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Multivariate versions of classical orthogonal polynomials such as Jacobi, Hahn, Laguerre and Meixner are
reviewed and their connection explored by adopting a probabilistic approach. Hahn and Meixner polynomi-
als are interpreted as posterior mixtures of Jacobi and Laguerre polynomials, respectively. By using known
properties of gamma point processes and related transformations, a new infinite-dimensional version of
Jacobi polynomials is constructed with respect to the size-biased version of the Poisson–Dirichlet weight
measure and to the law of the gamma point process from which it is derived.
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1. Introduction

In this paper we will review multivariate orthogonal polynomials, complete with respect to
weight measures given by the Dirichlet and Dirichlet-multinomial probability distributions (de-
noted respectively as Dα or DMα , α ∈ R

d+), that is, polynomials {Gn :n ∈ Nd} satisfying∫
GnGm dμ = 1

cm

δnm, n,m ∈ N
d . (1.1)

The polynomials {Gn} are known as multivariate Jacobi polynomials if (1.1) is satisfied with
μ = Dα , and multivariate Hahn polynomials if μ = DMα . Here cm are positive constants. Com-
pleteness means that, for every function f with finite variance (under μ), there is an expansion

f (x) =
∑
n∈Nd

cnanGn(x), (1.2)

where

an = E[f (X)Gn(X)].
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Systems of multivariate orthogonal polynomials are not unique, and a large number of charac-
terizations of d-dimensional Jacobi and Hahn polynomials exist in literature. We will focus on
a construction of Jacobi polynomials, based on a method originally proposed by Koornwinder
[15] that has a strong probabilistic interpretation. Based on this, we will re-interpret the role
of Jacobi polynomials in the construction of multivariate Hahn and several other well-known
classes of multivariate orthogonal polynomials. In particular, we will (1) describe multivariate
Hahn polynomials as posterior mixtures of Jacobi polynomials, in a sense which will become
precise in Section 5; (2) construct, in Section 4, a new system of multiple Laguerre polyno-
mials, orthogonal with respect to the product of several gamma probability distributions with
identical scale parameters; (3) derive, in Section 6, a new class of multiple Meixner polynomi-
als as posterior mixtures of the Laguerre polynomials mentioned in (2); (4) obtain polynomials
in the multivariate hypergeometric distribution by taking the parameters in the Hahn polyno-
mials to be negative; (5) obtain (Section 3.3) asymptotic results as the dimension d → ∞ with
|α| := ∑d

i=1 αi → |θ | > 0, by considering size-biased Dirichlet measures.
Furthermore, we will see that an extensive application of Koornwinder’s method leads directly

to finding new systems of polynomials, orthogonal with respect to a wider family of distributions
on the infinite simplex, known in Bayesian nonparametric statistics as the (discrete) beta-Stacy
family [23], a popular member of which is the GEM distribution (so named after Griffiths, Engen
and McCloskey who introduced it independently) and its two-parameter distribution.

The intricate relationship existing among all the mentioned systems of polynomials is tra-
ditionally described in terms of their analytic/algebraic expression as (multivariate) basic hy-
pergeometric series (see, e.g., [5,7]). The main advantage of a probabilistic approach is that it
re-expresses most relationships in terms of random variables, which may be more transparent
to statisticians and probabilists. With this in mind we will begin the paper with an introductory
summary (Section 2) of known facts from the theory of probability distributions. Section 3.1
is devoted to multivariate Jacobi polynomials, whose structure will be the building block for the
subsequent sections: Multiple Laguerre in Section 4, Hahn in Section 5 and Meixner in Section 6.

It is worth observing that the posterior mixture representation of multivariate Hahn polynomi-
als shown in Proposition 5.2 is obtained without imposing a priori any Bernstein–Bézier form
to the Jacobi polynomials, and nevertheless it agrees with recent interpretations of Hahn polyno-
mials as Bernstein coefficients of Jacobi polynomials in such a form [21,22], a result for which
a new, more probabilistic proof is offered in Section 5.2.1. In particular, our approach will make
more intuitive the link between the Bernstein–Bézier interpretation and the original formulation
proposed decades ago by Karlin and McGregor [11]. In terms of applications, understanding
such a link will complete Karlin and McGregor’s analysis of some well-known d-type models
in population genetics (Section 5.2.3). Our extensions of Sections 3.3 and 4.2 open for possible
new infinite-dimensional versions of Karlin and McGregor’s work.

Along the same lines one can view the Meixner polynomials obtained in Proposition 6.2 as
re-scaled Bernstein coefficients of our multiple Laguerre polynomials, as shown in Section 6.1.

The original motivation for this study was to obtain some background material that can be used
to characterize bivariate distributions, or transition functions, with fixed Dirichlet or Dirichlet-
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multinomial marginals, for which the following canonical expansions are possible:

p(dx,dy) =
{

1 +
∞∑

n∈Z
d+

cnρnGn(x)Gn(y)

}
Dα(dx)Dα(dy), x, y ∈ �(d−1),

for appropriate, positive-definite sequences ρm :m ∈ N
d, called the canonical correlation coeffi-

cients of the model. Some results on such a problem are in [8] and [9]. Other possible applications
in statistics are related to least-squares approximations and regression. An MCMC (Markov chain
Monte Carlo)-Gibbs sampler use of orthogonal polynomials is explored, for example, in [3]; re-
lated applications are in [13]. In this paper, however, we will focus merely on the construction of
the mentioned systems of polynomials.

2. Distributions on the discrete and continuous simplex

Throughout the paper we will denote by |x| the total sum of all components of x = (x1, . . . , xd) ∈
R

d . We will also adopt the notation:

xα = x
α1
1 · · ·xαd

d , �(α) =
d∏

i=1

�(αi)

and ( |n|
n

)
= |n|!∏d

i=1 ni !
.

For example, the Dirichlet distribution Dα :α ∈ R
d+ will be written as

Dα(dx) = �(|α|)xα−1

�(α)
I
(
x ∈ �(d−1)

)
dx,

where 1 = (1,1, . . . ,1) and, for d = 2,3, . . . , �(d−1) = {x ∈ R
d+ : |x| = 1}.

2.1. Conditional independence in the Dirichlet distribution

2.1.1. Gamma sums

For every α = (α1, . . . , αd) ∈ R
d+ and β > 0, let Y = (Y1, . . . , Yd) be a collection of d-

independent gamma random variables with parameter, respectively, (αi, β). The distribution of
Y is given by the product measure

γ d
α,β(dy) = yα−1e−|y|/β

�(α)β |α| I(y ∈ R
d+)dy.
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Consider the mapping

(Y1, . . . , Yd) �−→ (|Y |,X1, . . . ,Xd−1),

where

Xj := Yj

|Y | , j = 1, . . . , d − 1,

and set Xd = 1 − ∑d−1
i=1 Xi. It is easy to rewrite

γ d
α,β(dy) = γ 1|α|,β(d|y|)Dα(dx),

that is: (i) |Y | := ∑d
i=1 Yi is a gamma(|α|, β) random variable, and (ii) X is independent of |Y |

and has Dirichlet distribution with parameter α.

2.1.2. Dirichlet as a right-neutral distribution

Let X = (X1, . . . ,Xd) be a random distribution on {1, . . . , d} with Dirichlet distribution Dα,α ∈
R

d+. Consider the random cumulative frequencies Sj := ∑j

i=1 Xi, j = 1, . . . , d − 1. Then the
increments

Bj := Xj

1 − Sj−1
, j = 1, . . . , d − 1, (2.1)

are independent random variables, each with a beta distribution with parameters (αj , |α| −∑j

i=1 αi). This property is also known as right-neutrality [4]. Notice that such a structure holds,
with different parameters, for any reordering of the atoms of X.

2.2. Size-biased Dirichlet frequencies and limit distributions

One remarkable advantage of considering unordered versions of Dirichlet frequencies is that
they admit sensible limits as the dimension d grows to infinity, whereas the original Dirichlet
distribution is obviously bounded to finite dimensions. Two possible ways of unordering the
Dirichlet atoms are equivalent: (1) Rearranging the frequencies in a size-biased random order;
(2) Ranking them in order of magnitude. For Dirichlet measures, size-biased frequencies are
much more mathematically treatable than the ranked ones.

2.2.1. Size-biased order and the GEM distribution

Let x be a point of �(d−1). Then x induces a probability distribution on the group Gd of all
permutations of {1, . . . , d}:

σx(π) =
d−1∏
i=1

xπi

1 − ∑i−1
j=1 xπj

, π ∈ Gd .
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Let α ∈ R
d+. The size-biased measure on �(d−1) induced by a Dirichlet distribution Dα is given

by

D̈α(A) =
∫

σx(π :πx ∈ A)Dα(dx).

Note that σ̃x{y} := σx(π :πx = y) is non-zero if and only if y is a permutation of x, and that

σ̃x{y} = σ̃πx{y} =: σ̃ {y} ∀π ∈ G,

hence the density of the size-biased measure is

dD̈α

dy
(y) = σ̃ {y}

∑
π∈GD

Dα(d(π−1y)).

In particular, if α = (|θ |/d, . . . , |θ |/d) for some |θ | > 0 (symmetric Dirichlet), then its size-
biased measure is

D̈|θ |,d (dx) = d!
d−1∏
i=1

xi

1 − ∑i−1
j=1 xj

Dα(dx) (2.2)

∝
d−1∏
i=1

b
|θ |/d
i (1 − bi)

((d−i)/d)θ−1 dbi, (2.3)

where bi = xi/(1 − ∑i−1
j=1 xj ), i = 1, . . . , d − 1. So if Ẍ(d) has distribution D̈|θ |,d , then

Ẍ(d) d= (
B̈

(d)
1 , . . . , B̈

(d)
d−1

)
,

where (B̈
(d)
i ) are d−1 independent beta random variables with parameters, respectively, (|θ |/d+

1, (d − i/d)θ), i = 1, . . . , d − 1.

The measure D̈|θ |,d is, again, a right-neutral measure.
Now, let d → ∞. Then D̈|θ |,d converges to the law of a right-neutral sequence Ẍ∞ =

(Ẍ1, Ẍ2, . . .) such that

Ẍj
D= B̈j

j−1∏
i=1

(1 − B̈i), j ≥ 1, (2.4)

for a sequence B̈ = (B̈1, B̈2, . . .) of independent and identically distributed (i.i.d.) beta weights
with parameter (1, |θ |) (here and in the following pages, D means “in distribution”).

Definition 2.1. The random sequence Ẍ∞ satisfying (2.4) for a sequence of beta(1, |θ |) weights
is called the GEM distribution with parameter |θ | (GEM(|θ |)).

Poisson point process construction [14].
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Let Y∞ = (Y1, Y2, . . .) be the sequence of points of a non-homogeneous point process with
intensity measure

N|θ |(y) = |θ |y−1e−y.

The probability generating functional is

F|θ |(ξ) = E|θ |
(

exp

{∫
log ξ(y)N|θ |(dy)

})
= exp

{
|θ |

∫ ∞

0

(
ξ(y) − 1

)
y−1e−y dy

}
(2.5)

for suitable functions ξ : R → [0,1]. The GEM(|θ |) distribution can be redefined in terms of the
same point process Y∞: Reorder the jumps by their size-biased random order, that is, set

Ÿ1 = Yi1

with probability Yi1/|Y∞| and

P(Ÿk+1 = Yi,k+1 |Ÿ1, . . . , Ÿk) = Yi,k+1

|Y | − ∑k
j=1 Ÿj

, k = 1,2, . . . .

Denote the vector of all the size-biased jumps by Ÿ∞. Then |Ÿ∞| D= |Y∞| is a gamma(θ) random
variable, independent of the normalized sequence

Ẍ∞ := Ÿ∞

|Ÿ∞|
and Ẍ∞ has the GEM(|θ |) distribution.

To intuitively convince oneself of such a statement, just notice that the probability generating
functional of γ d

α,1, for α = (|θ |/d, . . . , |θ |/d), is [10]

F|θ |,d (ξ) =
(∫ ∞

0
ξ(y)γ|θ |/d,1(dy)

)d

=
(

1 +
∫ ∞

0

(
ξ(y) − 1

) |θ |
d

y|θ |/d−1e−y

�(|θ |/d + 1)
dy

)d

(2.6)

→
d→∞ F|θ |(ξ),

so a finite size-biased collection of d i.i.d., normalized gamma jumps has a GEM(θ) limit distri-
bution, as d → ∞.

2.2.2. Beta-Stacy distributions

The measures Dα, D̈|θ |,d , D̈|θ | are all right-neutral distributions with independent beta parame-
ters.
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Definition 2.2. For d ≤ ∞, let B∗
1 , . . . ,B∗

d−1 be a collection of mutually independent beta ran-

dom variables with parameters {αi,βi}di=1 (if d = ∞, take an infinite sequence of such weights).

A random discrete distribution X ∈ �(d−1) is said to have a beta-Stacy law if X1
D= B∗

1 and, for
every j ≤ d − 1,

1 −
j−1∑
i=1

Xi
D=

j−1∏
i=1

(1 − B∗
i ).

A notable example of infinite-dimensional beta-Stacy distribution is the two-parameter GEM(α,

θ) distribution [18,19] whereby, for every j ≤ d −1, B∗
j is a beta(1−σ, θ +jσ ) random variable,

with either σ ∈ [0,1] and θ > −σ or σ < 0 and θ = |σ |m for some m ∈ N.
The two-parameter GEM distribution is the most general class of right-neutral distributions

that is also invariant under size-biased permutation; other remarkable properties (it is regener-
ative and Gibbs) make it one of the most studied models for generating consistent, exchangeable
random partitions (see [20] and references therein).

2.3. Sampling formulae

The multinomial-Dirichlet distribution can be obtained by mixing the parameter of a multinomial
distribution with a Dirichlet mixing measure: If X has Dα distribution,

DMα(r; |r|) = E

[( |r|
r

)
Xr

]
=

( |r|
r

) ∏d
i=1(αi)(ri )

(|α|)(|r|) , (2.7)

where (a)(x) := �(a + x)/�(a) for a > 0.

2.3.1. Partial right-neutrality

For every r ∈ N
d and α ∈ R

d+, denote as usual Rj = ∑d
i=j+1 ri and Aj = ∑d

i=j+1 αi . It is easy
to see that

DMα(r;R) =
d−1∏
j=1

(
Rj−1
rj

)∫ 1

0
z
rj
j (1 − zj )

Rj Dαj ,Aj
(dzj )

(2.8)

=
d−1∏
j=1

DMαj ,Aj
(rj ;Rj−1).

In other words, for every j = 1, . . . , d − 1, rj /Rj is conditionally independent of r1, . . . , rj−1,
given Rj . Such a property, a direct consequence of the Dirichlet, is responsible for our construc-
tion of multivariate Hahn polynomials.
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2.3.2. Negative binomial sums

Another construction of DMα is possible, based on negative binomial random sequences, which
parallels the gamma construction of the Dirichlet measure of Section 2.1.1.

Let NB|α|,y(k) : |α| > 0, denote the negative binomial distribution with probability mass func-
tion:

NB|α|,p(k) = (|α|)(k)

k! pk(1 − p)|α|, k = 0,1, . . . . (2.9)

With both parameters in N, such a measure describes the distribution of the number of failures
occurring in a sequence of i.i.d. Bernoulli experiments (with success probability 1 − p), before
the αth success.

Two features of NB|α|,p will prove useful, in Section 6, to connect multiple Meixner polyno-
mials to multivariate Hahn polynomials.

(1) Poisson–gamma mixtures:

NB|α|,p(k) =
∫ ∞

0
Poλ(k)γ|α|,p/(1−p)(dλ),

(2.10)

Poλ(k) = λke−λ

k! , k = 0,1,2, . . . .

(2) Normalized negative binomial vectors.

Consider any α ∈ R
d+ and p ∈ (0,1). Let R1, . . . ,Rd be independent negative binomial ran-

dom variables with parameter (αi,p), respectively, for i = 1, . . . , d . Then

(i) |R| := ∑d
i=1 Ri has law NB|α|,p .

(ii) Conditional on |R| = |r|, the vector R = (R1, . . . ,Rd) has a Dirichlet-multinomial distri-
bution with parameter (α, |r|):

d∏
i=1

NBαi ,p(ri) = NB|α|,p(|r|) DMα(r; |r|). (2.11)

2.3.3. Hypergeometric distribution

Consider the form of the probability mass function DMα but now replace the parameter α with
−ε = (−ε1, . . . ,−εd) with 0 ≤ nj ≤ εj , j = 1, . . . , d. Then

DM−ε(n) = |n|!
n1! · · ·nd !

(−ε)(n)

(−|ε|)(|n|)
=

∏d
i=1

(
εi

ni

)(|ε|
|n|

) =: Hε(n). (2.12)

Hε(n) is known as the multivariate hypergeometric distribution with parameter ε.

The partial right-neutrality property of the Dirichlet-multinomial distribution is preserved for
the hypergeometric law; however, the interpretation as a Dirichlet mixture of i.i.d. laws is lost as
the Dirichlet (as well as the gamma and the beta) integral is not defined for negative parameters.
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2.4. Conjugacy properties

The gamma and the Dirichlet distribution, and, similarly, the negative binomial and the Dirichlet-
multinomial distributions, are entangled by yet another property known in Bayesian statistics as
conjugacy with respect to sampling.

A statistical model can be described by a probability triplet {M, M, l�}�∈E , where the like-
lihood function l�(x) depends on a random parameter � living in some probability space
(E, E ,π). The distribution π of � is called the prior measure of the model. The posterior mea-
sure of the model is any version πx(·) = π(·|X = x) of the conditional probability satisfying∫

A

π(B|X = x)

∫
lλ(dx)π(dx) =

∫
B

lλ(A)π(dλ) a.s. ∀A ∈ M,B ∈ E . (2.13)

Definition 2.3. Let C be a family of prior measures for a statistical model with likelihood l�. C
is conjugate with respect to l� if

π ∈ C �⇒ πx ∈ C ∀x.

It is easy to check that both gamma and Dirichlet measures are conjugate classes of prior
measures. Bayes’ theorem shows us the role as marginal distributions played, respectively, by
NBα,p and DMα .

Example 2.4. The class of gamma priors is conjugate with respect to lλ = Poλ on {0,1,2, . . .}.
The posterior measure is

πx(dλ) = Poλ(x)γα,β(dλ)

NBα,β/(1+β)(x)
= γα+x,β/(1+β)(dλ). (2.14)

Similarly, the class of multivariate gamma priors {γ d
α,β : α ∈ R

d, β > 0} is conjugate with respect

to {Pod
λ(x), λ ∈ R

d+, x ∈ N
d}.

Example 2.5. The class of beta priors {Dα,β : (α,β) ∈ R
2+} is conjugate with respect to the bi-

nomial likelihood lλ = Bλ(·) on {0,1,2, . . . , |n|}, for any integer |n|. The posterior distribution
is

πr(dλ) = Bλ(|r|, |n − r|)Dα,β(dλ)

DMα,β(|r|; |n| − |r|) = Dα+|r|,β+|n|−|r|(dλ). (2.15)

Similarly, the class of Dirichlet measures is conjugate with respect to multinomial sampling.

3. Jacobi polynomials on the simplex

If X,Y are independent random variables, their distribution WX,Y is the product WXWY of their
marginal distributions, and therefore orthogonal polynomials Qn,k(x, y) in WX,Y are simply ob-
tained by products Pn(x)Rk(y) of orthogonal polynomials with WX and WY as weight measures,
respectively.
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The key idea for deriving multivariate polynomials with respect to Dirichlet measures on the
simplex, and to all related distributions treated in the subsequent sections, exploits the several
properties of conditional independence enjoyed by the increments of Dα , as pointed out in Sec-
tion 2.1.1. A method for constructing orthogonal polynomials in the presence of a particular
kind of conditional independence, where Y depends on X only through a polynomial ρ(x) of
the first-order, is illustrated by the following multidimensional modification of Koornwinder’s
method (see [15], Section 3.7.2).

Proposition 3.1. For l, d ∈ N, let (X,Y ) be a random point of R
l × R

d with distribution W . Let
ρ : R

l → R define polynomials on Rl of order at most 1.
Assume that the random variable

Z := Y

ρ(X)

is independent of X. Denote with WX and WZ the marginal distributions of X and Z, respec-
tively. Then a system of multivariate polynomials, orthogonal with respect to W, is given by

Gn(x, y) = P
(Nl)
(n1,...,nl )

(x)(ρ(x))Nl R(nl+1,...,nl+d )

(
y

ρ(x)

)
,

(3.1)
(x, y) ∈ R

l × R
d, n ∈ N

l+d ,

where Nl = nl+1 +· · ·+nl+d , {P (|m|)
k }k∈Rl and {Rm}m∈Rd are systems of orthogonal polynomials

with weight measures given by (ρ(x))2|m|WX and WZ, respectively.

Proof. When d = l = 1 this proposition is essentially a probabilistic reformulation of Koorn-
winder’s construction ([15], Section 3.7.2). The proof is similar for any l, d . That Gn is a poly-
nomial of degree |n| is evident as the denominator of the term of maximum degree in R simplifies
with (ρ(x))nl+1+···+nl+d . To show orthogonality, note that the assumption of conditional indepen-
dence implies that

W(dx,dy) = WX(dx)WZ

(
1

(ρ(x))d
dy

)
.

Denote bn = E[P 2
n ] and cn = E[R2

n], n = 0,1,2, . . . . For k, r ∈ R
l and m,s ∈ R

d,∫
G(k,m)(x, y)G(r,s)(x, y)W(dx,dy)

=
∫

P m
k (x)P s

r (x)(ρ(x))m+sWX(dx)

∫
Rm(z)Rs(z)WZ(dz)

=
∫

P m
k (x)P m

r (x)(ρ(x))2mWX(dx)cmδms

= bkcmδkrδms. �
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3.1. d = 2; Jacobi polynomials on [0,1]
For d = 2, Dα reduces to the beta distribution, the weight measure of (shifted) Jacobi polyno-
mials. These are functions of one variable living in �1 ≡ [0,1]. It is convenient to recall some
known properties of such polynomials. Consider the measure

w̃a,b(dx) = (1 − x)a(1 + x)bI
(
x ∈ (−1,1)

)
dx, a, b > −1, (3.2)

where I(A) is the indicator function, equal to 1 if A, and 0 otherwise. This is the weight measure
of the Jacobi polynomials defined by

P̃ a,b
n (x) := (a + 1)(n)

n! 2F1

(−n, n + a + b + 1
a + 1

1 − x

2

)
,

where pFq,p, q ∈ N, denote the hypergeometric function (see [1] for basic properties).
The normalization constants are given by the relation∫

(−1,1)

P̃ a,b
n (x)P̃ a,b

m (x)w̃a,b(dx) = 2a+b+1

2n + a + b + 1

�(n + a + 1)�(n + b + 1)

n!�(n + a + b + 1)
δmn. (3.3)

The Jacobi polynomials are known to be solution of the second-order partial differential equa-
tion

(1 − x2)y′′(x) + [b − a − x(a + b + 2)]y′(x) = −n(n + a + b + 1)y(x). (3.4)

By a simple shift of measure it is easy to see that, for α,β > 0 and θ := α + β , the modified
polynomials

P α,β
n (x) = n!

(n + θ − 1)(n)

P̃ β−1,α−1
n (2x − 1), α,β > 0, (3.5)

are orthogonal with respect to the beta distribution on [0,1], which can be written as

Dα,β(dx) = w̃β−1,α−1(du)

2α+β−1B(α,β)
, (3.6)

where u = 2x − 1.
Denote the standardized Jacobi polynomials with

R̃a,b
n (x) = P̃

a,b
n (x)

P̃
a,b
n (1)

and Rα,β
n (x) = P

α,β
n (x)

P
α,β
n (1)

.

Obviously

Rα,β
n (x) = R̃(β−1,α−1)

n (2x − 1). (3.7)
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By (3.3) the new constant of proportionality is

1

ζ
(α,β)
n

:=
∫ 1

0
[Rα,β

n (x)]2Dα,β(dx)

=
(

(θ + n − 1)(n)

(β)(n)

)2 n!α(n)(β)(n)

(θ)(2n)(θ + n − 1)(n)

(3.8)

= n! 1

(θ + 2n − 1)(θ)(n−1)

(α)(n)

(β)(n)

, n = 0,1, . . . .

A symmetry relation is

Rα,β
n (x) = R

β,α
n (1 − x)

R
β,α
n (0)

. (3.9)

Note that, if {P ∗
n

α,β(x)} is a system of orthonormal polynomials with weight measure Dα,β , then

ζ (α,β)
n = [P ∗

n
α,β

(1)]2. (3.10)

3.2. 2 ≤ d < ∞. Multivariate Jacobi polynomials on the simplex from
right-neutrality

A system of multivariate polynomials with respect to a Dirichlet distribution on d ≤ ∞ points
can be derived by using its right-neutrality property, via Proposition 3.1. Let Nd,|m| = {n =
(n1, . . . , nd) ∈ N

d : |n| = |m|}. For every n ∈ Nd−1,|n| and α ∈ R
d+ denote Nj = ∑d−1

i=j+1 ni and

Aj = ∑d
i=j+1 αi.

Proposition 3.2. For d < ∞, a system of multivariate orthogonal polynomials on the Dirichlet
distribution Dα is given by

Rα
n (x) =

d−1∏
j=1

R
(αj ,Aj +2Nj )
nj

(
xj

1 − sj−1

)
(1 − sj−1)

Nj , x ∈ �(d−1), (3.11)

where sj = ∑j

i=1 xi .

Notice that Rα
n (ed) = 1, where ej := (δij : i = 1, . . . , d). A similar definition for polynomials

in the Dirichlet distribution is proposed in [16], in terms of non-shifted Jacobi polynomials R̃n.
For an alternative choice of basis, see [5].
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Proof of Proposition 3.2. The polynomials in Rα
n (x) given in Proposition 3.2 admit a recursive

definition as follows:

Rα
n1,...,nd−1

(x1, . . . , xd)
(3.12)

= R(α1,A1+2N1)
n1

(x1)(1 − x1)
N1R

α∗
2

n2,...,nd−1

(
x2

1 − x1
, . . . ,

xd

1 − x1

)
,

where α∗
j = (αj , . . . , αd) (j ≤ d − 1); so Proposition 3.1 is used with l = 1, ρ(x) = 1 − x and

inductively on d . The claim is a consequence of the neutral-to-the-right property and Proposi-
tion 3.1 – for consider the orthogonality of a term(

1 − Xj

1 − Sj−1

)Nj

R
αj ,Aj +2Nj
nj

(
Xj

1 − Sj−1

)
(3.13)

in Rα
n with a similar term in Rα

m for some m = (m1, . . . ,md−1)-polynomial. Assume without
loss of generality that for some j = 1, . . . , d − 1, mk = nk for k = j + 1, . . . , d − 1 and mj <

nj . Then Nj = Mj and, multiplying the product of (3.13) by the corresponding beta density
Dαj ,Aj

(dBj )/dBj , where Bj is as in (2.1), gives

B
αj −1
j (1 − Bj )

Aj +2Nj −1R
αj ,Aj +2Nj
nj

(Bj )R
αj ,Aj +2Nj
mj

(Bj ). (3.14)

Since Rnj
is orthogonal to polynomials of degree less than nj on the weight measure Dαj ,Aj +2Nj

,
then the integral with respect to dBj of the quantity (3.14) vanishes, which proves the orthogo-
nality. �

The orthogonality constant for {Rα
n } can be easily derived as

1

ζ α
n

:=
∫

�(d−1)

(Rα
n (x))2Dα(dx) = 1∏d−1

j=1 ζ
αj ,Aj +2Nj
nj

(3.15)

=
d−1∏
j=1

nj !(αj )(nj )

(Aj−1 + Nj)(nj −1)
(Aj−1 + 2Nj−1 − 1)(Aj + 2Nj)(nj )

.

Notice that the same construction shown in Proposition 3.2 could be similarly expressed in terms

of the polynomials {P αj ,Aj +2Nj
nj

} or {P �αj ,Aj +2Nj } instead of {Rαj ,Aj +2Nj
nj

}, the only difference
resulting in the orthogonality constants.

3.3. Multivariate Jacobi on beta-Stacy distributions

Random distributions of beta-Stacy type are all right-neutral. Orthogonal polynomials with re-
spect to general beta-Stacy measures can be therefore constructed in very much the same way as
in Proposition 3.2, with a similar proof.
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Proposition 3.3. Let d ≤ ∞ and (α,β) ∈ R
d+ × R

d+. Let μα,β be the distribution of a
beta-Stacy(α,β) random point of �(d−1). A system of orthogonal polynomials in μα,β is given
by

R∗(α,β)
n (x) =

d−1∏
j=1

R
(αj ,βj +2Nj )
nj

(
xj

1 − sj−1

)
(1 − sj−1)

Nj , x ∈ �(d−1), n ∈ N
d . (3.16)

The constant of orthogonality is given by

1

ζ
α,β
n

= 1∏d−1
j=1 ζ

αj ,βj +2Nj
nj

(3.17)

=
d−1∏
i=1

ni !(αi)(ni )

(αi + βi + 2Ni−1 − 1)(αi + βi + 2Ni)(ni−1)(βi + 2Ni)(ni )

.

Example 3.4. We have seen that all size-biased Dirichlet measures are beta-Stacy. A system of
orthogonal polynomials in D̈|θ |,d is

R̈(|θ |,d)
n (x) =

d−1∏
j=1

R
(|θ |/d+1,((d−j)/d)θ+2Nj )
nj

(
xj

1 − sj−1

)
(1 − sj−1)

Nj ,

(3.18)
x ∈ �(d−1), n ∈ N

d .

Example 3.5. As d → ∞, D̈|θ |,d converges to the so-called GEM(θ) distribution, that is, an
infinite-dimensional beta-Stacy with all i.i.d. weights being beta random variables with parameter
(αj ,βj ) = (1, θ). Let D̈|θ |,∞ = limd→∞ D̈|θ |,d denote the GEM distribution with parameter |θ |.
For |θ | > 0, an orthogonal system with respect to the weight measure D̈|θ |,∞ is given by the
polynomials:

R̈|θ |
n (x) =

∞∏
j=1

R
(1,θ+2Nj )
nj

(
xj

1 − sj−1

)
(1 − sj−1)

Nj ,

(3.19)
x ∈ �∞, n ∈ N

∞ : |n| = 0,1, . . . .

Example 3.6. For the two-parameter GEM(σ, θ) distribution, αj = 1 −σ and βj = θ + jσ . The
polynomials are of the form

R̈σ,θ
n (x) =

∞∏
j=1

R
(1−σ,θ+jσ+2Nj )
nj

(
xj

1 − sj−1

)
(1 − sj−1)

Nj ,

(3.20)
x ∈ �∞, n ∈ N

∞ : |n| = 0,1, . . . .
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4. Multivariate Jacobi and multiple Laguerre polynomials

The Laguerre polynomials, defined by

L
|α|
|n|(y) = (|α|)(|n|)

|n|! 1F1(−|n|; |α|;y), |α| > 0, (4.1)

are orthogonal to the gamma density γ|α|,1 with constant of orthogonality∫ ∞

0

[
L

|α|
|n|(y)

]2
γ|α|(dy) = (|α|)(|n|)

|n|! . (4.2)

(Note that the usual convention is to define Laguerre polynomials in terms of the parameter
|α′| := |α| − 1 > −1. Here we prefer to use positive parameter for consistency with the parame-
ters in the amma distribution.)

Remark 4.1. If Y is a gamma(|α|) random variable, then, for every scale parameter β ∈ R+, the
distribution of Z := βY is γ|α|,β(dz). Thus the system{

L|α|
n

(
z

β

)}
n=0,1,...

is orthogonal with weight measure γ|α|,β .

Let Y ∈ R
d+ be a random vector with distribution γ d

α,β . By the stochastic independence of its
coordinates, orthogonal polynomials of degree |n| with the distribution of Y as weight measure
are simply

Lα,β
n (y) =

d∏
i=1

Lαi
ni

(
yi

β

)
, y ∈ R

d, n ∈ Nn, (4.3)

with constants of orthogonality of

1

ϕn

= E(Lα
n(Y ))2 =

d∏
i=1

(αi)(ni )

ni ! . (4.4)

Therefore, with the notation introduced in Section 2.1.1, because of the one-to-one mapping

(Y1, . . . , Yd) �→ (|Y |,X1, . . . ,Xd),

one can obtain an alternative system of orthogonal polynomials from y1, . . . , yn.

Proposition 4.2. The polynomials defined by

Lα,β∗
n (y) = L|α|+2|n′|

nd

( |y|
β

)( |y|
β

)|n′|
Rα

n′

(
y

|y|
)

, n ∈ N
d, y ∈ R

d, (4.5)
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with n′ = (n1, . . . , nd−1) and Rα
m defined by (3.11), are orthogonal with respect to γ d

α,β .

Proof. The proof of (4.5) is straightforward and follows immediately from Proposition 3.1, with
l = 1, X = |Y | and ρ(x) = x (remember that |Y | is gamma with parameter (|α|, β)). �

From now on we will only consider the case with β = 1, without much loss of generality. The
constant of orthogonality of the resulting system {Lα∗

n } is

1

ϕ∗
n

:=
∫

Rd

[Lα∗
n (y)]2

d∏
i=1

γαi
(dyi)

=
∫ ∞

0

[
L|α|+2(|n|−nd )

nd
(|y|)|y||n|−nd

]2
γ|α|(d|y|)

∫
�(d−1)

[Rα
n′(x)]2Dα(dx)

= (|α|)(2|n′|)
ζ α
n′

∫ [
L|α|+2|n′|

nd
(|y|)]2

γα+2|n′|(d|y|)

= 1

nd !
((|α|)(2|n′|))2

ζ α
n′

, (4.6)

where ζ α
n′ is as in (3.15).

4.1. Connection coefficients

The two systems Lα
n and Lα∗

n can be expressed as linear combinations of each other:

Lα∗
n (y) =

∑
|m|=|n|

ϕmc∗
m(n)Lα

m(y) (4.7)

and

Lα
n(y) =

∑
|m|=|n|

ϕ∗
mcm(n)Lα∗

m (y), (4.8)

where

c∗
m(n)δ|m||n| = E[Lα∗

n (y)Lα
m(y)] = cn(m)δ|m||n|.

For general m,n a representation for c∗
m(n) can be derived in terms of a mixture of Lauricella

functions of the first (A) type. Such functions are defined [17] as

FA(|a|;b; c; z) =
∑

m∈Nd

1

m1! · · ·md !
|a|(|m|)b(m)

c(m)

zm, a, b, c, z ∈ C
d,

where v(r) := ∏d
i=1 (vi)(ri ) for every v, r ∈ R

d .
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Proposition 4.3. For every n ∈ N
d denote n′ := (n1, . . . , nd−1). A representation for the con-

nection coefficients in (4.7) is

c∗
m(n) = δmn

(|α|)(|n|)
|n|! DMα(m)

(4.9)

×
|n|∑

j=0

dj

∫
�(d−1)

Rα
n′(t)FA(|α|;−m,−j ;α, |α|; t,1 − |t |,1)Dα(dt),

where

dj :=
|n′|∑
i=0

(−|n′|)(i)
(|α|)(|n′|)(|α| + 2|n′|)(nd )

i!nd !
(4.10)

× FA(|α|;−i,−nd,−j ; |α|, |α| + 2i, |α|;1,1,1).

The proof relies on a beautiful representation due to Erdélyi [6]: for every |a|, |z| ∈ R, α, k ∈
R

d and n ∈ N
d ,

d∏
j=1

L
αj
nj

(kj |z|) =
|n|∑
s=0

φs(|a|;α;n; k)L|a|
s (|z|), (4.11)

where

φs(|a|;α;n; k) = FA(|a|;−n,−s;α, |a|; k,1)

d∏
j=1

(αj )(nj )

nj ! .

The full proof of Proposition 4.3 involves tedious algebra that we omit here as not relevant for
the general purposes of the paper.

Remark 4.4. A simplified representation of c∗
m(n) in terms of Hahn polynomials will be given

in Section 5.2.2.

Remark 4.5. Note that when |n′| = 0, c∗
m(0, . . . ,0, nd) = 1, which agrees with the known iden-

tity

Lα+β
n (x + y) =

n∑
j=0

Lα
j (x)L

β
n−j (y), x, y ∈ R (4.12)

(see [2], formula (6.2.35), page 191), an identity with an obvious extension to the d-dimensional
case.

Remark 4.6. It is immediate to verify that the coefficients c∗
m(n) also satisfy

L
|α|
|n−n′|(|β−1y|)|β−1y||n′|Rα

n′

(
y

|y|
)

=
∑

|m|=|n|
ϕmc∗

m(n)Lα
m(|β−1y|), β ∈ R+. (4.13)
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4.2. Size-biased multiple Laguerre

Let Yd = (Y1, . . . , Yd) be a collection of independent gamma random variables, each with pa-
rameters (θ/d,1), i = 1, . . . , d. Let Ÿ d be the same vector with the coordinates rearranged in
size-biased random order. The proof of the following corollaries is, at this point, obvious from
Proposition 4.2.

Corollary 4.7. A system of polynomials, orthogonal with respect to the law of Ÿ d , is given by

L̈
|θ |,d
(|m|,n′)(y) = L

|θ |+2|n′|
|m| (|y|)(|y|)|n′|R̈|θ |,d

n′

(
y

|y|
)

, (4.14)

|m| ∈ N, n′ ∈ N
d : |n′| ∈ N, with {R̈n} as in (3.18).

It is possible to derive an infinite-dimensional version of {Lα�
n }, orthogonal with respect to

the law of the size-biased point process Ÿ∞, obtained by Y∞ of Section 2.2.1. Remember that

Ẍ∞ := Ÿ∞/|Ÿ∞| has GEM(|θ |) distribution and it is independent of |Ÿ∞| D= |Y∞|, which has a
gamma(|θ |) law.

Corollary 4.8. Let γ̈|θ | be the probability distribution of the size-biased sequence Ÿ∞ obtained
by rearranging in size-biased random order the sequence Y∞ of points of a Poisson process with
generating functional (2.5). The polynomials defined by

L̈
|θ |
(|m|,n′)(y) = L

|θ |+2|n′|
|m| (|y|)(|y|)|n′|R̈|θ |

n′

(
y

|y|
)

(4.15)

for |m| ∈ N, n′ ∈ N
∞ : |n′| ∈ N, with {R̈n} as in (3.19), are the limit, as d → ∞, of the polynomi-

als {L̈|θ |,d
(|m|,n′)} defined by (4.14) and form an orthogonal system with respect to γ̈|θ |.

5. Multivariate Hahn polynomials

5.1. Hahn polynomials on {1, . . . ,N}

As for the Laguerre polynomials, we introduce the discrete Hahn polynomials on {1, . . . ,N} with
parameters shifted by 1 to make the notation consistent with the standard probabilistic notation
in the corresponding weight measure. The Hahn polynomials, orthogonal on DMα,β(n;N), are
defined as the hypergeometric series:

hα,β
n (r;N) = 3F2

(−n,n + θ − 1,−r

α,−N
1

)
, n = 0,1, . . . ,N. (5.1)

The orthogonality constants are given by

1

u
α,β
N,n

:=
N∑

r=0

[hα,β
n (r;N)]2DMα,β(n;N) = 1(

N
n

) (θ + N)(n)

(θ)(n−1)

1

θ + 2n − 1

(β)(n)

(α)(n)

.
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A special point value is ([12], formula (1.15))

hα,β
n (N;N) = (−1)n

(β)(n)

(α)(n)

. (5.2)

Thus if we consider the normalization

qα,β
n (r;N) := h

α,β
n (r;N)

h
α,β
n (N;N)

,

then the new constant is, from (5.2),

1

w
α,β
N,n

:= E[qα,β
n (R;N)]2

= 1(
N
n

) (θ + N)(n)

(θ)(n−1)

1

θ + 2n − 1

(α)(n)

(β)(n)

(5.3)

=
[

(θ + N)(n)

N[n]

]
1

ζ
α,β
n

,

where ζn is the Jacobi orthogonality constant, given by (3.8).
A symmetry relation is

qα,β
n (r;N) = q

β,α
n (N − r;N)

q
β,α
n (0;N)

. (5.4)

A well-known relationship is in the limit:

lim
N→∞hα,β

n (Nz;N) = R̃α−1,β−1
n (1 − 2z), α,β > 0 (5.5)

(see [12]), where R̃
a,b
n = R̃

a,b
n /R̃

a,b
n (1) are standardized Jacobi polynomials orthogonal on

[−1,1] as defined in Section 3.1. Because of our definition (3.5), combining (3.9), (5.4) and
(5.6) gives the equivalent limit: For every n,

lim
N→∞qα,β

n (Nz;N) = Rα,β
n (z), α,β > 0. (5.6)

Note that also

lim
N→∞w

α,β
N,n = ζ α,β

n . (5.7)

An inverse relation holds as well, which allows one to derive Hahn polynomials as a mixture of
Jacobi polynomials. Denote by Bx(r;N) = Bx,1−x(r,N − r) the binomial distribution.
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Proposition 5.1. The functions

q̃α,β
n (r;N) :=

∫ 1

0
Rα,β

n (x)
Bx(r;N)

DMα,β(r;N)
Dα,β(dx) (5.8)

=
∫ 1

0
Rα,β

n (x)Dα+r,β+N−r (dx), n = 0,1, . . . ,N, (5.9)

form the Hahn system of orthogonal polynomials with DMα,β as the weight function, such that

q̃α,β
n (r;N) = N[n]

(θ + N)(n)

qα,β
n (r;N). (5.10)

The representation (5.9), in particular, shows a Bayesian interpretation of Hahn polynomi-
als, as a posterior mixture of Jacobi polynomials evaluated on a random Bernoulli probability
of success X, conditionally on having previously observed r successes out of N independent
Bernoulli(X) trials, where X has a Beta(α,β) distribution on {0, . . . ,N}.

Proof of Proposition 5.1. The integral defined by (5.8) is a polynomial: Consider

∫ 1

0
xn(1 − x)m

Bx(r;N)

DMα,β(r;N)
Dα,β(dx) = (α)(n+r)(β)(N+m−r)(θ)(N)

(α)(r)(β)(N−r)(θ)(N+n+m)

= (α + r)(n)(β + N − r)(m)

(θ + N)(n+m)

.

The numerator is a polynomial in r of order n + m. Write

Rα,β
n (x) =

n∑
j=1

cjx
j ,

then ∫ 1

0
Rα,β

n (x)
Bx(r;N)

DMα,β(r;N)
Dα,β(dx) =

n∑
j=1

cj

(θ + N)(j)

(α + r)(j)

(5.11)

=
n∑

j=1

cj

(θ + N)(j)

r[j ] + L,

where L is a polynomial in r of order less than n. Then q
α,β
n (r) is a polynomial of order n

in r.
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To show orthogonality it is sufficient to show that hn are orthogonal with respect to polynomi-
als of the basis formed by the falling factorials {r[l], l = 0,1, . . .}. For l ≤ n,

n∑
r=0

DMα,β(r;N)r[l]q̃α,β
n (r;N)

= N !
(N − l)!

∫ 1

0
xlRα,β

n (x)

[
n∑

r=0

(
N − l

r − l

)
xl−r (1 − x)N−r

]
Dα,β(dx) (5.12)

= N[l]
∫ 1

0
xlRα,β

n (x)Dα,β(dx).

The last integral is non-zero only if l = n, which proves the orthogonality of q
α,β
n (r;N).

Now consider that, in R
α,β
n (x), the leading coefficient cn satisfies∫ 1

0
cnx

nRα,β
n (x)Dα,β(dx) =

∫ 1

0
[Rα,β

n (x)]2Dα,β(dx) = 1

ζ
α,β
n

;

1

ω
α,β
N,n

=
n∑

r=0

DMα,β(r;N)q̃α,β
n (r;N)q̃α,β

n (r;N)

=
n∑

r=0

DMα,β(r;N)

(
n∑

j=0

cj

(θ + N)(j)

r[j ]

)
q̃α,β
n (r;N) + L′

(5.13)

= N[n]
cn

(θ + N)(n)

∫
xnRα,β

n (x)Dα,β(dx)

= N[n]
(θ + N)(n)

1

ζ
α,β
n

.

That is,

ω
α,β
N,n =

[
(θ + N)(n)

N[n]

]2

w
α,β
N,n (5.14)

with w
α,β
N,n as in (5.2), and therefore the identity (5.10) follows, completing the proof. �

5.2. Multivariate polynomials on the Dirichlet-multinomial distribution

Multivariate polynomials orthogonal with respect to DMα on the discrete d-dimensional sim-
plex were first introduced by Karlin and McGregor [11] as eigenfunctions of the birth-and-death
process with neutral mutation. Here we derive an alternative derivation as a posterior mixture of
multivariate Jacobi polynomials, which extends Proposition 5.1 to a multivariate setting.
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Proposition 5.2. For every α ∈ R
d , a system of polynomials, orthogonal with respect to DMα ,

is given by

q̃α
n (r; |r|) =

∫
�(d−1)

Rα
n (x)

Bx(r)

DMα(r)
Dα(dx) (5.15)

=
∫

�(d−1)

Rα
n (x)Dα+r (dx), |n| ≤ |r| (5.16)

=
(∏d−1

j=1 (Aj + Rj + Nj+1)(nj+1)

(|α| + |r|)(N1)

) d∏
j=1

q̃
αj ,Aj +2Nj
nj

(rj ;Rj−1 − Nj), (5.17)

with constant of orthogonality given by

1

ωn(α; |r|) := E[q̃α
n (R; |r|)]2 = |r|[n]

(|α| + |r|)(n)

1

ζ α
n

. (5.18)

Proof. The identity between (5.15) and (5.16) is obvious from Section 2.4 and (5.17) follows
from Proposition 5.1 and some simple algebra. For every n ∈ N

d ,

∫
�(d−1)

xnDα+r (dx) = DMα+r (n) =
d−1∏
i=1

(αi + ri)(ni )(Ai + Ri)(Ni)

(Ai−1 + Ri−1)(Ni−1)

(5.19)

=
∏d

i=1 (αi + ri)(ni )

(|α| + |r|)(|n|)
= 1

(|α| + |r|)(|n|)

d∏
i=1

ri [ni ] + L,

where L is a polynomial in r of order less than |n|. Therefore q̃α
n (r; |r|) are polynomials of order

|n| in r .
To show that they are orthogonal, denote

pl(r) :=
d∏

i=1

(ri)[li ]

and consider that, for every l ∈ N
d : |l| ≤ |n|,∑

|m|=|r|
DMα(m; |r|)pl(m)q̃α

n (m; |r|)

= |r|!
(|r| − |l|)!

∫
xlRα

n (x)

( ∑
|m|=|r|

( |r − l|
m − l

)
xm−l

)
Dα(dx) (5.20)

= |r|[|l|]
∫

xlRα
n (x)Dα(dx),
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which, by orthogonality of Rn, is non-zero only if |l| = |n|. Since it is always possible to write,
for appropriate coefficients cnm

Rα
n (x) =

∑
|m|=|n|

cnmxm + C,

where C is a polynomial of order less than |n| in x; then

q̃α
s (r; |r|) =

∑
|m|=|s|

csm

(|α| + |r|)(|s|) pm(r) + C′

and by (5.20)

E[q̃α
s (R; |r|)q̃α

n (R; |r|)] =
∑

|k|=|s|

csk

(|α| + |r|)(|s|) E[pk(R)q̃α
n (R; |r|)] + C′′

= |r|[|n|]
∑

|k|=|r|

csk

(|α| + |r|)(|s|)
∫

xkRα
n (x)Dα(dx)

= |r|[|n|]
(|α| + |r|)(|n|)

1

ζ α
n

δsn, |n| = |r|. �

Remark 5.3. Note that the representation (5.17) holds also for negative parameters, so that, if
we replace α with −ε (ε ∈ R

d) then (5.17) is a representation for polynomials with respect to
the hypergeometric distribution (Section 2.3.3).

5.2.1. Bernstein–Bézier coefficients of Jacobi polynomials

As anticipated in the introduction, Proposition 5.2 gives a probabilistic proof of a recent result
of [22], namely that Hahn polynomials are the Berstein–Bézier coefficients of the multivariate
Jacobi polynomials. Remember that the Bernstein polynomials, when taken on the simplex, are
essentially multinomial distributions Bx(n) = (|n|

n

)
xn, seen as functions of x.

Corollary 5.4. For every d ∈ N, α ∈ R
d, r ∈ N

d ,

Rα
r (x) = (|α| + |r|)(|n|)

|r|[|n|]

∑
|m|=|r|

q̃α
r (m; |r|)Bx(m), (5.21)

where ωr(|α|; |r|) is given by (5.18).

Proof. From Proposition 5.2,

DMα(m; |r|)q̃α
r (m; |r|) = E[BX(m)Rα

r (X)]
so

Bx(m) = DMα(m; |m|)
|m|∑

|n|=0

ζ α
n q̃α

n (m; |m|)Rn(x).
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Hence ∑
m

q̃α
r (m; |r|)Bx(m)

=
|r|∑

|n|=0

ζ α
n

[ ∑
|m|=|r|

DMα(m; |r|)q̃α
r (m; |r|)q̃α

n (m; |r|)
]
Rα

n (x) (5.22)

=
|r|∑

|n|=0

ζ α
n

ωr(|α|; |r|) δrnR
α
n (x) = |r|[|n|]

(|α| + |r|)(|n|)
Rα

r (x),

which completes the proof. �

Remark 5.5. By a similar argument it is easy to come back from (5.21) to (5.15).

5.2.2. The connection coefficients of Proposition 4.3

Consider again the connection coefficients c∗
n(m) of Proposition 4.3 and their representa-

tions (4.9) and (4.10). An alternative representation can be given in terms of multivariate Hahn
polynomials.

Corollary 5.6. Let c∗
n(m) be the connection coefficients between Lα∗

n and Lα
m, as in Section 4.

Then

c∗
n(m) = δmn b

|α|
|n|,nd

DMα(m)

|n|∑
|r|=0

(−m)(r)∏d
l=1 rl !

q̃α
n′(r; |r|), (5.23)

where n′ = (n1, . . . , nd − 1),

b
|α|
|n|,nd

= (|α|)(|n|)
|n|!

[ |n|∑
j=0

dj

j !|α|(j)

]
and dj is as in (4.10).

Proof. It is sufficient to use the explicit expression of the Lauricella function FA in (4.9) to see
that

c∗
m(n) = δmn

(|α|)(|n|)
|n|! DMα(m)

[ |n|∑
j=0

dj

j !|α|(j)

] |n|∑
|r|=0

(−m)(r)∏d
l=1 rl !

∫ (|r|
r

)
t rRα

n′(t)

DMα(r)
Dα(dt)

(5.24)

= δmnb
|α|
|n|,nd

DMα(m)

|n|∑
|r|=0

(−m)(r)∏d
l=1 rl !

q̃α
n′(r; |r|).

�

5.2.3. Application: The d-types linear growth model

The multivariate Hahn polynomials were first studied by Karlin and McGregor [11] to derive the
transition density of the so-called d-type neutral Moran model of population genetics. This is,
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for any fixed |r| ∈ N, a stochastic process (N(t) : t ≥ 0) living in the discrete simplex Nd,|r| =
{m ∈ N

d : |m| = |r|}, with Dirichlet-multinomial stationary distribution, and whose generator has
Hahn polynomials as eigenfunctions.

Karlin and McGregor’s description of such eigenfunctions is structurally similar to our (5.17),
up to some re-scaling and reordering of the variables.

In the same paper ([11], formula (6.2)), the functions (rewritten in our notation)

ψ(m) :=
( |r|

|m|
)

L
|α|+2|m|
|r|−|m| (|y|)q̃α

n (m; |m|), m ∈ N
d : |m| ≤ |r|, |r| ∈ N,

were introduced to connect the d-type Moran model of reproduction to a d-type linear growth
model with immigration rates proportional to α1, . . . , αd . The generator of the latter process has
eigenfunctions that are the solution of the recursion

−|y|ψ(m) =
d∑

i=1

mi[ψ(m − ei) − ψ(m)] +
d∑

i=1

(mi + αi)[ψ(m − ei) − ψ(m)].

Note that, for every z ∈ R
d such that |z| = |y|, ψ(m) = Lα|r|−|m|,m(y) is also a solution, hence so

is ψ(m) = Lα∗|r|−|m|,m(z).

Reconsider now the system Lα∗
n of multiple Laguerre polynomials. In view of our representa-

tion (5.16) of Hahn polynomials, it is easy to write

ψ(m) =
( |r|

|m|
)

�(|α|)
�(α)

∫
Rd−1

Lα∗|r|−|m|,m(y)
1

|y|d−1
yα−1 dy1 · · ·dyd−1,

which is identical to

ψ(m) =
( |r|

|m|
)

L
|α|+2|m|
|r|−|m| (|y|)

∫
�d−1

Rα
m(x)Dα+m(dx).

Our representation in a sense completes Karlin and McGregor’s analysis, in terms of eigen-
functions, of the relationship existing between the r-type linear growth model (product of inde-
pendent Laguerre polynomials), the Moran model (multivariate Hahn) and its scaling limit, the
d-type Wright–Fisher diffusion (multivariate Jacobi). In [11] the role of the latter was not very
visible. The representation (5.16) shows how to map directly polynomial eigenfunctions of the
scaling limit process (Jacobi ) to polynomial eigenfunctions of its finite-size dual model (Hahn).
In Karlin and McGregor’s work this idea was present only implicitly (see their formula (3.8)
and observation (3.10)), via their use of Laguerre products. Considering the system {Lα∗|r|−|m|,m}
makes the connection between all the three processes more transparent.

6. Multivariate Hahn and multiple Meixner polynomials

The Meixner polynomials on {0,1,2, . . .}, defined by

Mn(k;α,p) = 2F1

(−n, −k

α

p − 1

p

)
, α > 0,p ∈ (0,1), (6.1)
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are orthogonal with respect to the negative binomial distribution NBα,p. The following represen-
tation of the Meixner polynomials comes from the interpretation of NBα,p as a gamma mixture
of Poisson likelihood (formula (2.10)).

Proposition 6.1. For α ∈ R+ and p ∈ (0,1), a system of orthogonal polynomials with the nega-
tive binomial (α,p) distribution as weight measure is given by

M̃
α,p
n (k) =

∫ ∞

0

Poλ(k)

NBα,p(k)
Lα

n

(
λ

1 − p

p

)
γα,p/(1−p)(dλ) (6.2)

=
∫ ∞

0
Lα

n

(
λ

1 − p

p

)
γα+k,p(dλ), n = 0,1, . . . , (6.3)

where Lα
n are Laguerre polynomials with parameter α.

Proof. For every n, consider that∫ ∞

0
λnγα+k,p(dλ) =

∫ ∞

0

λα+k+n−1e−λ/p

�(α + k)pα+k
dλ = (α + k)(n)p

n.

So every polynomial in � of order n is mapped to a polynomial in k of the same order.
To show orthogonality it is, again, sufficient to consider polynomials in the basis {r[k] :k =

0,1, . . .}. Let m ≤ n.

∞∑
k=0

NBα,p(k)k[m]M̃α,p
n (k)

=
∫ ∞

0
Lα

n

(
λ

1 − p

p

){ ∞∑
k=0

(α)(k)

k! pk(1 − p)αk[m]
λα+k−1e−λ/p

�(α + k)pα+k

}
dλ

(6.4)

=
∫ ∞

0
Lα

n

(
λ

1 − p

p

){ ∞∑
k=0

k[m]Poλ(k)

}
γα,p/(1−p)(dλ)

=
∫ ∞

0
Lα

n

(
λ

1 − p

p

)
λmγα,p/(1−p)(dλ),

where the last line comes from the fact that, if K is a Poisson(λ) random variable, then

Eλ

(
K[n]

) = λn, n = 0,1,2, . . . .

Now, consider the change of measure induced by

z := λ
1 − p

p
.
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The last line of (6.4) reads (
p

1 − p

)m ∫ ∞

0
Lα

n(z)zmγα,1(dz).

The integral vanishes for every m < n, and therefore the orthogonality is proved. �

From property (2) of the negative binomial distribution (Section 2.3.2), by using Proposi-
tions 6.1, 5.2 and 4.3, and Remark 4.6, it is possible to find the following alternative systems of
multivariate Meixner polynomials, orthogonal with respect to NBd

α,p(r).

Proposition 6.2. Let α ∈ R
d+ and p ∈ (0,1).

(i) Two systems of multivariate orthogonal polynomials with weight measure NBd
α,p(r) are:

M̃
α,p
n (r) =

d∏
i=1

M̃
αi ,p
ni

(ri), n ∈ N
d , (6.5)

and

∗M̃α,p
n (r) = (1 − p)|n′|M̃ |α|+2|n′|,p

nd
(|r| − |n′|)(|α + r|)(|n′|) q̃α

n′(r; |r|), n ∈ N
d, (6.6)

where n′ = (n1, . . . , nd − 1), {Mαi,p
ni

} are Meixner polynomials as in Proposition 6.1 and q̃α are
multivariate Hahn polynomials defined by Proposition 5.2.

(ii) A representation for these polynomials is:

M̃
α,p
n (r) =

∫
R

d+

Pod
λ(r)

NBd
α,p(r)

Lα
n

(
λ

1 − p

p

)
γ d
α,p/(1−p)(dλ) (6.7)

=
∫

R
d+

Lα
n

(
λ

1 − p

p

)
γ d
α+r,p(dλ) (6.8)

and

∗M̃α,p
n (r) =

∫
R

d+

Pod
λ(r)

NBd
α,p(r)

Lα∗
n

(
λ

1 − p

p

)
γ d
α,p/(1−p)(dλ) (6.9)

=
∫

R
d+

Lα∗
n

(
λ

1 − p

p

)
γ d
α+r,p(dλ), (6.10)

where {Lα
n} and {Lα∗

n } are given by (4.3) and (4.5), and

γ d
α,β(dz) :=

d∏
i=1

γαi,β(dzi), β ∈ R, z ∈ R
d .
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(iii) The connection coefficients between {M̃α,p
n } and ∗M̃α,p

n are given by

E[∗M̃α,p
n (R)M̃

α,p
m (R)] = c∗

m(n), (6.11)

where c∗
m(n) are as in (4.9) or (5.23).

Proof. (6.5) is trivial and (6.7) and (6.8) follow from (6.2) and (6.3).
Now let us first prove (6.9) and (6.10). For every z ∈ R

d+, denote x = z/|z|. Consider that

γα,β(dz) = γ|α|,β(d|z|)Dα(dx)

and that

Pod
z (r) = Po|z|(|r|)Lx(r).

Combining this with (2.11),∫
R

d+

Pod
λ(r)

NBd
α,p(r)

Lα∗
n

(
λ

1 − p

p

)
γ d
α,p/(1−p)(dλ)

=
(∫

R+

Po|λ|(|r|)
NB|α|,p(|r|)L

|α|+2|n′|
nd

(
|λ|1 − p

p

)[
|λ|1 − p

p

]|n′|
γ|α|,p/(1−p)(d|λ|)

)
(6.12)

×
(∫

�(d−1)

Lx(r)

DMα(r, |r|)R
α
n′(x)Dα(dx)

)
.

From Proposition 5.2, the last integral in (6.12) is equal to q̃α
n′(r; |r|).

The first integral can be rewritten as∫
R+

L|α|+2|n′|
nd

(
|λ|1 − p

p

)[
|λ|1 − p

p

]|n′|
γ|α|+|r|,p/(1−p)(d|λ|)

= (1 − p)|n′|(|α + r|)(|n′|)
∫

R+
L|α|+2|n′|

nd

(
|λ|1 − p

p

) |λ||α+r+n′|e−|λ|/p

�(|α + r + n′|)p|α+r+n′| d|λ| (6.13)

= (1 − p)|n′|(|α + r|)(|n′|)M̃α+2|n′|
nd

(|r| − |n′|).
The last line in (6.13) is obtained from (6.3) by rewriting |n′| = 2|n′|−|n′| in the mixing measure.
Thus the identities (6.9) and (6.10) are proved.

To prove part (iii), simply use (4.7) with coefficients given by Proposition 4.3 to see that (6.7)
and (6.8) and (6.9) and (6.10) imply

∗M̃α,p
n (r) = Eα+r,p

[
Lα∗

n

(
λ

1 − p

p

)]
= Eα+r,p

[ ∑
|m|=|n|

c∗
m(n)Lα

m

(
λ

1 − p

p

)]

=
∑

|m|=|n|
c∗
m(n)Eα+r,p

[
Lα

m

(
λ

1 − p

p

)]
=

∑
|m|=|n|

c∗
m(n)M̃

α,p
m (r).
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This is equivalent to (6.11) because of the orthogonality of M̃
α,p
m (R).

But (6.11) also implies that {∗M̃α,p
n (r)} is an orthogonal system with NBd

α,p as weight measure
since, for every polynomial r[l] of degree |l| ≤ |n|,

∑
r∈Nd

NBd
α,p(r)∗M̃α,p

n (r)r[l] =
∑

|m|=|n|
c∗
m(n)

( ∑
r∈Nd

NBd
α,p(r)M̃

α,p
m (r)r[l]

)
.

The term between brackets is non-zero only for |l| = |m| = |n|, which implies orthogonality, so
the proof of the proposition is now complete. �

6.1. The Bernstein–Bézier coefficients of the multiple Laguerre
polynomials

The representation of Meixner polynomials given in Proposition 6.2 leads us, not surprisingly, to
interpret these as the Bernstein–Bézier coefficients of the multiple Laguerre polynomials (for any
choice of basis), up to proportionality constants. Note that, for products of Poisson distributions
we can write

Pod
λ(r) =

d∏
i=1

e−λi λ
ri
i

ri ! = e−|λ|

|λ|! Bλ(r). (6.14)

To simplify the notation, let (Lm,Mn) denote either (Lα
m, M̃

α,p
m ) or (Lα∗

m , ∗M̃α,p
m ), for some

α ∈ R
d and p ∈ (0,1). Let ϕn be either as in (4.4) or as in (4.6), consistently with the choice of

Ln, and set ρr(α,p)−1 := E[M2
r ].

Corollary 6.3.

Lr

(
λ

1 − p

p

)
= ρr(α,p)

ϕr

e−|λ|

|λ|!
∑
m

Mr(m)Bλ(m). (6.15)

Proof. The proof is along the same lines as for Corollary 5.4. From (6.7)–(6.9),

E

[
Ln

(
Y

1 − p

p

)
Pod

Y (m)

]
= Mn(m)NBd

α,p(m), n,m ∈ N
d .

Then from (6.14),

Bλ(m) = |λ|!e|λ|NBd
α,p(m)

∑
n

ϕnMn(m)Ln

(
Y

1 − p

p

)
.
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So for every r ∈ N
d

∑
m

Mr(m)Bλ(m) = |λ|!e|λ| ∑
n

ϕn

[∑
m

NBd
α,p(m)Mn(m)Mr(m)

]
Ln

(
Y

1 − p

p

)

= |λ|!e|λ| ∑
n

Ln

(
Y

1 − p

p

)
ϕn

ρr(α,p)
δnr

= |λ|!e|λ|ϕr

ρr(α,p)
Lr

(
Y

1 − p

p

)
,

and the proof is complete. �
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