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Marginal structural models were introduced in order to provide estimates of causal effects from interven-
tions based on observational studies in epidemiological research. The key point is that this can be understood
in terms of Girsanov’s change of measure. This offers a mathematical interpretation of marginal structural
models that has not been available before. We consider both a model of an observational study and a model
of a hypothetical randomized trial. These models correspond to different martingale measures – the observa-
tional measure and the randomized trial measure – on some underlying space. We describe situations where
the randomized trial measure is absolutely continuous with respect to the observational measure. The re-
sulting continuous-time likelihood ratio process with respect to these two probability measures corresponds
to the weights in discrete-time marginal structural models. In order to do inference for the hypothetical
randomized trial, we can simulate samples using observational data weighted by this likelihood ratio.
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1. Introduction

We will consider the following scenario: A patient has a disease. In order to avoid an event
(e.g., death), a specific treatment can be given. The given treatment will typically depend on the
patient’s previous health condition.

We would like to estimate the effect of a given treatment on the time until the occurrence of the
event. A natural way to do so is to implement some sort of randomized trial. This means that we
would have to set up an experiment on a group of patients where the treatment was initiated by
randomization independently of each patient’s previous health condition. Such a study typically
requires significant resources that may not be available. In order to take advantage of another
type of data, we could try to base our estimates of the treatment effect on an observational study.
Suppose we have observations of a group of patients where the given treatments were chosen
by doctors. As a first attempt, one could try to compute the relative short-term risk between the
group given treatment and the group not given treatment at a particular time. This could be done
using Cox proportional hazards regression techniques. However, such a naive analysis would
most likely introduce a bias compared to the estimate based on the randomized trial. The reason
is that the health condition of the patient not already in treatment will be a predictor of both
treatment and death; that is, it is likely to be a confounder [19].

We can easily imagine two opposite scenarios where this confounder would complicate es-
timates: Due to considerable costs, reduced life quality or possibly drug resistance, one could
decide that the treatment should not be initiated until the patients are sufficiently ill. A naive
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marginal analysis based on data from an observational study would then quickly lead us to be-
lieve that the treatment effect was less than the true treatment effect. Conversely, if we decided
only to initiate treatment for patients with good health conditions and not for the ones with poor
conditions, then a naive marginal analysis would quickly lead us to believe that the treatment
effect was better than the true treatment effect.

In order to solve this problem, one might suggest that we compute an estimate of the treatment
effect conditionally on the health condition of the patient. However, in several situations, it is
likely that the previous treatment will improve the patient’s general intermediate health condi-
tion. This improvement will in itself typically postpone the time of death. The conditional effect
estimate we described would only incorporate the direct treatment effect, not the effect that is
due to an improvement of the patient’s intermediate health condition.

There is also another source of bias that we have to consider in order to lay hands on the causal
effect of treatment; that is, censoring. We assume that a patient may drop out of the study at a
time and not return; that is, we have right censoring. The given treatment, calender time and the
patient’s health condition might lead to such a drop out. If we do a naive analysis based on the
patients that are still in the study, then we introduce a selection bias [9].

We are forced to move outside the standard Cox regression framework since we have to deal
with the mentioned time-dependent confounder effects due to a patient’s underlying health con-
dition. In order to provide a meaningful estimate of the treatment effect, with a simple interpre-
tation, we could try to construct a rich model that also describes the dynamics of the underlying
biological processes. Such mechanisms are likely to be very complicated and there might not be
sufficient knowledge or data available. For this reason we could try to fit a marginal model of a
suitable randomized trial for our scenario. This will be our strategy in what follows.

One attempt to provide a marginal estimate of the causal treatment effect this way is presented
by Robins in [15]. This method uses marginal structural models and relies on the additional
assumption that there are no unmeasured confounders; that is, there does not exist an unobserved
process that is a predictor of both censoring and treatment, both censoring and the event or both
treatment and the event, given the observed covariates. If every such process is measured, then the
marginal structural model (MSM) approach provides a proper adjustment of the marginal effect
estimates. The idea is to apply some clever weights to the observations. This weighting results
in a pseudo-population that is different from the observed population. The key property of this
pseudo-population is that the selection bias and the treatment confounding due to the patient’s
health condition become negligible. Now, one can proceed with a weighted Cox regression to
obtain a marginal estimate of the effect of treatment. The method has been used several times on
epidemiological studies. In [8] it was used to estimate the effect of Zidovudine on the survival of
HIV-positive men in the Multicenter AIDS Cohort Study. Moreover, the method was also used
in [19] to give an estimate of the hazard ratio for the effect of highly active antiviral treatment
(HAART) on progression to AIDS or death for HIV patients in Switzerland.

The method introduced by Robins deals with longitudinal data in discrete time. We will con-
sider continuous-time versions of the marginal structural models for event history data. The idea
is to characterize reasonable models of a randomized trial, the randomized trial measures, using
martingale theory. This offers a mathematical interpretation of marginal structural models that
has not been available before.

We characterize a class of of reasonable models of randomized trials in terms of local inde-
pendence. Such a model corresponds to a particular martingale measure. The continuous-time
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likelihood ratio process between this measure and the observational probability measure corre-
sponds to the weights in a discrete-time marginal structural model. In order to do inference for
this new measure, we can simulate samples using the observed data weighted by this likelihood
ratio.

Another approach to causal inference within our scenario is to use the so-called structural
nested models. These models were also introduced by Robins; see [16,17]. Lok has devel-
oped continuous-time versions of such models using counting processes and martingale theory;
see [13].

2. Observable processes and local independence

Before we come to the main results, we will spend some time establishing terminology. Even if
the mathematics involved is fairly standard stochastic process theory, it is perhaps not so com-
monly used in event history analysis. A very good background reference on stochastic processes
that we will use frequently is [11].

2.1. Observable processes

In Section 3 we will consider a stochastic model of a single patient. There are typically many fac-
tors that are important for describing how the disease of that individual develops in time. We will
consider models where all the possible observations of one patient are represented by stochastic
integrals against Poisson processes. More formally, let d,n ∈ N and consider a probability space
(�, F ,Q) with mutually orthogonal counting processes N1

t , . . . ,Nn
t on the interval [0, T ] and

a filtration {Ft }t that is generated by their joint history and some initial information F0. The
counting processes are assumed to be Poisson processes in the sense that

N1
t := N1

t − t, . . . ,Nn
t := Nn

t − t

define Q-martingales, the compensated Poisson processes. The probability measure Q will only
play a role as a reference measure, as we will mainly be interested in probability measures that
are absolutely continuous with respect to Q. This will sometimes be referred to as the Poisson
measure.

We let H be a bounded and Ft -predictable d × n-matrix-valued process and let X0 denote a
bounded F0-measurable random vector. Now, define the d-dimensional observable process:

Xt := X0 +
∫ t

0
Hs dNs.

All the possible observations of a patient in our approach will be processes of this form. Counting
processes are trivially included in this class, but we also allow slightly more complicated jump
processes. One example could be measurements of blood values. Each time the blood value is
updated, it would be given by a jump and correspond to a jump time of the underlying counting
process. The size and direction of the jump would then be given by the value of the predictable
integrand H at the jump time.
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2.2. Separability

We will say that two observable processes X and Y are separable if they allow the representa-
tions:

Xt = X0 +
∫ t

0
HX

s dNX
s ,

Yt = Y0 +
∫ t

0
HY

s dNY
s ,

where NX and NY are independent components of the multivariate process N , X0 and Y0 are
bounded F0-measurable random vectors and HX and HY are bounded matrix-valued processes
that are predictable with respect to the histories of NX and NY , respectively. Separability is a
technical assumption that provides well-behaved factorizations of likelihoods. This is used in the
proof of Theorem 1. Heuristically, it means that the processes X and Y do reflect different random
phenomena. Separability is even stronger than orthogonality since the processes are independent
with respect to the Poisson measure Q. However, since we will deal with other probability mea-
sures that are absolutely continuous with respect to the Poisson measure, separable processes can
not necessarily be treated as independent.

2.3. A martingale measure

As we mentioned earlier, our samples will consist of paths of observable processes. These sam-
ples will be distributed according to some probability measure P such that a given family of
predictable and non-negative processes define the jump intensities for N1, . . . ,Nn with respect
to Ft . Since we assume that the observations are distributed according to P , we will refer to such
a measure as an observational measure.

More formally, we let λ1, . . . , λn be non-negative Ft -predictable processes and we assume
that P is a probability measure such that:

(1) P and Q coincide on F0,
(2) P � Q, i.e., P is absolutely continuous with respect to the Poisson measure,
(3) The equation

Mi
t := Ni

t −
∫ t

0
λi

s ds

defines a square-integrable P -martingale with respect to Ft for every i.

These properties characterize the probability measure P uniquely if such a measure exists, [11],
Theorem III 1.26.

2.4. Non-influence

We will need a notion of non-influence between observable processes. There are several formal
definitions that are meant to capture this; see [7]. Independence, or even conditional indepen-
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dence, is too strong to be of interest for the method we have in mind. The non-influence relation
we will consider is local independence. Heuristically, a process X is locally independent of a
process Y if information about the past of Y does not contribute to a better prediction of the
short-term behavior of X.

In the setting of event history analysis, this concept has been studied thoroughly by Didelez [6].
Schweder [18] used this concept in a study of composable Markov processes. Aalen et al. made
use of local independence in order to study the effect of menopause on the risk of developing a
certain skin disease in [3].

2.5. Local independence

Let X,Y,Z be observable processes that are mutually separable. The processes Xt −X0, Yt −Y0

and Zt − Z0 are obviously independent with respect to the probability measure Q. However,
the situation is typically more complex with respect to the measure P , since the jump intensities
λ1

t , . . . , λ
n
t could depend on all the information in Ft−. We therefore introduce the following

concept.

Definition 1. Let F X,Y,Z
t denote the filtration generated by NX,NY ,NZ and let F X,Z

t denote
the filtration generated by NX and NZ . We say that X is locally independent of Y , given Z, if
there exists an F X,Z

t -predictable process μ such that

NX
t −

∫ t

0
μs ds

defines a local P -martingale with respect to F X,Y,Z
t . If this is the case, then we write:

Y � X|Z.

2.6. Independent censoring

Local independence generalizes a much-used concept in event history analysis, that is, indepen-
dent censoring. Suppose we can follow a group of individuals in a clinical trial. We would like to
compute the probability for an individual to survive longer than time t . However, an individual
might be censored at some time before the event due to the end of the study or a “drop-out”.
Inference is much simpler if the censoring does not influence the instantaneous risk of the event.
Therefore, it is common to assume independent censoring. This means that an individual at risk
has the same instantaneous risk of an event as he would in the situation without censoring. More
formally, this means that if TD is the time of the event and TC is the time of censoring, then
the compensator of the process Dt := I (t ≥ TD) with respect to the joint event and censoring
history only depends on the event history. This is essentially the same as saying that D is locally
independent of the process defined by Ct := I (t ≥ TC).
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2.7. Local independence before a stopping time

Sometimes we may not be interested in dependencies that are considered trivial. This could be
dependencies due to an absorbing state (e.g., death). We will see that we can rule out such trivial
dependencies if we consider local independence before a stopping time τ .

Definition 2. Let τ be an Ft -adapted stopping time. We say that X is locally independent of Y

before τ and given Z if there exists an {F X,Z
t }t -predictable process μ such that

NX
t∧τ −

∫ t∧τ

0
μs ds

defines a local P -martingale with respect to {F X,Y,Z
t }t . If this is the case, then we write:

Y �τ X|Z.

If we let τ denote the time of the first jump of NY then it is not very hard to see, using
the explicit representation of F X,Y,Z

t -predictable processes in [5], Theorem A.2, that for every
Ft -predictable process γ there exists an F X,Z

t -predictable process γ̃ such that γS · I (S ≤ τ) =
γ̃S · I (S ≤ τ) P -a.s. for every Ft -adapted stopping time S. This means that Y �τ X|Z; that is,
stopping at the first jump of NY rules out every local dependence of Y .

2.8. Local independence graphs

Didelez also considered graphical models based on local independence; see [6]. These graphs
will prove to be very useful in order to represent complex models.

Definition 3. We say that a directed graph G = (E,V ) is a local independence graph if the
vertexes correspond to observable processes that are mutually separable and such that

(X,Y ) /∈ E �⇒ X �τ Y |V \ {X,Y }.

Several examples of such graphs will appear below.

3. Models of clinical trials

3.1. A patient model

We will now describe a model of a single patient that participates in a clinical study. We suppose
that N is of the form (NA,NC,ND,NL)′, where NA,NC,ND are univariate counting processes
and NL is a multivariate counting process. These counting processes count various events that
are important for the development of the disease.
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3.1.1. The event process

We let TD = inf{t > 0 | ND
t = 1} and let

Dt :=
∫ t

0
I (s ≤ TD)dND

s

be the event process. It jumps from 0 to 1 at the time the event occurs. The event could be death
or the progression to AIDS for an HIV patient.

3.1.2. Measurements of the underlying biological process

The state of an underlying biological process reflecting the patient’s health condition at time t is
given by

Lt := L0 +
∫ t

0
HL

s dNL
s ,

where L0 is a bounded F0-measurable random vector and HL is a matrix-valued, bounded and
F L

t -predictable process. The process L could be measurements of various blood values.

3.1.3. Right censoring

We assume that the patient can be right censored, that is, we will not be able to observe the
patient after some stopping time TC . This can happen because the study ends, but it can also be a
“drop-out” due to poor health or recovery. We assume that TC := inf{s > 0 | NC

s 
= 0} and define
the censoring process

Ct :=
∫ t

0
I (s ≤ TC)dNC

s .

3.1.4. The treatment process

One can switch between two treatments of the patient at the stopping time TA. This could typi-
cally be to initiate treatment for a patient at risk. We let TA := inf{s > 0 | NA

s 
= 0} and define the
treatment process

At :=
∫ t

0
I (s ≤ TA)dNA

s .

This means that the patient will not initially be in treatment. This somewhat limiting assumption
can be dropped, but then the considerations around the hypothetical randomized trial at baseline
will be much more involved.

3.2. Local independences with respect to the observational measure

The process D influences the other processes. However, we consider these dependencies as triv-
ial. We will consider local independence before TD , because then we will automatically have that
D �TD

A|C ∪ L, D �TD
C|A ∪ L and D �TD

L|A ∪ C.
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We also assume that the censoring does not carry any information about the short term behavior
of the other process that we would not obtain if we left C out of the analysis. In terms of local
independence this means that C �TD

A|D ∪ L, C �TD
D|A ∪ L and C �TD

L|A ∪ D. We
summarize these local independencies in the following local independence graph:

(3.1)

3.3. Randomized trial measures

Our ultimate goal is to provide estimates of the causal effect of a particular treatment based on
observations of patients in an observational study.

Hypothetically, one could carry out some randomized trial where the given treatment did not
depend on the previous health condition of the patient. If we had observations from such a trial,
we could easily provide simple estimators for the causal treatment effect that would not require
information about the underlying biological mechanisms. This is, however, not the case for us.
So, based on observations from the observational study, we will try to simulate a counterfactual
or hypothetical randomized trial. We assume that we have measurements of all the relevant pro-
cesses and variables. Especially, we assume that the process L is complete in the sense that it
gives rise to every event that affects both the short-term behavior of the treatment and the event,
both the censoring and the event or both the censoring and the treatment, given the full covariate
history. This assumption means that all the confounder processes are measured and is usually
referred to as no unmeasured confounders.

In order to provide causal interpretation of simple estimators, we should at least require the
hypothetical trial to satisfy the following:

(1) Both the underlying biological process and the event process should dynamically behave
in the same way in the counterfactual trial and the observational study, given the full
covariate history.

(2) One should not allow drop-out due to poor health or recovery, that is, the censoring should
not be directly affected by the underlying health process, given the event and treatment
history.

(3) Since we consider time-dependent treatments, we have to generalize the notion of a ran-
domized trial slightly. In our counterfactual trial, the patient’s previous health condition
or censoring should not be relevant for the short-term behavior of the treatment process.
Heuristically, this means that the randomization should act locally in time.

The counterfactual trial corresponds to a probability measure P̃ on the space (�, F ). We
will refer to such a measure as a randomized trial measure. It carries the frequencies of the
potential observations in the counterfactual randomized trial. The above requirements can now
be translated into the following:
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(1) The process Mi is a local P̃ -martingale with respect to the filtration {Ft }t for every i ∈
D ∪ L. This means that both the processes NL and ND have the same intensity with
respect to the randomized trial measure P̃ as with respect to the observational measure P .
Moreover, we assume that the observational measure and the randomized trial measure
coincide at baseline, that is,

EP [H ] = E
P̃
[H ]

for every bounded F0-measurable random variable H .
(2) The censoring should be locally independent of the underlying health process L with

respect to P̃ , given the event and treatment history.
(3) The treatment process should be locally independent of the underlying health process L

and censoring C with respect to P̃ , given the event history.

We summarize the local independence structure with respect to the randomized trial measure P̃

in the following local independence graph:

A construction of reasonable randomized trials is given in Theorem 2. Before we come to that,
we will consider censoring in the counterfactual trial. In order to estimate the total treatment
effect, we will consider a marginal model where L is unobserved. One natural choice of effect
measure in the hypothetical experiment could be the hazard of the event process with respect
to the filtration {F A,D

t }t . In order to estimate the hazard with respect to this filtration, we could
try to estimate the hazard of the event before censoring with respect to the filtration {F A,C,D

t }t .
If, in addition, the event process was locally independent of the censoring, given the treatment
process, then these hazards would coincide before censoring; that is, we would have independent
censoring. This would imply that the censoring would not cause bias in the sense that if we did
not pay attention to the underlying biological process, then the hazard of the event would not
depend on whether the patient had been censored or not. We will see in the next theorem that this
is the case for the randomized trial measures.

Theorem 1. If P is a randomized trial measure then we have C �TD
A ∪ D, that is, we have

independent censoring in the marginalized model without L. This gives the following local inde-
pendence graph:
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Proof. The likelihood ratio process

St := dP |Ft

dQ|Ft

is a Q-martingale with respect to Ft . This is shown in [11], Theorem III 3.4. The n-dimensional
Poisson process N has the martingale representation property with respect to the filtration;
see [11], Theorem III 4.37, so there exist predictable processes u1, . . . , un such that:

St = 1 +
n∑

i=1

∫ t

0
ui

s dNi
s,

where Ni
s := Ni

s − s.
Now, let

μi
s := I (Ss− > 0)

(
ui

s

Ss−
+ 1

)
and note that

1 +
n∑

i=1

∫ t

0
Ss−(μi

s − 1)dNi
s = 1 +

∫ t

0
I (Ss− > 0)dSs = St , Q-a.s. (3.2)

The last equality follows from [11], Lemma III 3.6.
Let M

(i)
t := Ni

t −∫ t

0 μi
s ds and note that since �Ni

s is bounded, [11], Lemma III 3.14, says that
the quadratic (co)variation process [Ni,S] has locally integrable variation, so its compensator
〈Ni,S〉 is well defined. We can compute that

〈Ni,S〉t =
∫ t

0
Ss−(μi

s − 1)d〈Ni,Ni〉s =
∫ t

0
Ss−(μi

s − 1)ds,

so we get from Girsanov’s theorem (see [11], Lemma III 3.14) that

N
i

t −
∫ t

0

1

Ss−
d〈Ni,S〉s = Ni

t −
∫ t

0
(μi

s − 1)ds = M
(i)
t

is a local P -martingale with respect to {Ft }t for every i ≤ n.
Now

M
(i)
t − Mi

t =
∫ t

0
λs − μi

s ds

defines a continuous finite variation P -martingale, so μi = λi P -a.s. a.e. and S = E (K), where

Kt := ∑n
i=1

∫ t

0 (λi
s − 1)dN

i

s and E is the stochastic exponential. Let KC
t := ∫ t

0 (λC
s − 1)dN

C

s and
KL

t := KC
t − Kt . Since [KL,KC] = 0 Q-a.s., we have that:

E (K) = E (KC + KL) = E (KC + KL + [KC,KL]) = E (KC)E (KL). (3.3)
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The last equality follows from [14], Theorem II 38.
We now consider filtrations corresponding to the σ -algebras: Gt := F A,D

t∧TD
, GC

t := F A,C,D
t∧TD

,

GL
t := F A,D,L

t∧TD
and GC,L

t := Ft∧TD
. Moreover, we let λ̃D denote the Gt -predictable projection of

λD ; see [11], Theorem I 2.28. It is the unique Gt -predictable process such that

E[λD
S |GS−] = λ̃D

S

for every Gt -predictable stopping time S.
The local independence relations:

(1) L �TD
C|A ∪ C;

(2) C �TD
L|A ∪ D;

(3) C �TD
A|L ∪ D;

(4) C �TD
D|A ∪ L

and (3.3) provide a factorization

dP |GC,L
t−

dQ|GC,L
t−

= SL
t · SC

t ,

where SL is GL
t -predictable and SC is GC

t -predictable. Bayes’ theorem now gives that, when-
ever F is GL

t−-measurable and bounded, then

E[F |Gt−] = E[F |GC
t−] (3.4)

P -a.s. Therefore, if we let F be bounded and GC
t -predictable, then we can compute:

E

[∫ T

0
Fsλ̃

D
s ds

]
=

∫ T

0
E[Fsλ̃

D
s ]ds =

∫ T

0
E[FsE[λD

s |Gs−]]ds

=
∫ T

0
E[FsE[λD

s |GC
s−]]ds =

∫ T

0
E[E[Fsλ

D
s |GC

s−]]ds

= E

[∫ T

0
Fsλ

D
s ds

]
.

If we let M̃D
t = Dt − ∫ t

0 λ̃D
s ds and MD

t = Dt − ∫ t

0 λD
s ds, then we can compute:

E

[∫ T

0
Fs dM̃D

s

]
= E

[∫ T

0
Fs dDs

]
− E

[∫ T

0
Fsλ̃

D
S ds

]

= E

[∫ T

0
Fs dDs

]
− E

[∫ T

0
Fsλ

D
S ds

]

= E

[∫ T

0
Fs dMD

s

]
= 0,
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so M̃D is a P -martingale with respect to the filtration GC
t . Now, since Gt ⊂ GL

t , we have that λ̃D

is GL
t -predictable:

M̃D
t = E[M̃D

TD
|GC

t ] = E[M̃D
TD

I (T < t) + M̃D
TD

I (T ≥ t)|GC
t ]

= M̃D
TD

I (T < t) + E[M̃D
TD

I (T ≥ t)|GC
t ]

= M̃D
TD

I (T < t) + E[M̃D
TD

|F A,C,D
t ]I (T ≥ t)

= E[M̃D
TD

|F A,C,D
t ],

that is, M̃D is a P -martingale with respect to the filtration {F A,C,D
t }t .

Finally, we note that

NA
t∧TD

−
∫ t

0
λA

s I (s ≤ TD)ds (3.5)

defines a P -martingale with respect to Ft . Since λA
s is F A,D

t -predictable, we also see that (3.5)
defines a martingale with respect to {F A,C,D

t }t . �

4. Existence of randomized trial measures

We have now come to the construction of randomized trial measures. The idea is to construct a
reasonable randomized trial measure P̃ from the observational measure P such that P̃ � P . The
absolute continuity is important since this provides a natural method for simulating the empirical
expectation of random variables as if the data was sampled from the counterfactual trial, while
actually using P -distributed samples. To get an idea of how this is done, let J ∈ N, let H be a
bounded random variable and let ω1, . . . ,ωJ be J independently P -distributed samples from �.
The law of large numbers then yields:

lim
J→∞

1

J

J∑
j=1

dP̃

dP
(ωj )H(ωj ) = EP

[
dP̃

dP
H

]
= E

P̃
[H ], P -a.s.

Heuristically, this means that the likelihood ratio can be viewed as a transformation from the
observational study into the counterfactual scenario.

There might exist several reasonable counterfactual trials, each corresponding to a choice of
a well-behaved treatment and censoring strategies. Given a non-negative F A,D

t -predictable pro-
cess λ̃A and a non-negative F A,C,D

t -predictable process λ̃C , we can consider the problem of
finding a randomized trial measure P̃ that has λ̃A as the Ft -intensity of NA and λ̃C as the
Ft -intensity of NC . This suggests that λ̃A is the treatment strategy and λ̃C is the censoring
strategy in the counterfactual trial. We will consider the counterfactual treatment strategy given
by the P -intensity of NA with respect to F A,D

t . The counterfactual censoring strategy will be
given by the P -intensity of NC with respect to F A,D,C

t . This gives a randomized trial measure
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with a likelihood ratio that heuristically corresponds to the stabilized weights one usually con-
siders in the discrete time marginal structural models; see [15]. The problem of finding such
a randomized trial measure is a martingale problem. Note that this problem might not have
a solution. The next theorem shows that if the counterfactual strategies are not too different
from the observed intensities, then there exists a unique corresponding randomized trial mea-
sure P̃ .

Theorem 2. Suppose that there exist positive numbers θ1 and θ2 such that:

λA
s − θ1

√
λA

s ≤ EP [λA
s |F A,D

s− ] ≤ λA
s + θ1

√
λA

s (4.1)

and

λC
s − θ2

√
λC

s ≤ EP [λC
s |F A,C,D

s− ] ≤ λC
s + θ2

√
λC

s (4.2)

for almost every s P -a.s. Let λ̃A denote the P -intensity of NA with respect to the filtration
{F A,D

t }t and let λ̃C denote the P -intensity of NC with respect to the filtration {F A,C,D
t }t .

The equation

Rt :=
∏
s≤t

(
λ̃A

s

λA
s

)�NA
s

exp

(∫ t

0
λ̃A

s − λA
s ds

)
(4.3)

×
∏
s≤t

(
λ̃C

s

λC
s

)�NC
s

exp

(∫ t

0
λ̃C

s − λC
s ds

)

defines a square-integrable P -martingale with respect to the filtration {Ft }t . Moreover,

dP̃ = RT dP

defines a randomized trial measure on (�, F ) such that the martingale dynamics of the biologi-
cal processes D and L coincide for the two probability measures P̃ and P , that is,

Lt −
∫ t

0
HL

s λL
s ds and Dt −

∫ t

0
λD

s I (s ≤ TD)ds

also define P̃ -martingales with respect to {Ft }t .

Proof. We define

Kt :=
∫ t

0

((
λ̃A

s

λA
s

− 1

)
dMA

s +
∫ t

0

(
λ̃C

s

λC
s

− 1

))
dMC

s .

By the innovation theorem, we have that

λ̃A
s = EP [λA

s |F A,D
s− ] and λ̃C

s = EP [λC
s |F A,C,D

s− ] P -a.s., s-a.e. (4.4)
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By (4.1) and (4.2) we have that

(
λ̃A

s

λA
s

− 1

)2

λA
s +

(
λ̃C

s

λC
s

− 1

)2

λC
s ≤ θ1 + θ2, P -a.s., s-a.e.

We therefore obtain that:

〈K,K〉t =
∫ t

0

((
λ̃A

s

λA
s

− 1

)2

λA
s +

(
λ̃C

s

λC
s

− 1

)2

λC
s

)
ds ≤ (θ1 + θ2) · t.

Since 〈K,K〉 is bounded on the interval [0, T ], [12], Theorem II.1, yields that the stochastic
exponential R := E (K), given by the SDE:

Rt = 1 +
∫ t

0
Rs− dKs (4.5)

is square-integrable.
Now

d̃P = RT dP

defines a probability measure P̃ on (�, F ).
Note that we have:

MD −
∫ ·

0

1

Rs−
d〈MD,R〉s = MD and Ml −

∫ ·

0

1

Rs−
d〈Ml,R〉s = Ml

P -a.s. for every l ∈ L. Moreover, Girsanov’s theorem (see [11], Lemma III 3.14) gives that these
processes define local P̃ -martingales with respect to the filtration {Ft }t .

Moreover,

〈MA,R〉t =
∫ t

0
Rs−

(
λ̃A

s

λA
s

− 1

)
d〈MA,MA〉s =

∫ t

0
Rs−(λ̃A

s − λA
s )ds,

so again by Girsanov’s theorem, we have that

MA
t −

∫ t

0

1

Rs−
d〈MA,R〉s = MA

t −
∫ t

0
λ̃A

s − λA
s ds = NA

t −
∫ 1

0
λ̃A

s ds

defines a P̃ -martingale with respect to the filtration {Ft }t . Analogously, we have that

MD
t −

∫ t

0

1

Rs−
d〈MD,R〉s = ND

t −
∫ t

0
λ̃D

s ds

defines a local P̃ -martingale with respect to the filtration {Ft }t .
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Finally, we note that by [11], Theorem I 4.60, the SDE (4.5) has the explicit solution given
by (4.3). Expressions of this form are well known in the literature on marked point process; see,
for instance, [10]. �

Remark 1. Note that the condition (4.1) heuristically means that the short-term “risk” of starting
treatment, given the previous full history,

lim
h→0

h−1P(t ≤ TA < t + h|Ft ),

is not too different from the short-term “risk” of starting treatment when we do not pay attention
to the underlying health process or censoring, that is,

lim
h→0

h−1P(t ≤ TA < t + h|F A,D
t ).

Similarly, condition (4.2) heuristically means that the short-term “risk” of being censored,
given the previous full history, is not too different from the short-term “risk” of being censored
when we do not pay attention to the underlying health process. In words, this means that the
previous history of the health process L alone can not at any time yield too high of a short-term
“risk” of starting treatment or being censored.

5. Weighted additive hazard regression

Suppose that we have observations of m independent individuals until death or censoring from
an observational study and want to estimate the total effect of treatment. Ideally, we would like
to base our estimate on some randomized trial. However, such a trial might not be available.
The marginal structural approach now suggests that we simulate a counterfactual randomized
trial, using the data we already have. We would then like to estimate the counterfactual hazard,
that is, the hazard that the patient would have if he, contrary to the fact, had participated in the
randomized trial. In this way we could compare the total effect of being in treatment versus never
being in treatment.

We assume that the observations from each individual are P -distributed. The observations of
the patient would have been P̃ -distributed if he, contrary to the fact, participated in the hypothet-
ical randomized trial.

We assume that the counterfactual intensity follows Allen’s additive hazard regression model,
see [1,2]. To formalize this, let β0 and β1 be functions on [0, T ]. We assume that we only have
instantaneous effect and that the hazard for the event, with respect to the treatment and event
history, is given by:

β0
t + β1

t At−.

One way to estimate the hazard from the counterfactual trial is to weight the observations by
the corresponding likelihood ratios. We will prove that a suitable weighted variant of Aalen’s
additive hazard regression gives consistent estimators of

∫ t

0 β0
s ds and

∫ t

0 β1
s ds from independent
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P -distributed observations. This requires some notation. Let Y 1
s , . . . , Ym

s be the “at-risk” indi-
cators and A1

t , . . . ,A
m
t be the “at-treatment” indicators for the m independent individuals. We

define the m × 2-matrix:

X
(m)
t =

⎛
⎜⎝

Y 1
t Y 1

t · A1
t−

...
...

Ym
t Ym

t · Am
t−

⎞
⎟⎠ .

Moreover, let R1
t , . . . ,R

m
t be the individual likelihood ratios at time t and let

R
(m)
t− =

⎛
⎜⎜⎜⎜⎜⎝

Y 1
t R1

t− 0 . . . 0

0 Y 2
t R2

t−
...

...
. . . 0

0 0 . . . Ym
t Rm

t−

⎞
⎟⎟⎟⎟⎟⎠ .

Finally, let D1
t , . . . ,D

m
t be event processes for the m individuals before t . The observed events

are now given by the vector

D
(m)
t =

⎛
⎜⎜⎜⎜⎝

∫ t

0
Y 1

s dD1
s

...∫ t

0
Ym

s dDm
s

⎞
⎟⎟⎟⎟⎠ .

Theorem 3. We assume that:

(1) The P -intensity of D with respect to the filtration Ft , λD is dominated by an integrable
function G.

(2) (Positivity) Both the “at-risk” groups in the counterfactual trial are always present, that
is,

E
P̃
[YsAs−] > 0 and E

P̃
[Ys(1 − As−)] > 0

for every s ∈ [0, T ].
(3) There exist integrable and left-continuous functions with right limits β0 and β1 such that

β = (β0, β1)T and such that

D
(m)
t −

∫ t

0
X(m)

s βs ds

is a P̃ -martingale with respect to the filtration F A,C,D
t , i.e., Yt (β

0
t + β1

t A1
t−) is the

P̃ -intensity of D w.r.t. the filtration F A,C,D
t .
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We let

J (m)
s := I

(
m∑

i=1

Ri
t−Y i

t (1 − Ai
t−) > 0 and

m∑
i=1

Ri
t−Y i

t A
i
t− > 0

)
,

B̂
(m)
t :=

∫ t

0
J (m)

s

(
X(m)T

s R
(m)
s− X(m)

s

)−1
X(m)T

s R
(m)
s− dD(m)

s

and

Bt :=
∫ t

0
βs ds.

Now B̂(m) is a consistent estimator of Bt in the sense that:

lim
m

P
(
d
(
B̂(m),B

) ≥ ε
) = 0

for every ε > 0, where d denotes the Skorokhod metric; see [11] or [4].

Proof. We define:

Y
(m)
t =

⎛
⎜⎝

Y 1
t

...

Ym
t

⎞
⎟⎠ , λ

(m)
t =

⎛
⎜⎝

λ1
t

...

λm
t

⎞
⎟⎠ and M

(m)
t =

⎛
⎜⎜⎜⎜⎝

D1
t −

∫ t

0
λ1

s ds

...

Dm
t −

∫ t

0
λm

s ds

⎞
⎟⎟⎟⎟⎠ .

We will often drop the index (m) in order to simplify the notation. Another simplification of the
notation we will use is E[·] for the expectation with respect to P and Ẽ[·] for the expectation
with respect to P̃ .

First we prove that

lim
m

P

(
sup
t≤T

∣∣∣∣
∫ t

0
Js(X

T
s Rs−Xs)

−1XT
s Rs−λs ds − Bt

∣∣∣∣ ≥ ε

)
= 0 (5.1)

for every ε > 0. Define:

V :=
(

1 0

−1 1

)
and St :=

⎛
⎜⎜⎜⎜⎝

m∑
i=1

Ri
t−Y i

t (1 − Ai
t−) 0

0
m∑

i=1

Ri
t−Y i

t A
i
t

⎞
⎟⎟⎟⎟⎠ .

The matrix V is invertible and, using the fact that the Y i and the Ai are indicators, we have:

V TXT
t Rt−XtV = St ,
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that is, XT
t Rt−Xt is congruent to the diagonal matrix St . A simple matrix computation gives that

(XT
t Rt−Xt)

−1 = V S−1
t V T,

when Js > 0.
Now, we see that:

Jt (X
T
t Rt−Xt)

−1XT
t Rt−λt = JtV (H )0

t H 1
t ,

where

H 0
t =

∑m
i=1 Ri

t−Y i
t (1 − Ai

t−)λi
t∑m

i=1 Ri
t−Y i

t (1 − Ai
t−)

and H 1
t =

∑m
i=1 Ri

t−Y i
t A

i
t−λi

t∑m
i=1 Ri

t−Y i
t A

i
t−

.

Since Ẽ[YtAt−] > 0, the law of large numbers implies that H 0
t converges in probability to

Ẽ[Yt (1 − At−)λD
t ]

Ẽ[Yt (1 − At−)] = Ẽ[λD
t |Yt (1 − At−) = 1].

Analogously, since E[Yt (1 − At−)] > 0, we have that H 1
t converges in probability to

Ẽ[YtAt−λD
t ]

Ẽ[YtAt−] = Ẽ[λD
t |YtAt−1 = 1].

By a similar argument, we see that {J (m)
s } converges in probability to 1 for almost every s.

Since the P -intensity of D with respect to F A,C,D
s coincides with E[λD

s |F A,C,D
s− ] P -a.s. for

almost every s, we have that:

Ẽ[λD|Yt (1 − At−) = 1] = β0
t and Ẽ[λD

t |YtAt− = 1] = β0
t + β1

t .

This means that

Js(X
T
t Rt−Xt)

−1XT
t Rt−λt (5.2)

converges in probability to βt when m increases. Note that

E

[
sup

t

∣∣∣∣
∫ t

0
JsV

(
H 0

s

H 1
s

)
ds −

∫ t

0
βs ds

∣∣∣∣
]

≤
∫ T

0
E

[∣∣∣∣JsV

(
H 0

s

H 1
s

)
− βs

∣∣∣∣
]

ds,

so by the dominated convergence theorem, we obtain (5.1).
We will now prove that

Zt := B̂t −
∫ t

0
Js(X

T
s Rs−Xs)

−1XT
s Rs−λs ds

=
∫ t

0
(XT

s Rs−Xs)
−1XT

s Rs− dMs
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converges weakly to 0. Note that:

〈Z,Z〉t =
∫ t

0
Js(X

T
s Rs−Xs)

−1XT
s Rs− d〈M,M〉sRs−Xs(X

T
s Rs−Xs)

−1

=
∫ t

0
JsV S−1

s V TXT
s Rs− d〈M,M〉sRs−XsV S−1

s V T

= V

∫ t

0
JsS

−2
s Us dsV T,

where

Us =

⎛
⎜⎜⎜⎜⎝

m∑
i=1

Ri2
s−Y i

s (1 − Ai
s−)λi

s 0

0
n∑

i=1

Ri2
s−Y i

s A
i
s−λi

s

⎞
⎟⎟⎟⎟⎠ .

Now,

E

[
sup

t

∣∣∣∣
∫ t

0
V JsS

−2
s UsV

T ds

∣∣∣∣
]

≤
∫ T

0
E[|V JsS

−2
s UsV

T|]ds,

so, by the dominated convergence theorem, {〈Z(m),Z(m)〉} converges uniformly in probability
to 0.

We define

Z
(ε,m)
t :=

∫ t

0
I
(|Js(X

T
s Rs−Xs)

−1XTRs−Ys | ≥ ε
)
Js(X

T
s Rs−Xs)

−1XTRs− dMs

and see that

0 ≤ 〈
Z(ε,m),Z(ε,m)

〉
t
≤ 〈

Z(m),Z(m)
〉
t
.

Since both {〈
Z(ε,m),Z(ε,m)

〉}
m

and
{〈

Z(m),Z(m)
〉}

m

converge uniformly in probability to 0, the central limit theorem for martingales ([11], Theo-
rem VIII 3.22) implies that {Z(m)}m converges weakly to 0.

We have that

B̂
(m)
t = Z

(m)
t +

∫ t

0
Js(X

T
s Rs−Xs)

−1XT
s Rs−λ(m)

s ds,

so the sequence {B̂(m)}m is the sum of two C-tight sequences. Jacod and Shiryaev [11], Corol-
lary VI 3.33, implies that the sequence itself is also C-tight. By Slutsky’s theorem, the finite-
dimensional distributions on the form L(B̂

(m)
t1

, . . . , B̂
(m)
tj

) converge weakly to the Dirac measures:
δBt1 ,...,Btj

. This means that {B̂(m)}m converges in law and therefore in probability to B . �
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6. Concluding remarks

We have shown that marginal structural modeling can be understood in terms of change of prob-
ability measures. The author believes that this is an elucidating point of view that is natural in
the framework of modern probability theory.

As stressed by several authors, there is a very important and highly non-trivial assumption one
has to make in order to interpret effects from marginal structural models as causal. This is the
assumption of no unmeasured confounders, or equivalently: all confounders are measured. This
means that every process that affects the short-term behavior of both the treatment and the cen-
soring or both the treatment and the event must be observed. In this equivalent form, it becomes
more apparent that this is just an assumption about completeness of the model. This completeness
assumption is not that mysterious. When modeling various phenomena in the natural sciences,
one typically assumes that all the important variables are contained in the model. This is also
necessary in the MSM approach. However, it is important to note that this is not generally a
statistically testable assumption. It is also not a condition that would follow from a mathematical
argument without further assumptions about the model.

Heuristically, the MSM approach provides an adjustment of the the treatment effect bias
caused by the measured confounders. In the marginal structural model approach, instead of mod-
eling the underlying and potentially very complicated biology, one models a randomized trial.
The problem of computing marginal effects then splits into two parts. The first problem is to
model the marginal intensity of the event in the simulated “randomized trial”. If one knew the
corresponding likelihood ratio process, then this would be obtainable using, for instance, the
weighted additive hazard regression from the previous section. In order to compute this likeli-
hood ratio, one has to deal with the second part of our problem. That is to model the dynamics of
the treatment and censoring processes given the full and the marginal history in the observational
study. This is a crucial point. We have chosen not to deal with this problem in the current paper.
However, one could use regression techniques to do this at least approximately. In the discrete
time setting, one typically uses pooled logistic regressions see [8,19]. In the continuous-time
setting it is probably more natural to use additive hazard or Poisson regression to estimate the
censoring and treatment intensities, both with respect to the full covariate history and marginal
covariate history. This will be the topic of future work. Once these intensities are known, one can
compute the likelihood ratio process using (4.3).

Acknowledgements

Supported by the Research Council of Norway. Project: 170620/V30. I would like to thank
Odd O. Aalen, Vanessa Didelez and Jon Michael Gran for helpful discussions related to this
project.

References

[1] Aalen, O., Borgan, Ø. and Gjessing, H. (2008). Survival and Event History Analysis: A Process Point
of View. New York: Springer. MR2449233

http://www.ams.org/mathscinet-getitem?mr=2449233


Martingales and marginal structural models 915

[2] Andersen, P.K., Borgan, Ø., Gill, R.D. and Keiding, N. (1993). Statistical Models Based on Counting
Processes. New York: Springer. MR1198884

[3] Aalen, O.O., Borgan, Ø., Keiding, N. and Thormann, J. (1980). Interaction between life history events.
Nonparametric analysis for prospective and retrospective data in the presence of censoring. Scand. J.
Statist. 7 161–171. MR0605986

[4] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. New York: Wiley. MR1700749
[5] Brémaud, P. (1981). Point Processes and Queues. New York: Springer. MR0636252
[6] Didelez, V. (2008). Graphical models for marked point processes based on local independence. J. Roy.

Statist. Soc. Ser. B 70 245–264. MR2412641
[7] Florens, J.-P. and Fougere, D. (1996). Noncausality in continuous time. Econometrica 64 1195–1212.

MR1403234
[8] Hernán, M.A., Brumback, B. and Robins, J.M. (2000). Marginal structural models to estimate the

causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11 561–570.
[9] Hernán, M.A., Hernández-Díaz, S. and Robins, J.M. (2004). A structural approach to selection bias.

Epidemiology 15 615.
[10] Jacod, J. (1974). Multivariate point processes: Predictable projection, Radon–Nikodým derivatives,

representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235–253. MR0380978
[11] Jacod, J. and Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Berlin:
Springer. MR1943877

[12] Lépingle, D. and Mémin, J. (1978). Sur l’intégrabilité uniforme des martingales exponentielles.
Z. Wahrsch. Verw. Gebiete 42 175–203. MR0489492

[13] Lok, J.J. (2008). Statistical modeling of causal effects in continuous time. Ann. Statist. 36 1464–1507.
MR2418664

[14] Protter, P.E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic Modelling
and Applied Probability 21. Berlin: Springer. MR2273672

[15] Robins, J.M., Hernán, M.A. and Brumback, B. (2000). Marginal structural models and causal infer-
ence in epidemiology. Epidemiology 11 550–560.

[16] Robins, J. (1992). Estimation of the time-dependent accelerated failure time model in the presence of
confounding factors. Biometrika 79 321–334. MR1185134

[17] Robins, J.M. (1998). Structural nested failure time models. In The Encyclopedia of Biostatistics 4372–
4389. Chichester: Wiley.

[18] Schweder, T. (1970). Composable Markov processes. J. Appl. Probab. 7 400–410. MR0264755
[19] Sterne, J.A., Hernán, M.A., Ledergerber, B., Tilling, K., Weber, R., Sendi, P., Rickenbach, M.,

Robins, J.M. and Egger, M. (2005). Long-term effectiveness of potent antiretroviral therapy in pre-
venting AIDS and death: A prospective cohort study. Lancet 366 378–384.

Received March 2009 and revised June 2010

http://www.ams.org/mathscinet-getitem?mr=1198884
http://www.ams.org/mathscinet-getitem?mr=0605986
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=0636252
http://www.ams.org/mathscinet-getitem?mr=2412641
http://www.ams.org/mathscinet-getitem?mr=1403234
http://www.ams.org/mathscinet-getitem?mr=0380978
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=0489492
http://www.ams.org/mathscinet-getitem?mr=2418664
http://www.ams.org/mathscinet-getitem?mr=2273672
http://www.ams.org/mathscinet-getitem?mr=1185134
http://www.ams.org/mathscinet-getitem?mr=0264755

	Introduction
	Observable processes and local independence
	Observable processes
	Separability
	A martingale measure
	Non-influence
	Local independence
	Independent censoring
	Local independence before a stopping time
	Local independence graphs

	Models of clinical trials
	A patient model
	The event process
	Measurements of the underlying biological process
	Right censoring
	The treatment process

	Local independences with respect to the observational measure
	Randomized trial measures

	Existence of randomized trial measures
	Weighted additive hazard regression
	Concluding remarks
	Acknowledgements
	References

