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We study the conditional distribution of goodness of fit statistics of the Cramér–von Mises type given the
complete sufficient statistics in testing for exponential family models. We show that this distribution is
close, in large samples, to that given by parametric bootstrapping, namely, the unconditional distribution
of the statistic under the value of the parameter given by the maximum likelihood estimate. As part of the
proof, we give uniform Edgeworth expansions of Rao–Blackwell estimates in these models.
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1. Introduction

In this paper, we compare conditional and unconditional goodness-of-fit tests and give condi-
tions under which the two give essentially identical results in large samples. Our results apply in
testing fit for exponential family models for independent and identically distributed (i.i.d.) data,
X1, . . . ,Xn. Our interest is to test the null hypothesis that the distribution of the individual Xi

belongs to a natural exponential family with density, relative to some σ -finite measure, μ(dx),
on some sample space �, of the form

f (x; θ) ≡ c(x) exp{θ ′T (x) − κ(θ)} (1)

with natural parameter space � ⊂ R
k ; we assume that � has non-empty interior which we denote

int(�). In (1), T takes values in R
k and superscript ′ denotes transposition. A complete and

sufficient statistic for the parameter θ is then

Tn ≡ Tn(X1, . . . ,Xn) =
n∑

i=1

T (Xi).

To apply classical hypothesis testing ideas, we regard this model as a null hypothesis. We
consider the omnibus alternative hypothesis that the sample is drawn from a distribution which
is not in the parametric model. One common approach to this hypothesis testing problem is to
define some statistic S(X1, . . . ,Xn; θ) which measures in some way departure of the sample
from what is expected if θ is the true value. Since θ is unknown, it is replaced in this measure
by θ̂n, the maximum likelihood estimate of the parameter vector, leading to the statistic Sn ≡
S(X1, . . . ,Xn, θ̂n).
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Common examples include empirical distribution function statistics such as Cramér–von
Mises, Kolmogorov–Smirnov, Anderson–Darling and many chi-squared statistics. The usual sit-
uation is that the test statistic has a distribution which depends, even in large samples, on the
unknown parameter value (exceptions arise in the normal and other families which have only lo-
cation and/or scale parameters). Thus, to implement the tests in practice it is necessary to specify
how to compute critical points for the tests or how to compute appropriate P -values correspond-
ing to the test statistics. A method long in use is to derive large sample theory for the statistic Sn,
establishing the convergence in distribution of Sn to some limiting distribution which depends
on the true value of θ . If Cα(θ) is the upper α critical point of this limiting distribution and Cα

depends continuously on θ , then the test which rejects if Sn > Cα(θ̂n) has asymptotic level α.
See Lockhart and Stephens [9] for a discussion of this method in testing fit for the von Mises
distribution for directional data; this testing problem is discussed below in more detail.

A more modern method which achieves the same asymptotic behaviour is the parametric boot-
strap. Let Hn(·; θ) denote the cumulative distribution function of Sn when the true parameter
value is θ . Then

Pb = 1 − Hn(Sn; θ̂n)

is the parametric bootstrap P -value. This P -value is usually computed approximately by gen-
erating some number, B , of bootstrap samples drawn from the density f (·, θ̂n), computing the
statistic Sn for each of these B samples and then counting the fraction of these bootstrap statistic
values which exceed the value of Sn for the data set at hand.

These two methods for goodness-of-fit testing both depend on asymptotic theory to justify
their performance. They do not have, except in the location-scale situation mentioned, exact
level α and thus no exact finite sample optimality properties. Conditional tests, which we discuss
next, offer at least the potential for such optimality. (See Remark 9 in the Discussion section for
some comments.)

One standard approach (discussed in detail in [5]) to optimality theory is to search for powerful
unbiased level α tests: tests whose power never falls below α on the alternative. Such tests will
generally have Neyman structure; that is, their level will be α everywhere on the boundary of the
null hypothesis. For the omnibus alternative, this boundary is generally the entire model.

Now suppose Tn is a complete sufficient statistic for this model. Then the requirement that the
level of the test be α everywhere in the parametric model and completeness guarantee that the test
must have conditional level α. That is, an unbiased level α test must have the property that the
conditional probability of rejection given Tn is identically α. This is precisely the argument used
in Lehmann and Romano [5] to show that Student’s t test is uniformly most powerful unbiased.

By a conditional test, then, we mean a test whose level, given the sufficient statistic Tn, is
identically α. Two recent papers on goodness-of-fit, Lockhart, O’Reilly and Stephens [7,8], have
compared such conditional tests with parametric bootstrap tests. They implemented their con-
ditional tests as follows. For a test statistic Sn, let Gn(·|·) denote the conditional distribution
function, when the true distribution of the data comes from the exponential family, of Sn given
Tn. This function Gn does not depend on θ . If this conditional distribution function is continuous
then

Pc = 1 − Gn(Sn|Tn)
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has a uniform distribution under Ho; it is therefore an exact P -value. These P -values are often
computed by Monte Carlo or Markov Chain Monte Carlo; see Lockhart, O’Reilly and Stephens
[7,8] for examples and references.

In Lockhart, O’Reilly and Stephens [7], for instance, the authors considered an i.i.d. sample
from the von Mises distribution. Observations Xi are points on the unit circle; see Section 4.2
below for details of the density. The complete sufficient statistic is Tn = ∑

Xi and the authors
use Watson’s U2 statistic for Sn. They use Markov Chain Monte Carlo methods to generated a
sequence of samples from the conditional distribution of X1, . . . ,Xn given Tn; all the generated
samples have the same value of Tn. The authors evaluate Pc by computing U2 for each data set
and estimating Pc by the fraction of samples giving larger values of U2 than the original data
sample.

These authors also compute the parametric bootstrap value, Pb , for the same statistic by gen-
erating i.i.d. samples from the von Mises distribution using, for the parameter value, the estimate
of the parameter derived from the original data. Of course the values of the sufficient statistic Tn

vary from one bootstrap sample to another. Again U2 is computed for each bootstrap sample and
a P value is computed as the fraction of bootstrap U2 values which are larger than the observed
value of U2.

Very high correlations between the P -values computed using these two methods were ob-
served in Lockhart, O’Reilly and Stephens [7]. For example, they considered a test that a sample
of size 34 comes from a von Mises distribution. Using Watson’s U2 and generating samples from
the null hypothesis they observed a correlation of 0.997 between the two P -values. For a sample
of 55 observations, the correlation observed was 0.9997.

Here we show that for statistics Sn of the Cramér–von Mises type these two methods must
give similar P -values because, when the null hypothesis is true,

sup
s

{|Gn(s|Tn) − Hn(s; θ̂n)|} → 0

in probability, at least when the model being tested is an exponential family. In fact, the con-
vergence is almost sure for samples from any distribution for which θ̂n/n converges almost
surely to an interior point of the parameter space. For statistics Sn which are sums of the form∑

i un(Xi, θ̂ ) this result is established by Holst [4]. Our results extend his to statistics which we
now describe.

When � is the real line, many goodness-of-fit tests are based on statistics which are functionals
of the estimated empirical process

Wn(s) = √
n{Fn(x) − F(x, θ̂n)},

where we now use F(x, θ) for the cumulative distribution function, s is related to x by s =
F(x, θ̂n) and Fn is the usual empirical distribution function:

Fn(x) = n−1
n∑

i=1

1(Xi ≤ x).

Common choices for statistics include:
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• Cramér–von Mises type:

Sn =
∫ 1

0
ψ2(s)W 2

n (s)ds; (2)

• Watson type: ∫ 1

0

{
Wn(s) −

∫ 1

0
ψ(u)Wn(u)du

}2

ψ2(s)ds;

• Kolmogorov–Smirnov type:

sup
0<s<1

|ψ(s)Wn(s)|.

In each case, ψ is some weight function defined on (0,1).
The large sample analysis of the unconditional distribution of such statistics comes from the

well known weak convergence, in D[0,1], of the process Wn to a Gaussian process, W , which
we now describe. Let I(θ) be the Fisher information matrix and define the column vector

ξ(s, θ) = ∂F (x; θ)

∂θ
,

where x is defined as a function of s by F(x, θ) ≡ s. Then the limit process W has mean 0 and
covariance function

ρθ (s, t) = min{s, t} − st − ξ(s, θ)′{I(θ)}−1ξ(t, θ).

The statistics indicated above are all continuous functionals of Wn (under mild conditions on the
weight functions involved) and as such converge in distribution to the same functional applied to
the limit process W . See Stephens [14] for a detailed discussion of the resulting tests and Shorack
and Wellner [12] for mathematical details.

The weak convergence result can be proved in two steps: prove convergence in distribution
of the finite dimensional distributions of Wn and then prove tightness of the sequence of pro-
cesses in D[0,1]. We believe a similar result holds, in exponential families, conditional on the
sufficient statistic. Results in Holst [4] can be used to establish convergence of the conditional
finite dimensional distributions but we are unable to extend the calculations to prove conditional
tightness. Instead we use Holst’s results and a truncation argument to deal directly with statistics
of the Cramér–von Mises or Watson types. Without tightness we cannot handle statistics of the
Kolmogorov–Smirnov type.

Our truncation argument uses an accurate approximation to the conditional expectation, given
Tn, of the statistic in question. This approximation is based on an expansion of the difference
between a Rao–Blackwell estimate and the corresponding maximum likelihood estimate. Our
results here extend the work of Portnoy [11].

Section 2 gives precise statements of our results for the case of Cramér–von Mises statistics.
Section 3 gives the expansion of the Rao–Blackwell estimate. Section 4 applies the calculations
to two examples showing how to verify the main condition, Condition D below, and illustrat-
ing the expansions of Section 3. Section 5 provides some discussion and indicates the extension
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to Watson’s statistic and other statistics which are quadratic functionals of the empirical distri-
bution. In that section, we consider power and discuss various rephrasings of our main result.
Details of some proofs are in Section 6.

2. Main results

2.1. Absolutely continuous distributions

We seek to test the hypothesis that the distribution of each Xi belongs to a natural exponential
family with density, relative to some σ -finite measure μ(dx) on �, of the form (1) and complete
sufficient statistic Tn as described in the Introduction. We will need a number of well known
facts about exponential families which we gather here in the form of a lemma.

Lemma 1. The random vector Tn has moment generating function

Eθ [exp{φ′Tn}] = exp[n{κ(φ + θ) − κ(θ)}]
which is finite whenever θ + φ ∈ �0, and cumulants nκi1,...,ir where

κi1,...,ir = ∂rκ(θ)

∂θi1 · · · ∂θir

.

In particular, the mean of Tn is

Eθ (Tn) = nμ(θ) ≡ n∇κ(θ),

where ∇ is the gradient operator. The covariance matrix is

Varθ (Tn) ≡ nV (θ) = n∇2κ(θ),

where ∇2 denotes the Hessian operator. Thus, V (θ) has entries

Vij (θ) = ∂2κ(θ)

∂θi ∂θj

.

Moreover, all moments and cumulants of Tn depend smoothly on θ on the interior of �.

Our results apply to exponential families where Tn has a density relative to Lebesgue measure.
We assume the following condition.

Condition D. For every compact subset 
 of int(�), there is an integer r such that the charac-
teristic function

ηθ (φ) ≡ Eθ {exp(iφ′Tr )} = exp[r{κ(θ + iφ) − κ(θ)}]
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is integrable for all θ ∈ 
 and

sup
θ∈


∫
Rk

|ηθ (φ)|dφ < ∞.

Condition D has two consequences we need. First, it means the matrix Varθ (T1) = ∇2κ(θ)

is positive definite for each θ ∈ int(�). This implies the map θ �→ μ(θ) = ∇κ(θ) is an open
bijective mapping of int(�) to μ(int(�)). A second consequence is that Tn has bounded contin-
uous density for each θ ∈ 
 and n ≥ r . In the examples it will be useful to know the converse is
also true. The following lemma is essentially Theorem 19.1 in Bhattacharya and Ranga Rao [2],
page 180; see also Lemma 6 in Section 6 below.

Lemma 2. Condition D is equivalent to Condition D∗.

Condition D∗. For every compact subset 
 of int(�) there is an integer r such that Tr has
continuous (Lebesgue) density fr(t; θ) for each θ ∈ 
 and

sup
θ∈


sup
t∈Rk

fr (t, θ) < ∞.

As in the Introduction, we let Gn(·|t) denote the conditional cumulative distribution function
of Sn given Tn = t . Also let Hn(·; θ) denote the unconditional cumulative distribution function
of Sn when θ is the value of the parameter.

We will show that for statistics which are sums as in (3) below or of the Cramér–von Mises
type these two cumulative distributions are uniformly close provided that t and θ are related
properly, that is, t = nμ = n∇κ(θ).

Our results use a minor modification of Corollary 3.6 of Holst [4] which establishes this uni-
form closeness for statistics which are sums over the data as described below. We use the fol-
lowing notation. By L(Sn; θ) we mean the unconditional distribution of Sn under the model with
true parameter θ . By L(Sn|Tn = t) we mean the conditional distribution of Sn given Tn = t .
We use the symbol ⇒ to denote convergence in distribution (weak convergence) and L(W) and
similar notation for limiting distributions. Our version of Holst’s results is:

Lemma 3. Assume Condition D. Suppose that un(·; ·) is a sequence of measurable functions
mapping � × � to R

m. Let

Sn(θ) = n−1/2
n∑

i=1

[un(Xi, θ) − Eθ {un(Xi, θ)}]. (3)

Assume that for any deterministic sequence θn of parameter values converging to some θ ∈ int(�)

the joint law

Lθn

(
Sn(θn), n

−1/2{Tn − nμ(θn)}
)
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converges to multivariate normal with mean 0 and variance–covariance matrix of the form[
A(θ) B(θ)

B ′(θ) V (θ)

]

which may depend on θ but not on the specific sequence θn. Then with Sn denoting Sn(θ̂n) we
have for every such sequence θn

L(Sn|Tn = tn) ≡ Gn(·|nμ(θn)) ⇒ MVN
(
0,A(θ) − B(θ)V −1(θ)B ′(θ)

)
,

where tn = nμ(θn). Moreover, for every compact subset 
 of int(�) we have

lim
n→∞ sup

−∞<x<∞
sup
θ∈


|Gn(x|nμ) − Hn(x|θ)| = 0.

The condition involving the sequence θn amounts to requiring that the central limit theorem
apply uniformly on compact subsets of �. Our main result extends the last conclusion of the
lemma to statistics of the Cramér–von Mises type for the case where � is the real line; see
Remark 8 in Section 5 for discussion of more general sample spaces.

Theorem 1. Suppose Sn is as defined in (2). Suppose the weight ψ is continuous on [0,1].
Assume Condition D. Then for every compact subset 
 of int(�) we have

lim
n→∞ sup

−∞<x<∞
sup
θ∈


|Gn(x|nμ) − Hn(x|θ)| = 0. (4)

The theorem asserts that two distribution functions, one conditional, the other unconditional,
are close together everywhere and simultaneously for all θ belonging to some compact set. In the
Introduction, we described our results in terms of P -values; we now recast the theorem in those
terms. The conditional P value, now denoted Pc,n, is

Pc,n ≡ 1 − Gn(Sn|Tn).

The unconditional P value, Pu,n, is

Pu,n ≡ 1 − Hn(Sn; θ̂n).

We then have the following result which also clarifies the sampling properties of the distributions
Gn and Hn evaluated at sample estimates.

Theorem 2. Assume the conditions of Theorem 1.

(a) If X1,X2, . . . is an i.i.d. sequence generated from the model with true parameter value
θ ∈ int(�) (i.e., if the null hypothesis is true and the true parameter value is not on the
boundary of the parameter space), then

lim
n→∞ sup

−∞<x<∞
sup
θ∈


|Gn(x|Tn) − Hn(x|θ̂n)| = 0 almost surely
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and

Pc,n − Pu,n → 0 almost surely.

(b) Suppose X1,X2, . . . is an i.i.d. sequence generated from some fixed alternative distribu-
tion. Suppose that for this alternative E(T1) = μa exists and is in the open set μ(int(�)),
that is, the image of the interior of � under the map θ �→ μ. Then both conclusions of
part (a) still hold. In particular, if one test is consistent against the alternative then so is
the other.

Details of proofs are in Section 6 but here we outline the strategy of proof for our Theorem 1.
Fix a complete orthonormal system of functions gj defined on [0,1]; for definiteness we take
gj (s) = √

2 sin(πjs). Define

Un,j =
∫ 1

0
ψ(s)Wn(s)gj (s)ds.

Then by Parseval’s identity

Sn =
∞∑

j=1

U2
n,j .

The proof then has the following steps:

1. The sequence of distribution functions Hn(·|θ) converges weakly to a limiting distribution
function H∞(·|θ); the convergence is uniform on compact subsets of �. The distribution
in question is the law of ∫ 1

0
ψ2(s)W 2(s)ds =

∞∑
j=1

U2∞,j ,

where we define

U∞,j =
∫ 1

0
ψ(s)W(s)gj (s)ds.

This reduces the problem to proving that the sequence Gn(·|nμ) converges uniformly on
compact subsets of int(�) to H∞(·|θ) where μ = ∇κ(θ).

2. Uniform convergence is established by considering an arbitrary sequence θn of parameter
values converging to some θ ∈ int(�) and showing that, with μn = ∇κ(θn),

lim
n→∞ sup

−∞<x<∞
|Gn(x|nμn) − H∞(x; θ)| = 0. (5)

3. Apply standard weak convergence ideas to see that for each K fixed

L((Un,1, . . . ,Un,K); θn) ⇒ L((U∞,1, . . . ,U∞,K)).
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4. Use Holst’s results to prove that

L
(
(Un,1, . . . ,Un,K)|Tn = nμn

) ⇒ L((U∞,1, . . . ,U∞,K));
this is the same joint limit law as in the previous step.

5. Prove the sequence L(Sn|Tn = nμn) of conditional distributions of Sn is tight.
6. Prove that there is a sequence Kn tending to infinity sufficiently slowly that

L
(

Kn∑
j=1

U2
n,j ; θn

)
⇒ L

(∫ 1

0
ψ2(s)W 2(s)ds

)
.

7. Prove the corresponding conditional result given Tn = nμn.
8. Prove that for any sequence Kn tending to infinity

∞∑
j=Kn

U2
n,j

converges to 0 in probability given Tn = nμn.
9. Apply Slutsky’s theorem to 6, 7 and 8 and use Sn = ∑∞

j=1 U2
n,j to see

L(Sn|Tn = nμn) ⇒ L
(∫ 1

0
ψ2(s)W 2(s)ds

)

which establishes (5) and completes the proof.

2.2. Unconditional limits

We now consider the random function Yn(t) = ψ(t)Wn(t) and review some well known facts
about the unconditional limiting distributions of the processes Yn; see Shorack and Wellner [12],
for example. If θn converges to θ , then the unconditional laws of Yn converge weakly in D[0,1]
to the law of a Gaussian process Y with mean 0 and covariance

ζθ (s, t) = ψ(s)ρθ (s, t)ψ(t).

The covariance ζθ is square integrable over the unit square; it is convenient to suppress θ in the
notation for what follows. There is a sequence of bounded continuous orthonormal eigenfunc-
tions χj (t), j = 1,2, . . . , with corresponding eigenvalues λj such that

∫ 1

0
ζ(s, t)χj (t)dt ≡ λjχj (s).

Then ∫ 1

0
Y 2(t)dt =

∑
λjZ

2
j , (6)
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where

Zj = λ
−1/2
j

∫ 1

0
Y(t)χj (t)dt.

The Zj are independent standard normal. Let H∞(·; θ) denote the cumulative distribution of (6).
It is then standard that

lim
n→∞ sup

−∞<x<∞
sup
θ∈


|Hn(x; θ) − H∞(x; θ)| = 0.

Our main result will therefore follow if we establish (5).
Next, recall that Wn converges weakly to the Gaussian process W with covariance function

ρθ . The map

f �→
(∫ 1

0
f (s)ψ(s)g1(s)ds, . . . ,

∫ 1

0
f (s)ψ(s)gK(s)ds

)

is continuous from D[0,1] to R
K so that

(Un,1, . . . ,Un,K) ⇒ (U∞,1, . . . ,Un,K).

This limit vector has a multivariate normal distribution with mean 0 and covariance

Cov(U∞,i ,U∞,j ) =
∫ 1

0

∫ 1

0
gi(s)gj (t)ζθ (s, t)ds dt. (7)

It follows that

K∑
j=1

U2
n,j ⇒

K∑
j=1

U2∞,j .

Since ∫ 1

0
ψ2(s)W 2(s)ds =

∞∑
j=1

U2∞,j

almost surely we have, for any sequence Kn tending to infinity, that

Kn∑
j=1

U2∞,j ⇒
∫ 1

0
ψ2(s)W 2(s)ds.

This completes the analysis of the unconditional limit behaviour of Sn. The next subsection
considers the conditional limit behaviour.
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2.3. Convergence of finite dimensional distributions – conditional case

In the following, all distributional assertions are statements about the conditional distribution of
the objects involved given Tn = nμn for a specific sequence θn converging to some θ ∈ 
 and
μn = ∇K(θn). We apply Lemma 3 as follows. We have

Un,j ≡
∫ 1

0
ψ(t)Wn(t)gj (t)dt = n−1/2

n∑
i=1

�jn(Xi),

where

�jn(x) =
∫ 1

0
[1{F(x; θn) ≤ t} − t]ψ(t)gj (t)dt.

It follows from Lemma 3 that

L
(
(Un,1, . . . ,Un,K)|Tn = nμn

) ⇒ L((U∞,1, . . . ,U∞,K)).

The vector (U∞,1, . . . ,U∞,K) has a multivariate normal distribution with mean 0 and variance
covariance matrix with entries as at (7). This is the same limit behaviour as in the unconditional
case. Thus,

L
(

K∑
j=1

U2
n,j

∣∣∣Tn = nμn

)
⇒

K∑
j=1

U2∞,j .

Again this is the same weak limit as in the previous section. Finally, since convergence in distri-
bution is metrizable there is a sequence Kn tending to infinity so slowly that

L
(

Kn∑
j=1

U2
n,j

∣∣∣Tn = nμn

)
⇒

∞∑
j=1

U2∞,j .

We need only show, therefore, that for any sequence Kn tending to infinity we have, condi-
tionally on Tn = nμn,

∞∑
j=Kn+1

U2
n,j → 0

in probability. It suffices to show that

E

( ∞∑
j=Kn+1

U2
n,j

∣∣∣Tn = nμn

)
→ 0. (8)

We will prove this from the following statements. First, we will show that for each fixed j

E(U2
n,j |Tn = nμn) → E{U2∞,j }. (9)
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This shows that for each fixed K we have

E

(
K∑

j=1

U2
n,j

∣∣∣Tn = nμn

)
→ E

(
K∑

j=1

U2∞,j

)
. (10)

Finally, we will show that

E

( ∞∑
j=1

U2
n,j

∣∣∣Tn = nμn

)
→ E

( ∞∑
j=1

U2∞,j

)
. (11)

Assertion (8) is a straightforward consequence of (9) and (11). It is now straightforward to apply
Slutsky’s theorem to complete the proof of the main theorem.

Statements (9) and (11) are proved in Section 6. The proofs relate L(U2
n,j |Tn = nμn) to an

integral involving

E
(
1(Xi ≤ x)1(Xk ≤ y)|Tn = nμn

)
and other similar Rao–Blackwell estimates. They then use a conditional Edgeworth expansion of
Rao–Blackwell estimates which is of some interest in its own right. We describe these expansions
in the next section.

3. Conditional Edgeworth expansions

In this section, we compute the first term in an Edgeworth expansion of the conditional expec-
tation of a function of X1, . . . ,Xm given Tn. We will focus on uniformity, extending the work
of Portnoy [11]. The calculations may be interpreted as a computation of the difference, to order
1/n, between a Rao–Blackwell estimate of a parameter and the maximum likelihood estimate.

Our results use the Edgeworth expansion of the density of Tn. Assuming Condition D, for
n ≥ r the quantity {Tn − nμ(θ)}/√n has a density qn(·; θ). The following lemma is essentially
a uniform version of Theorem 19.2 in Bhattacharya and Ranga Rao [2]; see Holst [4], Yuan and
Clarke [15]. It extends a lemma appearing in Lockhart and O’Reilly [6]. Let u denote a k vector
with entries u1, . . . , uk .

Lemma 4. Assume Condition D. Then there are functions

ψj(u; θ), j = 1,2, . . . ,

and

ψjk(u; θ), k = 0, . . . , j + 2,

such that

1. ψjk is homogeneous of degree k as a function of u1, . . . , uk . That is

ψjk(u1, . . . , uk; θ) =
∑
i1···ik

ajk;i1···ik (θ)ui1 · · ·uik
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for some coefficients ajk;i1···ik (θ) not depending on u.
2. If j − k is odd, then ψjk ≡ 0.
3. ψj is a polynomial of degree j + 2 as a function of u given by

ψj =
j+2∑
k=0

ψjk.

4. The coefficients ajk;i1···ik (θ) in these polynomials are smooth functions of θ .
5. Fix an integer s ≥ 0 and a compact subset 
 of int(�). Let φ(u,V ) be the multivariate

normal density with mean 0 and covariance matrix V . Then

εn ≡ sup
θ∈


sup
u

∣∣∣∣∣qn(u; θ) − φ{u,V (θ)}
{

1 +
s∑

j=1

ψj(u, θ)

nj/2

}∣∣∣∣∣ = O
(
n−(s+1)/2).

We will use this lemma with s = 3 to get an error rate on our 1 term expansion. We need the
following notation. Define

Bm(x1, . . . , xm) =
m∑

i=1

{T (xi) − μ}

and let Bm denote the random vector

Bm(X1, . . . ,Xm) = Tm − mμ.

Let D = V −1 be the inverse of the variance covariance matrix V . The lowest degree term in the
polynomial ψ1 has the form

ψ1,1(u) = −
k∑
1

a1,1;�(θ)u�

where, from Bhattacharya and Ranga Rao [2], page 55, we have

a1,1;� =
∑

i

κiiiDiiDi�/2 +
∑
i �=j

κiij (2DijDi� + DiiDi�)/2

+
∑

i<j<k

κijk(DijDk� + DikDj� + DjkDi�).

If J (x1, . . . , xm) is a real valued measurable function on �m; we let J = J (X1, . . . ,Xm).
Remember in the following that μ and θ are related through Eθ (Tn) = nμ.

Theorem 3. Fix an integer m > 0. Suppose J̄ ≥ 0 is a real valued measurable function on �m

such that

Eθ {J̄ (X1, . . . ,Xm)} < ∞
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for all θ ∈ int(�). Then for each compact subset 
 of int(�) we have

lim sup
n→∞

n2 sup
θ∈


sup
J

|E{J|Tn = nμ} − A(n,J, θ)| < ∞, (12)

where

A(n,J, θ) ≡ Eθ (J) + R(J, θ)

n

and

R(J, θ) ≡ mk

2
Eθ (J) − 1

2
Eθ {JB′

mV −1(θ)Bm} − Eθ {Jψ1,1(Bm)} (13)

= ∇2Eθ (J) + ψ1,1{∇Eθ (J)}. (14)

The supremum over J is over all measurable J defined on �m with |J | ≤ J̄ (almost everywhere).
Moreover,

sup
θ∈


sup
J :|J |≤J̄

R(J, θ) = O(1). (15)

In (14), the symbols ∇ and ∇2 are as in Lemma 1. It is part of the theorem that the quantities
on the right in (13) and (14) are equal.

4. Examples

In this section, we consider the Gamma and von Mises models and show that the theory of the pre-
vious sections applies. These two models were considered in Lockhart, O’Reilly and Stephens [7,
8] where Gibbs sampling was used to implement the conditional tests discussed here via Markov
Chain Monte Carlo. In the case of the Gamma distribution, we also illustrate the use of the ex-
pansion of the Rao–Blackwell estimate by giving a formula for an approximate Rao–Blackwell
estimate of the shape parameter.

4.1. The Gamma distribution

Suppose X1,X2, . . . are i.i.d. with density

f (x;α,β) = 1

β
(α)

(
x

β

)α−1

exp(−x/β)1(x > 0).

We take θ1 = α, θ2 = 1/β and � = {θ : θ1 > 0, θ2 > 0}. We then have

T (x) = (log(x),−x)
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and

κ(φ1, φ2) = log

{

(θ1 + φ1)


(θ1)

θ
θ1
2

(θ2 + φ2)θ1+φ1

}
.

The characteristic function of T is

�(φ1, φ2) = 
(θ1 + iφ1)


(θ1)

(θ2 + iφ2)
θ1+iφ1

θ
θ1
2

.

Fix a compact set 
 in the parameter space and let

ε = inf{θ1: ∃θ2: (θ1, θ2) ∈ 
}.

In Section 6, we use properties of the Gamma function in the complex plane to show that for r

so large that rε > 2 and r > 4 we have

sup
θ∈


∫
|�(φ1, φ2))|r dφ1 dφ2 < ∞. (16)

This establishes Condition D in this case.
For completeness, we record here the functions needed to apply Theorem 3 to this family. Let

ψ(θ) = d log
(θ)/dθ denote the digamma function and let ψ ′ and ψ ′′ denote its first and second
derivatives. Let δ = θ1ψ

′(θ1) − 1. Then we find

μ1 = ψ(θ1) − log(θ2), μ2 = −θ1/θ2,

V11 = ψ ′(θ1), V12 = V21 = 1/θ2,

V22 = θ1/θ
2
2 , D12 = D21 = θ2/δ,

D11 = θ1/δ, D22 = θ2
2 ψ ′(θ1)/δ,

κ111 = ψ ′′(θ1), κ112 = κ121 = κ211 = 0,

κ222 = −2θ1/θ
3
2 , κ122 = κ221 = κ221 = 1/θ2

2 ,

a11;1 = θ2
1 ψ ′′(θ1) + 2θ2ψ

′(θ1) + 2

2δ2
, a11;2 = θ1ψ

′′(θ1) + 2θ2{ψ ′(θ1)}2 + 2θ2ψ
′(θ1)

2δ2
.

These formulas may be used to give approximations in terms of the maximum likelihood estimate
θ̂ to order 1/n of the Rao–Blackwell estimate of a parameter. As an example, we consider the
approximation to the Rao–Blackwell estimate of the shape parameter θ1. In this case Eθ (J) = θ1

so the Hessian matrix in R(J, θ) is 0 and the gradient is simply (1,0)′. Our approximation from
(14) is then

θ̃1 = θ̂1 − ψ̂1,1(1,0)

n
= θ̂1 + θ̂2

1 ψ ′′(θ̂1) + 2θ̂2ψ
′′(θ̂1) + 2

2n{θ̂1ψ ′(θ̂1) − 1}2
.
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Remark. I do not know if there is, for some value of m, an unbiased estimate of θ1. That is, I do
not know if J exists in the calculation just given. It seems worth noting that the expansion can be
computed anyway since the terms therein depend only on the function of the parameters which
is being estimated and the derivatives of that function.

4.2. The von Mises distribution

Suppose X1,X2, . . . are i.i.d. with density

f (x;α,x0) = 1

2πI0(α)
exp{α cos(x − x0)}1(0 < x < 2π),

where I0 is the modified Bessel function of the first kind of order 0. We take θ1 = α cos(x0),
θ2 = α sin(x0) and � = R

2. We then have

T (x) = (cos(x), sin(x)).

Here we find it easier to verify Condition D∗. For a sample of size m the density of the sufficient
statistics is known analytically in the case θ1 = θ2 = 0, that is, when the distribution is uniform
on the interval (0,2π). Write Tm in polar coordinates as (R cos δ,R sin δ) with the angle δ in
[0,2π) and R = ‖Tr‖; then R and δ are independent. The distribution of δ is uniform on [0,2π).
From Stephens [13], we find R has the density

fm(u) = u

∫ ∞

0
J0(ut)Jm

0 (t)t dt,

where J0 is the Bessel function of the first kind of order 0. The function J0(t) is bounded and
decays at infinity like t−1/2. So for all m > 4 there is a constant Cm such that

fm(u) ≤ Cmu

for all u > 0. The density fm vanishes for negative u and for u > m. Change variables to see that
for all m ≥ 5 the density of Tm is bounded by Cm/(2π). For θ = (θ1, θ2) not 0 the likelihood
ratio of θ to 0 is exp(θ ′Tm)/Im

0 (‖θ‖). Since the density of Tm for θ is the density for 0 multiplied
by the likelihood ratio Condition D∗ holds with r ≡ 5.

5. Discussion

We conclude with a series of remarks.

Remark 1. For a given goodness-of-fit test statistic we may compute P -values in several ways.
The parametric bootstrap technique proceeds by estimating the unknown parameters and then
generating a large number of samples from the hypothesized distribution using the estimated
value of the parameters. Except in location-scale models the resulting tests are approximate; that
is, the distribution of the P -value is not exactly uniform though it becomes more so as the sample
size increases.
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An alternative technique is to compute a conditional P value using

P(Sn > s|Tn)

evaluated at s equal to the observed value of Sn. This P -value must generally be evaluated by
Monte Carlo methods. For some distributions, such as the Inverse Gaussian, there is a direct
way to simulate samples from the conditional distribution of the data given Tn. See O’Reilly
and Gracia-Medrano [10]. For other distributions, Markov Chain Monte Carlo may be used; see
Lockhart, O’Reilly and Stephens [7,8].

If the null hypothesis is true and the true value of θ is in int(�), then we have shown that the
difference between these two P -values converges almost surely to 0. In our experience, these two
P -values are usually extremely close together suggesting the agreement extends to some higher
order expansion; I do not know how to show such a thing.

Remark 2. Indeed this equivalence of P -values requires only a large sample size and an estimate
θ̂ not too close to the boundary of �. It is not at all necessary that the null hypothesis be true.
Of course if the null hypothesis is not true the estimate θ̂n could converge to the boundary of the
parameter space and then our results permit the P -values to be different even in large samples.

Remark 3. For fixed alternatives, our results imply that the difference in powers between the
two tests tends to 0 except when Tn/n does not have a limit in μ(int(�)). The conclusions in
Theorem 2 can be extended to contiguous sequences of alternatives yielding conclusions that the
two tests have identical limiting powers along such sequences.

Remark 4. The local central limit theorem for lattice distributions may be used to prove the
equivalent of Theorem 1 if T (x) takes values in a lattice and the data are discrete.

Remark 5. The result also extends to a variety of other statistics such as

∫ 1

0

{
Wn(t) −

∫ 1

0
ψ(u)Wn(u)du

}2

ψ2(t)dt

or ∫ 1

0

∫ 1

0
K(s, t)Wn(s)Wn(t)ds dt

or any other suitable quadratic form in the process Wn, under regularity conditions on the weight
functions ψ , the kernel K , or the quadratic form.

Remark 6. One important case not covered by our proof is the Anderson–Darling test which is
of the Cramér–von Mises type but with weight function

ψ(s) = 1/
√

s(1 − s)

which is not square integrable. It may be possible to verify our assertions (9) and (11) by more
careful analysis of the conditional moments of Wn near the ends of the unit interval.
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Remark 7. Our proofs show that the Edgeworth expansion to order 2s given in Lemma 4 may
be used to provide an expansion of any Rao–Blackwell estimate about the maximum likelihood
estimate of Eθ (J) in inverse powers of n out to terms of order n−s with a remainder which is
O(n−(s+1)) uniformly on compact subsets of int(�). We have not done the algebra for any s > 1
but we can state the following theorem.

Theorem 4. Under the conditions of Theorem 3, there are functions Rj (J, θ) for j = 1,2, . . .

such that for any integer s ≥ 1 we have

lim sup
n→∞

n1+s sup
θ∈


sup
J

|E{J|Tn = nμ} − As(n,J, θ)| < ∞, (17)

where

As(n,J, θ) ≡ Eθ (J) +
s∑

j=1

Rj (J, θ)

nj
.

The functions Rj are computed using Taylor expansions as in Theorem 3 and collecting terms in
inverse powers of n. Each Ri is bounded uniformly over θ ∈ 
 and |J | ≤ J̄ .

Of course R1 is just R of Theorem 3 and the point is that the arguments in the proof of that
theorem can be applied to all remainder terms occurring here.

Remark 8. In Theorem 1, the Xi are real valued; this is needed only for the weak convergence
results. In the von Mises case, for instance, it is useful to regard the observation Xi not as an
angle but as a unit vector Xi as was suggested in the introduction. This makes Tn = ∑

Xi . In
many examples, the Xi can usefully be taken to be multivariate. Our results may be expected
to extend to any statistic admitting a sum of squares expansion like that of Cramér–von Mises
statistics.

Remark 9. The conditional tests described here have level identically equal to α. In the intro-
duction, we noted that this is a necessary condition for an unbiased level α test in models with
a complete sufficient statistic. Though necessary, the condition is not sufficient; we do not know
how to check that a given conditional test is unbiased, nor how to establish any optimal power
properties for the tests considered here.

6. Proofs

6.1. Proof of Lemma 3

The proof in Holst [4] of his Corollary 3.6 extends directly to prove this lemma. However, Holst’s
Corollary 3.6 assumes “the general conditions” of his Section 2. In particular, we must verify the
integrability hypothesis of his Proposition 2.1 which we now describe in our notation. Let

�r,θ (ζ1, ζ2) = Eθ

{
exp

(
iζ ′

1Sr(θ) + iζ ′
2Tr

)}
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be the joint characteristic function of Sr(θ),Tr . Holst requires that for each ζ1 and each compact
subset 
 of int(�) there is an r > 0 such that for all θ ∈ 
∫

|�r,θ (ζ1, ζ2)|dζ2 < ∞. (18)

Lemma 5. Condition D implies (18). In fact, r can be chosen free of ζ1.

This is an easy consequence of the following lemma.

Lemma 6. Suppose X ∈ R
n and Y ∈ R

m have joint distribution F(dx,dy) and joint character-
istic function ψ(u, v). Then

1. If Y has density f bounded by M and ψ is real valued and nonnegative, then∫
Rm

ψ(u, v)dv ≤ M(2π)m.

2. If Y has density f bounded by M, then∫
Rm

|ψ(u, v)|2 dv ≤ M(2π)m.

3. If M ≡ ∫
Rm |ψ(0, v)|dv < ∞, then Y has a density f such that for all y

f (y) ≤ M/(2π)m.

Proof. Statement 3 is a well-known consequence of the Fourier inversion formula. Statement 2
follows from Statement 1 by symmetrization: if the pair (X∗, Y ∗) has the same joint distribution
as (X,Y ) and is independent of (X,Y ) then the second statement is the first applied to (X −
X∗, Y − Y ∗) noting that Y − Y ∗ has a density also bounded by M .

To prove Statement 1, we follow Feller [3], pages 480ff. Let ξ denote the standard normal
density in R

m. Then for each a > 0 the function aξ(ax) is a density with characteristic function
(2π)m/2ξ(u/a).∫

exp{−iζ ′v}amξ(av)ψ(u, v)dv =
∫

amξ(av)eiu′x exp{iv′(y − ζ )}F(dx,dy)dv

= (2π)m/2
∫

eiu′xξ{(y − ζ )/a}F(dx,dy).

At ζ = 0, we get

0 ≤
∫

ψ(u, v) exp(−a2v′v/2)dv ≤ (2π)m
∫

(1/a)mξ(y/a)F (dx,dy)

= (2π)m
∫

(1/a)mξ(y/a)f (y)dy ≤ M(2π)m.

Now let a → 0 to get Statement 1. �
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6.2. Proof of Theorem 3

We use the shorthands x for the vector (x1, . . . , xm) and dx for μ(dx1) · · ·μ(dxm). Let fm be
the joint density of X1, . . . ,Xm; we suppress the dependence of this density on θ . For n ≥ r , we
let qn denote the density of (Tn − nμ)/

√
n again suppressing the dependence on θ . (Densities

of sufficient statistics are relative to Lebesgue measure while those of the data are relative to
products of the carrier measure μ.) We adopt the useful notation

Qm = B ′
mV −1Bm, Qmn = Qm/n and q∗

n(x) = qn(x)/φ(0,V ).

It is elementary that

E{J|Tn = nμ} =
(

n

n − m

)k/2 ∫
J (x)fm(x)

qn−m(Am)

qn(0)
dx,

where

Am = Am(x) = −
∑m

i=1{T (xi) − μ)}√
n

= −Bm√
n
.

The quantity in (12) may be written as |I1 + · · · + I8| where Ii = ∫
J (x)fm(x)τi(x)dx for

suitable functions τ1, . . . , τ8. We will argue below that each integral is O(n−2) uniformly in θ

over compact subsets 
 of int(�). The functions τi are given by

τ1(u) =
(

n

n − m

)k/2 qn−m(Am) − φ(Am,V ){1 + ∑4
j=1 ψj(Am)/(n − m)j/2}

qn(0)
,

τ2(u) =
{(

n

n − m

)k/2

−
(

1 + mk

2n

)}
φ(Am,V ){1 + ∑4

j=1 ψj (Am)/(n − m)j/2}
qn(0)

,

τ3(u) =
(

1 + mk

2n

)[
1

q∗
n(0)

−
{

1 − ψ2,0

n

}]
e−Qmn/2

{
1 +

4∑
j=1

ψj(Am)

(n − m)j/2

}
,

τ4(u) =
(

1 + mk

2n

)(
1 − ψ2,0

n

)
e−Qmn/2

{ ∑
j+�≥4

ψj�(Am)

(n − m)j/2

}

=
(

1 + mk

2n

)(
1 − ψ2,0

n

)
e−Qmn/2

{ ∑
j+�≥4

(−1)�ψj�(Bm)

n�/2(n − m)j/2

}
,

τ5(u) =
(

1 + mk

2n

)(
1 − ψ2,0

n

)
e−Qmn/2ψ1,1(Bm)

{
1

n
− 1√

n(n − m)

}
,

τ6(u) =
(

1 + mk

2n

)(
1 − ψ2,0

n

)
e−Qmn/2ψ2,0

{
1

n − m
− 1

n

}
,

τ7(u) =
(

1 + mk

2n

)(
1 − ψ2,0

n

)(
e−Qmn/2 − 1 + Qm

2n

){
1 + ψ2,0 − ψ1,1(Bm)

n

}
,
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τ8(u) =
(

1 + mk

2n

)(
1 − ψ2,0

n

)(
1 − Qm

2n

){
1 + ψ2,0 − ψ1,1(Bm)

n

}
− τ9(u),

where

τ9(u) = 1 + mk/2 − Qm/2 − ψ1,1(Bm)

n
.

Theorem 1 will follow if we show for i = 1, . . . ,8 that

sup
|J |≤J̄

sup
θ∈


|Ii | = O(n−2).

These 8 assertions may be established using several bounds. We do not give complete details
since the arguments are routine but we illustrate some of the details. For instance, it is elementary
that (

n

n − m

)k/2

≤ (m + 1)k/2 and

(
n

n − m

)k/2

−
(

1 + mk

2n

)
= O(n−2).

Continuity and compactness imply

sup
θ∈


sup
x

∣∣∣∣∣φ(x,V )

{
1 +

s∑
j=1

ψj (x)

nj/2

}∣∣∣∣∣ < ∞

and

inf
θ∈


φ(0,V ) > 0.

Lemma 1 guarantees that

lim inf
n→∞ inf

θ∈

qn(0) > 0

and so with εn as in Lemma 4 we have

|I1| ≤ (m + 1)k/2εn sup
θ∈


Eθ (J̄)
/

inf
θ∈


qn(0).

For I2, I5 and I6 use the elementary facts that

1

n − m
− 1

n
= O(n−2) and

1√
n(n − m)

− 1

n
= O(n−2).

Integral I3 is bounded using Lemma 1 again. Integral I4 uses the powers of n in the displayed
sum. For I7 use the inequalities 0 < e−x − 1 + x < x2/2 to see that

0 <

(
e−Qmn/2 − 1 + Qm

2n

)
<

Q2
m

4n2
.

These bounds apply to the integrands; they are used to bound the integrals based on the fol-
lowing observation. The condition that J̄ have finite expectation for all θ in int(�) means that
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J̄ (x)fm(x)/Eθ (J̄) defines another exponential family with natural parameter space including
int(�). This permits differentiation under the integral sign with respect to θ as many times as
desired. It is then easily established that for all α > 0

sup
θ∈


Eθ (‖Tr‖αJ) < ∞.

This permits all the bounds derived above to be integrated against J (x)fm(x) to establish the
desired conclusion.

Differentiation under the integral sign permits us to show for any J with |J | ≤ J̄ the following
two identities:

∇Eθ (J) = Covθ (J,Tm),

∇2Eθ (J) = Covθ (J,BmB′
m)

= Eθ (JBmB′
m) − Eθ (J)V .

From these two identities, we deduce

Eθ (JB′
mV −1Bm) = trace{Eθ (JBmB′

m)V −1}
= trace{∇2Eθ (J)V −1} + Eθ (J) trace(V −1V ).

This and the observation that ψ1,1 is a linear function establish the equivalence of the two forms
of R(J, θ) in (13) and (14).

6.3. Proof of assertions (9) and (11)

We must prove

E[U2
nj |Tn = nμn] →

∫ 1

0

∫ 1

0
ψ(s)ψ(t)gj (s)gj (t)ρθ (s, t)ds dt

and

E[Sn|Tn = nμn] →
∫ 1

0
ψ2(s)ρθ (s, s)ds.

To this end, define

F̃ (u|μ) = E{1(X1 ≤ x)|Tn = nμ},
where u is related to x by u = F(x, θ). Then F̃ (u|Tn/n) is the Rao–Blackwell estimate of
F(x, θ). Also define ui = F(xi, θ) for i = 1,2 and

F̃ (u1, u2|μ) = E{1(X1 ≤ x1,X2 ≤ x2)|Tn = nμ}.
Then F̃2(u1, u2|Tn/n) is the Rao–Blackwell estimate of F(x1, θ)F (x2, θ) (the unconditional
joint cumulative distribution function of X1 and X2).
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Define

ρn(u1, u2|μ) = E{Wn(u1)Wn(u2)|Tn = nμ}.
We then have

E

[{∫ 1

0
Yn(t)gj (t)dt

}2∣∣Tn = nμn

]
=

∫ 1

0

∫ 1

0
ψ(s)ψ(t)gj (s)gj (t)ρn(s, t |μ)ds dt.

Direct calculation shows that

ρn(u1, u2|μ) = F̃ (min(u1, u2)|μ) − F̃ (u1|μ)u2 − F̃ (u2|μ)u1 + u1u2

+ (n − 1){F̃2(u1, u2|μ) − F̃ (u1|μ)u2 − F̃ (u2|μ)u1 + u1u2}
= F̃ (min(u1, u2)|μ) − F̃ (u1|μ)F̃ (u2|μ) (19)

+ (n − 1){F̃2(u1, u2|μ) − F̃ (u1|μ)F̃ (u2|μ)}
+ n{F̃ (u1|μ) − u1}{F̃ (u2|μ) − u2}. (20)

We will establish (9) by proving

ρn(u1, u2|μ) → ρθ (u1, u2) (21)

uniformly in u1 and u2. We apply Theorem 3. Take J̄ ≡ 1, J1(X1,X2) = 1(X1 ≤ x1), J2(X1) =
1(X1 ≤ x2) and J3(X1,X2) = 1(X1 ≤ x1,X2 ≤ x2). (The odd looking indexes in J2 are delib-
erate. The algebra involved in simplifying the remainder terms is easier if we take m = 2 for J3
and m = 1 for J1 and J2.) We find from (15) applied to J1 and J2 that the term (20) converges to
0 uniformly in u1 and u2. Applying (15) to J1 shows that the term (19) converges, uniformly in
u1 and u2, to

min(u1, u2) − u1u2.

Finally from (12), we find that

(n − 1){F̃2(u1, u2|μ) − F̃ (u1|μ)F̃ (u2|μ)}
converges to

A(n,J3, θ) − A(n,J1, θ)A(n,J2, θ)

uniformly in u1, u2. Adopt the temporary notation Ri = R(Ji, θ) and Ai = A(n,Ji, θ) for i =
1,2,3. Then

n(A3 − A1A2) = R3 − R1Eθ (J2) − R2Eθ (J1) + R1R2/n. (22)

From (15), we see that R1R2/n converges to 0 uniformly in u1, u2, x1 and x2.
Computing we get

R3 = kEθ (J1)Eθ (J2) − 1

2
Eθ (J3B2V

−1B2) + Eθ (J3ψ1,1(B2)),
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R1Eθ (J2) = k

2
Eθ (J1)Eθ (J2) − 1

2
Eθ (J1B1V

−1B1) + Eθ (J1ψ1,1(B1)),

R2Eθ (J1) = k

2
Eθ (J1)Eθ (J2) − 1

2
Eθ (J2B1V

−1B1) + Eθ (J2ψ1,1(B1)).

Since B2 is a sum of two independent terms we expand the quadratic form in R3 to see

Eθ (J3B2V
−1B2) = Eθ (J1B1V

−1B1)Eθ (J2)

+ Eθ (J2B1V
−1B1)Eθ (J1) + 2Eθ (J1B′

1)V
−1Eθ (B1J2).

We may also use the linearity of ψ1,1 and the independence of X1 and X2 to see that

Eθ (J3ψ1,1(B2)) = Eθ (J1ψ1,1(B1))Eθ (J2) + Eθ (J2ψ1,1(B1))Eθ (J1).

Thus, R3 − R1Eθ (J2) − R2Eθ (J1) simplifies to −Eθ (J1B′
1)V

−1Eθ (B1J2). Since V is the Fisher
information matrix in this problem, we have established (9). To check (11), we make a very
similar calculation.

6.4. Verification of Condition D for the Gamma family

Here, we establish (16). Change variables via u = φ2/θ2 to show the integral in (16) is propor-
tional to θr

2 ; thus we take θ2 = 1 without loss. The integral becomes:

sup
θ∈


∫ ∫ ∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r 1

(1 + φ2
2)rθ1/2

exp{rφ1 tan−1 φ2}dφ1 dφ2.

The substitution φ2 = tan(u) reduces the integral to

sup
θ∈


∫ ∞

−∞

∫ π/2

−π/2

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

cosrθ1−2(u) exp(rφ1u)dudφ1.

We integrate separately over 4 ranges: R1 = {−M ≤ φ1 ≤ M}, R2 = {|φ1| > M,φ1u < 0}, R3 =
{φ1 > M,u > 0} and R4 = {φ1 < −M,u < 0}. Since |
(θ1 + iφ1)| = |
(θ1 − iφ1)| the integrals
R3 and R4 are equal. Over R1 we use the inequality

|
(θ1 + iφ1)/
(θ1)| ≤ 1

(because the quantity inside the modulus signs is the characteristic function of log(X1)) to get
the bound, for θ1 ≥ ε with rε > 2

∫
R1

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

cosrθ1−2(u)erφ1u dudφ1 ≤ M exp{Mrπ/2}
∫ π/2

−π/2
cosrε−2(u)du

≤ πM exp{Mrπ/2}.
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Over R2 the term exp(rφ1u) is bounded by 1. Thus,

∫
R2

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

cosrθ1−2(u)erφ1u dudφ1 ≤ π

∫ ∞

−∞

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

dφ1.

The integral is bounded by the supremum of the density of log(X1) over the real line and the
compact parameter set 
.

Finally, we consider the integral over R3. From Section 6.1.45 of Abramowitz and Stegun [1],
we find there is a constant C such that

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣ ≤ Ce−πφ1/2φ
θ1−1/2
1 .

For θ1 < 1/2, φ1 > M ≥ 1 and rε > 2 we then get

∫
R3

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

cosrθ1−2(u)erφ1u dudφ1 ≤ C

∫ π/2

0

∫ ∞

M

e−φ1r(π/2−u) cosrθ1−2(u)dφ1 du

≤ C

∫ π/2

0

cosrθ1−2(u)

r(π/2 − u)
du

= C

∫ π/2

0

sinrθ1−2(u)

ru
du

≤ C

∫ π/2

0

sinrε−2(u)

ru
du

≤ C

r

∫ π/2

0
urε−3 du < ∞.

For θ1 ≥ 1/2 we get

∫
R3

∣∣∣∣
(θ1 + iφ1)


(θ1)

∣∣∣∣
r

cosrθ1−2(u) exp(rφ1u)dudφ1

≤ C

∫ π/2

0

∫ ∞

0
e−φ1r(π/2−u)φ

r(θ1−1/2)

1 cosrθ1−2(u)dφ1 du

≤ C

(1 + r(θ1 − 1/2))

r1+r(θ1−1/2)

∫ π/2

0

sinrθ1−2(u)

ur(θ1−1/2)+1
du

≤ C

(1 + r(θ1 − 1/2))

r1+r(θ1−1/2)

∫ π/2

0
ur/2−3 du.

For r ≥ 5 the right hand side is uniformly bounded over 
 ∩ {θ1 ≥ 1/2}.
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