation by showing that the earlier cited results on
the empirical copula process actually do hold under a much less restrictive assumption, including
indeed many copula families that were hitherto excluded. The assumption is non-restrictive in
the sense that it is needed anyway to ensure that the candidate limiting process exists and has
continuous trajectories. The results are stated and proved in general dimensions. When special-
ized to the bivariate case, the condition is substantially weaker still than the above-mentioned
condition in Omelka, Gijbels, and Veraverbeke [22].

Let F be a d-variate cumulative distribution function (c.d.f.) with continuous margins
F1, . . . ,Fd and copula C, that is, F(x) = C(F1(x1), . . . ,Fd(xd)) for x ∈ R

d . Let X1, . . . ,Xn

be independent random vectors with common distribution F , where Xi = (Xi1, . . . ,Xid). The
empirical copula was defined in Deheuvels [5] as

Cn(u) = Fn(F
−1
n1 (u1), . . . ,F

−1
nd (ud)), u ∈ [0,1]d, (1.1)

where Fn and Fnj are the empirical joint and marginal cdfs of the sample and where F−1
nj is

the marginal quantile function of the j th coordinate sample; see Section 2 below for details.
The empirical copula Cn is invariant under monotone increasing transformations on the data,
so it depends on the data only through the ranks. Indeed, up to a difference of order 1/n, the
empirical copula can be seen as the empirical c.d.f. of the sample of normalized ranks, as, for
instance, in Rüschendorf [25]. For convenience, the definition in equation (1.1) will be employed
throughout the paper.

The empirical copula process is defined by

Cn = √
n(Cn − C), (1.2)

to be seen as a random function on [0,1]d . We are essentially interested in the asymptotic dis-
tribution of Cn in the space �∞([0,1]d) of bounded functions from [0,1]d into R equipped with
the topology of uniform convergence. Weak convergence is to be understood in the sense used in
the monograph by van der Vaart and Wellner [32], in particular their Definition 1.3.3.

Although the empirical copula is itself a rather crude estimator of C, it plays a crucial rule in
more sophisticated inference procedures on C, much in the same way as the empirical c.d.f. Fn

is a fundamental object for creating and understanding inference procedures on F or parame-
ters thereof. For instance, the empirical copula is a basic building block when estimating copula
densities (Chen and Huang [3], Omelka, Gijbels and Veraverbeke [22]) or dependence measures
and functions (Schmid et al. [27], Genest and Segers [14]), for testing for independence (Genest
and Rémillard [12], Genest, Quessy and Rémillard [11], Kojadinovic and Holmes [17]), for test-
ing for shape constraints (Denuit and Scaillet [6], Scaillet [26], Kojadinovic and Yan [18]), for
resampling (Rémillard and Scaillet [24], Bücher and Dette [2]), and so forth.
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After some preliminaries in Section 2, the principal result of the paper is given in Sec-
tion 3, stating weak convergence of the empirical copula process under the condition that for
every j ∈ {1, . . . , d}, the j th first-order partial derivative Ċj exists and is continuous on the set
{u ∈ [0,1]d : 0 < uj < 1}. The condition is non-restrictive in the sense that it is necessary for the
candidate limiting process to exist and have continuous trajectories. Moreover, the resampling
method based on the multiplier central limit theorem proposed in Rémillard and Scaillet [24] is
shown to be valid under the same condition. Section 4 provides a refinement of the main result:
under certain bounds on the second-order partial derivatives that allow for explosive behavior
near the boundaries, the almost sure error bound on the remainder term in Stute [29] and Tsuka-
hara [31] can be entirely recovered. The result hinges on an exponential inequality for a certain
oscillation modulus of the multivariate empirical process detailed in the Appendix; the inequal-
ity is a generalization of a similar inequality in Einmahl [7] and was communicated by Hideatsu
Tsukahara. Section 5 concludes the paper with a number of examples of copulas that do or do
not verify certain sets of conditions.

2. Preliminaries

Let Xi = (Xi1, . . . ,Xid), i ∈ {1,2, . . .}, be independent random vectors with common c.d.f. F

whose margins F1, . . . ,Fd are continuous and whose copula is denoted by C. Define Uij =
Fj (Xij ) for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. The random vectors Ui = (Ui1, . . . ,Uid) constitute
an i.i.d. sample from C. Consider the following empirical distribution functions: for x ∈ R

d and
for u ∈ [0,1]d ,

Fn(x) = 1

n

n∑
i=1

1(−∞,x](Xi), Fnj (xj ) = 1

n

n∑
i=1

1(−∞,xj ](Xij ),

Gn(u) = 1

n

n∑
i=1

1[0,u](Ui), Gnj (uj ) = 1

n

n∑
i=1

1[0,uj ](Uij ).

Here, order relations on vectors are to be interpreted componentwise, and 1A(x) is equal to 1 or 0
according to whether x is an element of A or not. Let X1:n,j < · · · < Xn:n,j and U1:n,j < · · · <

Un:n,j be the vectors of ascending order statistics of the j th coordinate samples X1j , . . . ,Xnj

and U1j , . . . ,Unj , respectively. The marginal quantile functions associated to Fnj and Gnj are

F−1
nj (uj ) = inf{x ∈ R: Fnj (x) ≥ uj }

=
{

Xk:n,j , if (k − 1)/n < uj ≤ k/n,

−∞, if uj = 0;

G−1
nj (uj ) = inf{u ∈ [0,1]: Gnj (u) ≥ uj }

=
{

Uk:n,j , if (k − 1)/n < uj ≤ k/n,

0, if uj = 0.
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Some thought shows that Xij ≤ F−1
nj (uj ) if and only if Uij ≤ G−1

nj (uj ), for all i ∈ {1, . . . , n},
j ∈ {1, . . . , d} and uj ∈ [0,1]. It follows that the empirical copula in equation (1.1) is given by

Cn(u) = Gn(G
−1
n1 (u1), . . . ,G

−1
nd (ud)).

In particular, without loss of generality we can work directly with the sample U1, . . . ,Un from C.
The empirical processes associated to the empirical distribution functions Gn and Gnj are

given by

αn(u) = √
n
(
Gn(u) − C(u)

)
, αnj (uj ) = √

n
(
Gnj (uj ) − uj

)
, (2.1)

for u ∈ [0,1]d and uj ∈ [0,1]. Note that αnj (0) = αnj (1) = 0 almost surely. We have

αn � α (n → ∞)

in �∞([0,1]d), the arrow ‘�’ denoting weak convergence as in Definition 1.3.3 in van der Vaart
and Wellner [32]. The limit process α is a C-Brownian bridge, that is, a tight Gaussian process,
centered and with covariance function

cov(α(u),α(v)) = C(u ∧ v) − C(u)C(v),

for u,v ∈ [0,1]d ; here u ∧ v = (min(u1, v1), . . . ,min(ud, vd)). Tightness of the process α and
continuity of its mean and covariance functions implies the existence of a version of α with
continuous trajectories. Without loss of generality, we assume henceforth that α is such a version.

For j ∈ {1, . . . , d}, let ej be the j th coordinate vector in R
d . For u ∈ [0,1]d such that 0 <

uj < 1, let

Ċj (u) = lim
h→0

C(u + hej ) − C(u)

h
,

be the j th first-order partial derivative of C, provided it exists.

Condition 2.1. For each j ∈ {1, . . . , d}, the j th first-order partial derivative Ċj exists and is
continuous on the set Vd,j := {u ∈ [0,1]d : 0 < uj < 1}.

Henceforth, assume Condition 2.1 holds. To facilitate notation, we will extend the domain of
Ċj to the whole of [0,1]d by setting

Ċj (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim sup
h↓0

C(u + hej )

h
, if u ∈ [0,1]d , uj = 0,

lim sup
h↓0

C(u) − C(u − hej )

h
, if u ∈ [0,1]d , uj = 1.

(2.2)

In this way, Ċj is defined everywhere on [0,1]d , takes values in [0,1] (because |C(u)−C(v)| ≤∑d
j=1 |uj − vj |), and is continuous on the set Vd,j , by virtue of Condition 2.1. Also note that

Ċj (u) = 0 as soon as ui = 0 for some i 
= j .
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3. Weak convergence

In Proposition 3.1, Condition 2.1 is shown to be sufficient for the weak convergence of the em-
pirical copula process Cn. In contrast to earlier results, Condition 2.1 does not require existence
or continuity of the partial derivatives on certain boundaries. Although the improvement is seem-
ingly small, it dramatically enlarges the set of copulas to which it applies; see Section 5. Simi-
larly, the unconditional multiplier central limit theorem for the empirical copula process based on
estimated first-order partial derivatives continues to hold (Proposition 3.2). This result is useful
as a justification of certain resampling procedures that serve to compute critical values for test
statistics based on the empirical copula in case of a composite null hypothesis, for instance, in
the context of goodness-of-fit testing as in Kojadinovic and Yan [18].

Assume first that the first-order partial derivatives Ċj exist and are continuous throughout the
closed hypercube [0,1]d . For u ∈ [0,1]d , define

C(u) = α(u) −
d∑

j=1

Ċj (u)αj (uj ), (3.1)

where αj (uj ) = α(1, . . . ,1, uj ,1, . . . ,1), the variable uj appearing at the j th entry. By continu-
ity of Ċj throughout [0,1]d , the trajectories of C are continuous. From Fermanian et al. [9] and
Tsukahara [31] we learn that Cn � C as n → ∞ in the space �∞([0,1]d).

The structure of the limit process C in equation (3.1) can be understood as follows. The first
term, α(u), would be there even if the true margins Fj were used rather than their empirical
counterparts Fnj . The terms −Ċj (u)αj (uj ) encode the impact of not knowing the true quantiles
F−1

j (uj ) and having to replace them by the empirical quantiles F−1
nj (uj ). The minus sign comes

from the Bahadur–Kiefer result stating that
√

n(G−1
nj (uj ) − uj ) is asymptotically undistinguish-

able from −√
n(Gnj (uj ) − uj ); see, for instance, Shorack and Wellner [28], Chapter 15. The

partial derivative Ċj (u) quantifies the sensitivity of C with respect to small deviations in the j th
margin.

Now consider the same process C as in equation (3.1) but under Condition 2.1 and with the
domain of the partial derivatives extended to [0,1]d as in equation (2.2). Since the trajectories
of α are continuous and since αj (0) = αj (1) = 0 for each j ∈ {1, . . . , d}, the trajectories of C are
continuous, even though Ċj may fail to be continuous at points u ∈ [0,1]d , such that uj ∈ {0,1}.
The process C is the weak limit in �∞([0,1]d) of the sequence of processes

C̃n(u) = αn(u) −
d∑

j=1

Ċj (u)αnj (uj ), u ∈ [0,1]d . (3.2)

The reason is that the map from �∞([0,1]d) into itself that sends a function f to f −∑d
j=1 Ċjπj (f ), where (πj (f ))(u) = f (1, . . . ,1, uj ,1, . . . ,1), is linear and bounded.

Proposition 3.1. If Condition 2.1 holds, then, with C̃n as in equation (3.2),

sup
u∈[0,1]d

|Cn(u) − C̃n(u)| p→0 (n → ∞).
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As a consequence, in �∞([0,1]d),

Cn � C (n → ∞).

Proof. It suffices to show the first statement of the proposition. For u ∈ [0,1]d , put

Rn(u) = |Cn(u) − C̃n(u)|, u ∈ [0,1]d .

If uj = 0 for some j ∈ {1, . . . , d}, then obviously Cn(u) = C̃n(u) = 0, so Rn(u) = 0 as well. The
vector of marginal empirical quantiles is denoted by

vn(u) = (G−1
n1 (u1), . . . ,G

−1
nd (ud)), u ∈ [0,1]d . (3.3)

We have

Cn(u) = √
n
(
Cn(u) − C(u)

)
= √

n{Gn(vn(u)) − C(vn(u))} + √
n{C(vn(u)) − C(u)} (3.4)

= αn(vn(u)) + √
n{C(vn(u)) − C(u)}.

Since αn converges weakly in �∞([0,1]d) to a C-Brownian bridge α, whose trajectories are
continuous, the sequence (αn)n is asymptotically uniformly equicontinuous; see Theorem 1.5.7
and Addendum 1.5.8 in van der Vaart and Wellner [32]. As supuj ∈[0,1] |G−1

nj (uj ) − uj | → 0
almost surely, it follows that

sup
u∈[0,1]d

|αn(vn(u)) − αn(u)| p→0 (n → ∞).

Fix u ∈ [0,1]d . Put w(t) = u + t{vn(u) − u} and f (t) = C(w(t)) for t ∈ [0,1]. If u ∈ (0,1]d ,
then vn(u) ∈ (0,1)d , and therefore w(t) ∈ (0,1)d for all t ∈ (0,1], as well. By Condition 2.1, the
function f is continuous on [0,1] and continuously differentiable on (0,1). By the mean value
theorem, there exists t∗ = tn(u) ∈ (0,1) such that f (1) − f (0) = f ′(t∗), yielding

√
n{C(vn(u)) − C(u)} =

d∑
j=1

Ċj (w(t∗))
√

n
(
G−1

nj (uj ) − uj

)
. (3.5)

If one or more of the components of u are zero, then the above display remains true as well,
no matter how t∗ ∈ (0,1) is defined, because both sides of the equation are equal to zero. In
particular, if uk = 0 for some k ∈ {1, . . . , d}, then the kth term on the right-hand side vanishes
because G−1

nk (0) = 0 whereas the terms with index j 
= k vanish because the kth component of
the vector w(t∗) is zero, and thus the first-order partial derivatives Ċj vanish at this point.

It is known since Kiefer [16] that

sup
uj ∈[0,1]

∣∣√n
(
G−1

nj (uj ) − uj

) + αnj (uj )
∣∣ p→0 (n → ∞).
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Since 0 ≤ Ċj ≤ 1, we find

sup
u∈[0,1]d

∣∣∣∣∣√n{C(vn(u)) − C(u)} +
d∑

j=1

Ċj

(
u + t∗{vn(u) − u})αnj (uj )

∣∣∣∣∣ p→0

as n → ∞. It remains to be shown that

sup
u∈[0,1]d

Dnj (u)
p→0 (n → ∞)

for all j ∈ {1, . . . , d}, where

Dnj (u) = ∣∣Ċj

(
u + t∗{vn(u) − u}) − Ċj (u)

∣∣|αnj (uj )|. (3.6)

Fix ε > 0 and δ ∈ (0,1/2). Split the supremum over u ∈ [0,1]d according to the cases uj ∈
[δ,1 − δ] on the one hand and uj ∈ [0, δ) ∪ (1 − δ,1] on the other hand. We have

Pr
(

sup
u∈[0,1]d

Dnj (u) > ε
)

≤ Pr
(

sup
u∈[0,1]d ,uj ∈[δ,1−δ]

Dnj (u) > ε
)

+ Pr
(

sup
u∈[0,1]d ,uj /∈[δ,1−δ]

Dnj (u) > ε
)
.

Since supu∈[0,1]d |vn(u) − u| → 0 almost surely, since Ċj is uniformly continuous on {u ∈
[0,1]d : δ/2 ≤ uj ≤ 1 − δ/2}, and since the sequence supunj ∈[0,1] |αnj (uj )| is bounded in prob-
ability, the first probability on the right-hand side of the previous display converges to zero.
As |x − y| ≤ 1 whenever x, y ∈ [0,1] and since 0 ≤ Ċj (w) ≤ 1 for all w ∈ [0,1]d , the second
probability on the right-hand side of the previous display is bounded by

Pr
(

sup
uj ∈[0,δ)∪(1−δ,1]

|αnj (uj )| > ε
)
.

By the portmanteau lemma, the lim sup of this probability as n → ∞ is bounded by

Pr
(

sup
uj ∈[0,δ)∪(1−δ,1]

|αj (uj )| ≥ ε
)
.

The process αj being a standard Brownian bridge, the above probability can be made smaller
than an arbitrarily chosen η > 0 by choosing δ sufficiently small. We find

lim sup
n→∞

Pr
(

sup
u∈[0,1]d

Dnj (u) > ε
)

≤ η.

As η was arbitrary, the claim is proven. �

An alternative to the direct proof above is to invoke the functional delta method as in Fer-
manian et al. [9]. Required then is a generalization of Lemma 2 in the cited paper asserting
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Hadamard differentiability of a certain functional under Condition 2.1. This program is carried
out for the bivariate case in Bücher [1], Lemma 2.6.

For purposes of hypothesis testing or confidence interval construction, resampling procedures
are often required; see the references in the introduction. In Fermanian et al. [9], a bootstrap
procedure for the empirical copula process is proposed, whereas in Rémillard and Scaillet [24],
a method based on the multiplier central limit theorem is employed. Yet another method is pro-
posed in Bücher and Dette [2]. In the latter paper, the finite-sample properties of all these methods
are compared in a simulation study, and the multiplier approach by Rémillard and Scaillet [24] is
found to be best overall. Although the latter approach requires estimation of the first-order partial
derivatives, it remains valid under Condition 2.1, allowing for discontinuities on the boundaries.

Let ξ1, ξ2, . . . be an i.i.d. sequence of random variables, independent of the random vectors
X1,X2, . . . , and with zero mean, unit variance, and such that

∫ ∞
0

√
Pr(|ξ1| > x)dx < ∞. Define

α′
n(u) = 1√

n

n∑
i=1

ξi

(
1{Xi1 ≤ F−1

n1 (u1), . . . ,Xid ≤ F−1
nd (ud)} − Cn(u)

)
. (3.7)

In (�∞([0,1]d))2, we have by Lemma A.1 in Rémillard and Scaillet [24],

(αn,α
′
n) � (α,α′) (n → ∞), (3.8)

where α′ is an independent copy of α. Further, let ˆ̇Cnj (u) be an estimator of Ċj (u); for instance,
apply finite differencing to the empirical copula at a spacing proportional to n−1/2 as in Rémillard
and Scaillet [24]. Define

C
′
n(u) = α′

n(u) −
d∑

j=1

ˆ̇Cnj (u)α′
nj (uj ), (3.9)

where α′
nj (uj ) = α′

n(1, . . . ,1, uj ,1, . . . ,1), the variable uj appearing at the j th coordinate.

Proposition 3.2. Assume Condition 2.1. If there exists a constant K such that | ˆ̇Cnj (u)| ≤ K for
all n, j,u, and if

sup
u∈[0,1]d :uj ∈[δ,1−δ]

| ˆ̇Cnj (u) − Ċj (u)| p→0 (n → ∞) (3.10)

for all δ ∈ (0,1/2) and all j ∈ {1, . . . , d}, then in (�∞([0,1]d))2, we have

(Cn,C
′
n) � (C,C

′) (n → ∞),

where C
′ is an independent copy of C.

Proof. Recall the process α′
n in equation (3.7), and define

C̃
′
n(u) = α′

n(u) −
d∑

j=1

Ċj (u)α′
nj (uj ), u ∈ [0,1]d .
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The difference with the process C
′
n in equation (3.9) is that the true partial derivatives of C are

used rather than the estimated ones. By Proposition 3.1 and equation (3.8), we have

(Cn, C̃
′
n) � (C,C

′) (n → ∞)

in (�∞([0,1]d))2. Moreover,

|C′
n(u) − C̃

′
n(u)| ≤

d∑
j=1

| ˆ̇Cnj (u) − Ċj (u)||α′
nj (uj )|.

It suffices to show that each of the d terms on the right-hand side converges to 0 in probability,
uniformly in u ∈ [0,1]d . The argument is similar to the one at the end of the proof of Propo-
sition 3.1. Pick δ ∈ (0,1/2), and split the supremum according to the cases uj ∈ [δ,1 − δ] and
uj ∈ [0, δ) ∪ (1 − δ,1]. For the first case, use equation (3.10) together with tightness of α′

nj . For
the second case, use the assumed uniform boundedness of the partial derivative estimators and
the fact that the limit process α̂j is a standard Brownian bridge, having continuous trajectories
and vanishing at 0 and 1. �

4. Almost sure rate

Recall the empirical copula process Cn in equation (1.2) together with its approximation C̃n in
equation (3.2). If the second-order partial derivatives of C exist and are continuous on [0,1]d ,
then the original result by Stute [29], proved in detail in Tsukahara [30], reinforces the first claim
of Proposition 3.1 to

sup
u∈[0,1]d

|Cn(u) − C̃n(u)|
(4.1)

= O(n−1/4(logn)1/2(log logn)1/4) (n → ∞) almost surely.

For many copulas, however, the second-order partial derivatives explode near certain parts of the
boundaries. The question then is how this affects the above rate. Recall Vd,j = {u ∈ [0,1]d : 0 <

uj < 1} for j ∈ {1, . . . , d}.

Condition 4.1. For every i, j ∈ {1, . . . , d}, the second-order partial derivative C̈ij is defined and
continuous on the set Vd,i ∩ Vd,j , and there exists a constant K > 0 such that

|C̈ij (u)| ≤ K min

(
1

ui(1 − ui)
,

1

uj (1 − uj )

)
, u ∈ Vd,i ∩ Vd,j .

Condition 4.1 holds, for instance, for absolutely continuous bivariate Gaussian copulas and for
bivariate extreme-value copulas whose Pickands dependence functions are twice continuously
differentiable and satisfy a certain bound; see Section 5.

Under Condition 4.1, the rate in equation (4.1) can be entirely recovered. The following propo-
sition has benefited from a suggestion of John H.J. Einmahl leading to an improvement of a result
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in an earlier version of the paper claiming a slightly slower rate. Furthermore, part of the proof
is an adaptation due to Hideatsu Tsukahara of the end of the proof of Theorem 4.1 in Tsukahara
[30], upon which the present result is based.

Proposition 4.2. If Conditions 2.1 and 4.1 are verified, then equation (4.1) holds.

Proof. Combining equations (3.4) and (3.5) in the proof of Proposition 3.1 yields

Cn(u) = αn(vn(u)) +
d∑

j=1

Ċj (w(t∗))
√

n
(
G−1

nj (uj ) − uj

)
, u ∈ [0,1]d ,

with αn the ordinary multivariate empirical process in equation (2.1), vn(u) the vector of marginal
empirical quantiles in equation (3.3), and w(t∗) = u + t∗{vn(u) − u} a certain point on the line
segment between u and vn(u) with local coordinate t∗ = tn(u) ∈ (0,1). In view of the definition
of C̃n(u) in equation (3.2), it follows that

sup
u∈[0,1]d

|Cn(u) − C̃n(u)| ≤ In + IIn + IIIn,

where

In = sup
u∈[0,1]d

|αn(vn(u)) − αn(u)|,

IIn =
d∑

j=1

sup
u∈[0,1]d

∣∣√n
(
G−1

nj (uj ) − uj

) + αnj (uj )
∣∣,

IIIn =
d∑

j=1

sup
u∈[0,1]d

Dnj (u),

with Dnj (u) as defined in equation (3.6). By Kiefer [16], the term IIn is O(n−1/4(logn)1/2 ×
(log logn)1/4) as n → ∞, almost surely. It suffices to show that the same almost sure rate is
valid for In and IIIn, too.

The term In. The argument is adapted from the final part of the proof of Theorem 4.1 in
Tsukahara [30], and its essence was kindly provided by Hideatsu Tsukahara. We have

In ≤ Mn(An), An = max
j∈{1,...,d}

sup
uj ∈[0,1]

|G−1
nj (uj ) − uj |,

and Mn(a) is the oscillation modulus of the multivariate empirical process αn defined in equa-
tion (A.1). We will employ the exponential inequality for Pr{Mn(a) ≥ λ} stated in Proposi-
tion A.1, which generalizes Inequality 3.5 in Einmahl [7]. Set an = n−1/2(log logn)1/2. By
the Chung–Smirnov law of the iterated logarithm for empirical distribution functions (see, e.g.,
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Shorack and Wellner [28], page 504),

lim sup
n→∞

1

an

sup
uj ∈[0,1]

|G−1
nj (uj ) − uj | = lim sup

n→∞
1

an

sup
vj ∈[0,1]

|vj − Gnj (vj )|
(4.2)

= 1/
√

2 almost surely.

Choose λn = 2K
−1/2
2 n−1/4(logn)1/2(log logn)1/4 for K2 as in Proposition A.1. Since

λn/(n
1/2an) → 0 as n → ∞, and since the function ψ in equation (A.2) below is decreasing

with ψ(0) = 1, it follows that ψ(λn/(n
1/2an)) ≥ 1/2 for sufficiently large n. Furthermore, we

have

∑
n≥2

1

an

exp

(
−K2λ

2
n

2an

)
=

∑
n≥2

1

n3/2(log logn)1/2
< ∞.

By the Borel–Cantelli lemma and Proposition (A.1), as n → ∞,

In ≤ Mn(An) ≤ Mn(an) = O(n−1/4(logn)1/2(log logn)1/4) almost surely.

The term IIIn. Let

δn = n−1/2(logn)(log logn)−1/2.

Fix j ∈ {1, . . . , d}. We split the supremum of Dnj (u) over u ∈ [0,1]d according to the cases
uj ∈ [0, δn) ∪ (1 − δn,1] and uj ∈ [δn,1 − δn].

Since 0 ≤ Ċj ≤ 1, the supremum over u ∈ [0,1]d such that uj ∈ [0, δn)∪(1−δn,1] is bounded
by

sup
u∈[0,1]d :uj ∈[0,δn)∪(1−δn,1]

Dnj (u) ≤ sup
uj ∈[0,δn)∪(1−δn,1]

|αnj (uj )|.

By Theorem 2.(iii) in Einmahl and Mason [8] applied to (d, ν, kn) = (1,1/2, nδn), the previous
supremum is of the order

sup
uj ∈[0,δn)∪(1−δn]

|αnj (uj )| = O(δ
1/2
n (log logn)1/2)

(4.3)
= O(n−1/4(logn)1/2(log logn)1/4) (n → ∞) almost surely.

Next let u ∈ [0,1]d be such that δn ≤ uj ≤ 1 − δn. By Lemma 4.3 below and by convexity of
the function (0,1) � s �→ 1/{s(1 − s)},

Dnj (u) = ∣∣Ċj

(
u + λn(u){vn(u) − u}) − Ċj (u)

∣∣|αnj (uj )|

≤ K max

(
1

uj (1 − uj )
,

1

G−1
nj (uj )(1 − G−1

nj (uj ))

)
‖vn(u) − u‖1|αnj (uj )|,
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with ‖x‖1 = ∑d
j=1 |xj |. Let bn = (logn)1/2 log logn; clearly

∑∞
n=2 n−1b−2

n < ∞. By Csáki [4]
or Mason [20],

Pr

(
sup

0<s<1

|αnj (s)|
(s(1 − s))1/2

> bn infinitely often

)
= 0.

It follows that, with probability one, for all sufficiently large n,

|αnj (uj )| ≤
(
uj (1 − uj )

)1/2
bn, uj ∈ [0,1].

Let I denote the identity function on [0,1], and let ‖·‖∞ denote the supremum norm. For uj ∈
[δn,1 − δn],

G−1
nj (uj ) = uj

(
1 + G−1

nj (uj ) − uj

uj

)
≥ uj

(
1 − ‖G−1

nj − I‖∞
δn

)
,

1 − G−1
nj (uj ) ≥ (1 − uj )

(
1 − ‖G−1

nj − I‖∞
δn

)
.

By the law of the iterated logarithm (see (4.2))

‖G−1
nj − I‖ = o(δn) (n → ∞) almost surely.

We find that with probability one, for all sufficiently large n and for all u ∈ [0,1]d such that
uj ∈ [δn,1 − δn],

Dnj (u) ≤ 2K
(
uj (1 − uj )

)−1/2‖vn(u) − u‖1bn.

We use again the law of the iterated logarithm in (4.2) to bound ‖vn(u) − u‖1. As a consequence,
with probability one,

sup
u∈[0,1]d :uj ∈[δn,1−δn]

Dnj (u) = O(δ
−1/2
n (log logn)1/2n−1/2bn)

(4.4)
= O(n−1/4(log logn)7/4) (n → ∞) almost surely.

The bound in (4.4) is dominated by the one in (4.3). The latter therefore yields the total rate. �

Lemma 4.3. If Conditions 2.1 and 4.1 hold, then

|Ċj (v) − Ċj (u)| ≤ K max

(
1

uj (1 − uj )
,

1

vj (1 − vj )

)
‖v − u‖1, (4.5)

for every j ∈ {1, . . . , d} and for every u,v ∈ [0,1]d such that 0 < uj < 1 and 0 < vj < 1; here
‖x‖1 = ∑d

i=1 |xi | denotes the L1-norm.
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Proof. Fix j ∈ {1, . . . , d} and u,v ∈ [0,1]d such that uj , vj ∈ (0,1). Consider the line segment
w(t) = u + t (v − u) for t ∈ [0,1], connecting w(0) = u with w(1) = v; put wi(t) = ui + t (vi −
ui) for i ∈ {1, . . . , d}. Clearly 0 < wj(t) < 1 for all t ∈ [0,1]. Next, consider the function f (t) =
Ċj (w(t)) for t ∈ [0,1]. The function f is continuous on [0,1] and continuously differentiable on
(0,1). Indeed, if ui 
= vi for some i ∈ {1, . . . , d}, then 0 < wi(t) < 1 for all t ∈ (0,1); if ui = vi ,
then wi(t) = ui = vi does not depend on t at all. Hence, the derivative of f in t ∈ (0,1) is given
by

f ′(t) =
∑
i∈I

(vi − ui)C̈ij (w(t)),

where I = {i ∈ {1, . . . , d}: ui 
= vi}. By the mean-value theorem, we obtain that for some t∗ ∈
(0,1),

Ċj (v) − Ċj (u) = f (1) − f (0) = f ′(t∗) =
∑
i∈I

(vi − ui)C̈ij (w(t∗)).

As a consequence,

|Ċj (u) − Ċj (v)| ≤ ‖v − u‖1 max
i∈I

sup
0<t<1

|C̈ij (w(t))|.

By Condition 4.1,

|Ċj (u) − Ċj (v)| ≤ ‖v − u‖1K sup
0<t<1

1

wj(t){1 − wj(t)} .

Finally, since the function s �→ 1/{s(1 − s)} is convex on (0,1) and since wj(t) is a convex
combination of uj and vj , the supremum of 1/[wj(t){1−wj(t)}] over t ∈ [0,1] must be attained
at one of the endpoints uj or vj . Equation (4.5) follows. �

5. Examples

Example 5.1 (Gaussian copula). Let C be the d-variate Gaussian copula with correlation matrix
R ∈ R

d×d , that is,

C(u) = Pr

(
d⋂

j=1

{
(Xj ) ≤ uj }
)

, u ∈ [0,1]d ,

where X = (X1, . . . ,Xd) follows a d-variate Gaussian distribution with zero means, unit vari-
ances, and correlation matrix R; here 
 is the standard normal c.d.f. It can be checked readily
that if the correlation matrix R is of full rank, then Condition 2.1 is verified, and Propositions 3.1
and 3.2 apply.

Still, if 0 < ρ1j = corr(X1,Xj ) < 1 for all j ∈ {2, . . . , d}, then on the one hand we have
limu1↓0 Ċ1(u1, u−1) = 1 for all u−1 ∈ (0,1]d−1, whereas on the other hand we have Ċ1(u) = 0 as
soon as uj = 0 for some j ∈ {2, . . . , d}. As a consequence, Ċ1 cannot be extended continuously
to the set {0} × ([0,1]d−1 \ (0,1]d−1).
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In the bivariate case, Condition 4.1 can be verified by direct calculation, provided the correla-
tion parameter ρ satisfies |ρ| < 1.

Example 5.2 (Archimedean copulas). Let C be a d-variate Archimedean copula; that is,

C(u) = φ−1(φ(u1) + · · · + φ(ud)
)
, u ∈ [0,1]d ,

where the generator φ : [0,1] → [0,∞] is convex, decreasing, finite on (0,1], and vanishes at 1,
whereas φ−1 : [0,∞) → [0,1] is its generalized inverse, φ−1(x) = inf{u ∈ [0,1]: φ(u) ≤ x}; in
fact, if d ≥ 3, more conditions on φ are required for C to be a copula; see McNeil and Nešle-
hová [21].

Suppose φ is continuously differentiable on (0,1] and φ′(0+) = −∞. Then the first-order
partial derivatives of C are given by

Ċj (u) = φ′(uj )

φ′(C(u))
, u ∈ [0,1]d ,0 < uj < 1.

If ui = 0 for some i 
= j , then C(u) = 0 and φ′(C(u)) = −∞, so indeed Ċj (u) = 0. We find that
Condition 2.1 is verified, so Propositions 3.1 and 3.2 apply.

In contrast, Ċj may easily fail to be continuous at some boundary points. For instance, if
φ′(1) = 0, then Ċj cannot be extended continuously at (1, . . . ,1). Or if φ−1 is long-tailed, that
is, if limx→∞ φ−1(x + y)/φ−1(x) = 1 for all y ∈ R, then limu1↓0 C(u1, u−1)/u1 = 1 for all
u−1 ∈ (0,1]d−1, whereas Ċ1(u) = 0 as soon as uj = 0 for some j ∈ {2, . . . , d}; it follows that
Ċ1 cannot be extended continuously to the set {0} × ([0,1]d−1 \ (0,1]d−1).

Example 5.3 (Extreme-value copulas). Let C be a d-variate extreme-value copula; that is,

C(u) = exp(−�(− logu1, . . . ,− logud)), u ∈ (0,1]d ,

where the tail dependence function � : [0,∞)d → [0,∞) verifies

�(x) =
∫

�d−1

max
j∈{1,...,d}

(wjxj )H(dw), x ∈ [0,∞)d ,

with H a non-negative Borel measure (called spectral measure) on the unit simplex �d−1 = {w ∈
[0,1]d : w1 + · · · + wd = 1} satisfying the d constraints

∫
wjH(dw) = 1 for all j ∈ {1, . . . , d};

see, for instance, Leadbetter and Rootzén [19] or Pickands [23]. It can be verified that � is convex,
is homogeneous of order 1, and that max(x1, . . . , xd) ≤ �(x) ≤ x1 + · · ·+ xd for all x ∈ [0,∞)d .

Suppose that the following holds:

For every j ∈ {1, . . . , d}, the first-order partial derivative �̇j of � with respect to xj

exists and is continuous on the set {x ∈ [0,∞)d : xj > 0}.
(5.1)
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Then the first-order partial derivative of C in u with respect to uj exists and is continuous on the
set {u ∈ [0,1]d : 0 < uj < 1}. Indeed, for u ∈ [0,1]d such that 0 < uj < 1, we have

Ċj (u) =
⎧⎨
⎩

C(u)

uj

�̇j (− logu1, . . . ,− logud), if ui > 0 for all i,

0, if ui = 0 for some i 
= j .

The properties of � imply that 0 ≤ �̇j ≤ 1 for all j ∈ {1, . . . , d}. Therefore, if ui ↓ 0 for some
i 
= j , then Ċj (u) → 0, as required. Hence if (5.1) is verified, Condition 2.1 is verified as well
and Propositions 3.1 and 3.2 apply.

Let us consider the bivariate case in somewhat more detail. The function A : [0,1] →
[1/2,1] : t �→ A(t) = �(1 − t, t) is called the Pickands dependence function of C. It is convex
and satisfies max(t,1 − t) ≤ A(t) ≤ 1 for all t ∈ [0,1]. By homogeneity of the function �, we
have �(x, y) = (x + y)A(

y
x+y

) for (x, y) ∈ [0,∞)2 \ {(0,0)}. If A is continuously differentiable
on (0,1), then (5.1) holds, and Condition 2.1 is verified. Nevertheless, if A(1/2) < 1, which
is always true except in case of independence (A ≡ 1), the upper tail dependence coefficient
2{1 − A(1/2)} is positive so that the first-order partial derivatives fail to be continuous at the
point (1,1); see Example 1.1. One can also see that Ċ1 will not admit a continuous extension in
the neighborhood of the point (0,0) in case A′(0) = −1.

We will now verify Condition 4.1 under the following additional assumption:

The function A is twice continuously differentiable on (0,1)

and M = sup0<t<1{t (1 − t)A′′(t)} < ∞.
(5.2)

In combination with Proposition 4.2, this will justify the use of the Stute–Tsukahara almost
sure rate (4.1) in the proof of Theorem 3.2 in Genest and Segers [13]; in particular, see their
equation (B.3). Note that the weight function t (1− t) in the supremum in (5.2) is not unimportant:
for the Gumbel extreme-value copula having dependence function A(t) = {t1/θ + (1 − t)1/θ }θ
with parameter θ ∈ (0,1], it holds that A′′(t) → ∞ as t → 0 or t → 1 provided 1/2 < θ < 1,
whereas condition (5.2) is verified for all θ ∈ (0,1].

The copula density at the point (u, v) ∈ (0,1)2 is given by

C̈12(u, v) = C(u, v)

uv

(
μ(t)ν(t) − t (1 − t)A′′(t)

log(uv)

)
,

where

t = log(v)

log(uv)
∈ (0,1), μ(t) = A(t) − tA′(t), ν(t) = A(t) + (1 − t)A′(t).

Note that if A′′(1/2) > 0, then C̈12(w,w) → ∞ as w ↑ 1. The properties of A imply 0 ≤
μ(t) ≤ 1 and 0 ≤ ν(t) ≤ 1. From − log(x) ≥ 1 − x, it follows that −1/ log(uv) ≤ min{1/(1 −
u),1/(1 − v)} for (u, v) ∈ (0,1)2. Since C(u, v) ≤ min(u, v) and since min(a, b)min(c, d) ≤
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min{(ac), (bd)} for positive numbers a, b, c, d , we find

0 ≤ C̈12(u, v) ≤ min(u, v)

uv

{
1 + M min

(
1

1 − u
,

1

1 − v

)}

≤ (1 + M)min

(
1

u(1 − u)
,

1

v(1 − v)

)
.

Similarly, for (u, v) ∈ (0,1) × [0,1],

C̈11(u, v) =
⎧⎨
⎩

C(u, v)

u2

(
−μ(t)

(
1 − μ(t)

) + t2(1 − t)A′′(t)
log(u)

)
, if 0 < v < 1,

0, if v ∈ {0,1}.
Continuity at the boundary v = 0 follows from the fact that C(u, v) → 0 as v → 0; continuity at
the boundary v = 1 follows from the fact that t → 0 and μ(t) → 0 as v → 1. Since − log(u) ≤
(1 − u)/u, we find, as required,

0 ≤ −C̈11(u, v) ≤ (1 + M)

u(1 − u)
, (u, v) ∈ (0,1) × [0,1].

Example 5.4 (If everything fails. . . ). Sometimes, even Condition 2.1 does not hold: think, for
instance, of the Fréchet lower and upper bounds, C(u, v) = max(u + v − 1,0) and C(u, v) =
min(u, v), and of the checkerboard copula with Lebesgue density c = 21[0,1/2]2∪[1/2,1]2 . In these
cases, the candidate limiting process C has discontinuous trajectories, and the empirical copula
process does not converge weakly in the topology of uniform convergence.

One may then wonder if weak convergence of the empirical copula process still holds in, for
instance, a Skorohod-type topology on the space of càdlàg functions on [0,1]2. Such a result
would be useful to derive, for instance, the asymptotic distribution of certain functionals of the
empirical copula process, for example, suprema or integrals such as appearing in certain test
statistics.

Appendix: Multivariate oscillation modulus

Let C be any d-variate copula and let U1,U2, . . . be an i.i.d. sequence of random vectors with
common cumulative distribution function C. Let αn be the multivariate empirical process in
equation (2.1). Consider the oscillation modulus defined by

Mn(a) = sup{|αn(u) − αn(v)|: u,v ∈ [0,1]d , |uj − vj | ≤ a for all j } (A.1)

for a ∈ [0,∞). Define the function ψ : [−1,∞) → (0,∞) by

ψ(x) = 2x−2{(1 + x) log(1 + x) − x}, x ∈ (−1,0) ∪ (0,∞), (A.2)

together with ψ(−1) = 2 and ψ(0) = 1. Note that ψ is decreasing and continuous.
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Proposition A.1 (John H. J. Einmahl, Hideatsu Tsukahara). Let C be any d-variate copula.
There exist constants K1 and K2, depending only on d , such that

Pr{Mn(a) ≥ λ} ≤ K1

a
exp

{
−K2λ

2

a
ψ

(
λ√
na

)}

for all a ∈ (0,1/2] and all λ ∈ [0,∞).

Proof. In Einmahl [7], Inequality 5.3, page 73, the same bound is proved in case C is the in-
dependence copula and for a > 0 such that 1/a is integer. As noted by Tsukahara, in a private
communication, the only property of the joint distribution that is used in the proof is that the
margins be uniform on the interval (0,1): Inequality 2.5 in Einmahl [7], page 12, holds for any
distribution on the unit hypercube and equation (5.19) on page 72 only involves the margins. As
a consequence, Inequality 5.3 in Einmahl [7] continues to hold for any copula C. Moreover, the
assumption that 1/a be integer is easy to get rid of. �
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