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The objective of this paper is to provide, for the problem of univariate symmetry (with respect to specified or
unspecified location), a concept of optimality, and to construct tests achieving such optimality. This requires
embedding symmetry into adequate families of asymmetric (local) alternatives. We construct such families
by considering non-Gaussian generalizations of classical first-order Edgeworth expansions indexed by a
measure of skewness such that (i) location, scale and skewness play well-separated roles (diagonality of the
corresponding information matrices) and (ii) the classical tests based on the Pearson–Fisher coefficient of
skewness are optimal in the vicinity of Gaussian densities.
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1. Introduction

1.1. Testing for symmetry

Symmetry is one of the most important and fundamental structural assumptions in statistics,
playing a major role, for instance, in the identifiability of location or intercept under nonpara-
metric conditions: see [2,14,15]. This importance explains the huge variety of existing testing
procedures of the null hypothesis of symmetry in an i.i.d. sample X1, . . . ,Xn; see [8] for a sur-
vey.

Traditional tests of the null hypothesis of symmetry – the hypothesis under which X1 − θ
d=

−(X1 − θ) for some location θ ∈ R, with
d= standing for equality in distribution – are based

on standardized empirical third-order moments. Let m
(n)
k (θ) := n−1 ∑n

i=1(Xi − θ)k and m
(n)
k :=

m
(n)
k (X̄(n)), where X̄(n) := n−1 ∑n

i=1 Xi . When the location θ is specified, the test statistic is

S
(n)
1 (θ) := n1/2m

(n)
3 (θ)/

(
m

(n)
6 (θ)

)1/2
, (1.1)

the null distribution of which, under finite sixth-order moments, is asymptotically standard nor-
mal. When θ is unspecified, the classical test is based on the empirical coefficient of skewness

b
(n)
1 := m

(n)
3 /s3

n, (1.2)
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where sn := (m
(n)
2 )1/2 stands for the empirical standard error in a sample of size n. More pre-

cisely, this test relies on the asymptotic standard normal distribution (still under finite moments
of order six) of

S
(n)
2 := n1/2m

(n)
3

/(
m

(n)
6 − 6s2

nm
(n)
4 + 9s6

n

)1/2
, (1.3)

which, under Gaussian densities, asymptotically reduces to
√

n/6b
(n)
1 .

These two tests are generally considered as Gaussian procedures, although they do not require
any Gaussian assumptions and despite the fact that none of them can be considered optimal in
any Gaussian sense, since asymmetric alternatives clearly cannot belong to a Gaussian universe.
Despite the long history of the problem, the optimality features of those classical procedures
thus are all but clear, and optimality issues, in that fundamental problem, remain essentially
unexplored.

The main objective of this paper is to provide this classical testing problem with a concept of
optimality that confirms practitioners’ intuition (i.e., justifying the b

(n)
1 -based Gaussian practice),

and to construct tests achieving such optimality. This requires embedding the null hypothesis of
symmetry into adequate families of asymmetric alternatives. We therefore define local (in the
LeCam sense) alternatives indexed by location, scale and a measure of skewness in such a way
that:

(i) Location, scale, and skewness play well-separated roles (diagonality of the corresponding
information matrices).

(ii) The traditional tests based on b
(n)
1 (more precisely, based on S

(n)
2 given in (1.3)) become

locally and asymptotically optimal in the vicinity of Gaussian densities.

As we shall see, part (ii) of this objective is achieved by considering local first-order Edgeworth
approximations of the form

φ(x − θ) + n−1/2ξ(x − θ)φ(x − θ)
(
(x − θ)2 − κ

)
, (1.4)

where φ as usual stands for the standard normal density, κ (= 3) is the Gaussian kurtosis coeffi-
cient, θ is a location parameter, and ξ a measure of skewness. Adequate modifications of (1.4),
playing similar roles in the vicinity of non-Gaussian standardized symmetric reference densities
f1, are proposed in (2.2).

The resulting tests of symmetry (for specified as well as for unspecified location θ ) are valid
under a broad class of symmetric densities, and parametrically efficient at the reference (stan-
dardized) density f1. Of particular interest are the pseudo-Gaussian tests (associated with a
Gaussian reference density; see Proposition 3.6), which require finite moments of order six
and appear to be asymptotically equivalent (under their specified-θ version as well as under
the unspecified-θ one) to the test (1.3) based on b

(n)
1 , and the Laplace tests (associated with a

double-exponential reference density; see Proposition 3.6), which only require moments of order
four and are closely related with the tests against Fechner asymmetry derived in [3].

These tests are of a parametric nature. Since the null hypothesis of symmetry enjoys a rich
group invariance structure, classical maximal invariance arguments naturally bring signs and
signed ranks into the picture. Such a nonparametric approach is adopted in a companion paper
[4], where we construct signed-rank versions of the parametrically efficient tests proposed here.
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These signed-rank tests are distribution-free (asymptotically so in case of an unspecified loca-
tion θ ) under the null hypothesis of symmetry, and therefore remain valid under much milder
distributional assumptions (for the specified location case, they are valid in the absence of any
distributional assumption).

The main technical tool throughout the paper is LeCam’s asymptotic theory of statistical ex-
periments and the properties of locally asymptotically normal (LAN) families. LAN has become
a standard tool in asymptotics: see [12] or Chapters 6–9 of [17] for details. Log-likelihoods in a
LAN family with k-dimensional parameter ϑ admit local quadratic approximations of the form
τ ′�(n)

ϑ − 1
2τ ′�ϑτ , where the random vector �

(n)
ϑ , called a central sequence, is asymptotically

normal N (�ϑτ ,�ϑ ) under sequences of parameter values of the form ϑ + n−1/2τ (local al-
ternatives). Let φ∗(�) be an optimal test (uniformly most powerful, maximin, most stringent,
. . . ) in the Gaussian shift model describing a hypothetical observation � with distribution in the
family {N (�ϑτ ,�ϑ ) | τ ∈ R

k} (�ϑ specified). Those families are extremely simple, and optimal
tests in that context are well known (see, e.g., Section 11.9 of [11]). Then, the sequence φ∗(�(n)

ϑ )

is a sequence of locally asymptotically optimal (locally asymptotically uniformly most powerful,
maximin, most stringent, . . . ) tests for the original problem – where optimality is based on the
local convergence of risk functions to the risk functions of Gaussian shift experiments. More
analytical characterizations can be found, for instance, in [5].

1.2. Outline of the paper

The problem we are considering throughout is that of testing the null hypothesis of symmetry.
In the notation of Section 1.1, ξ (see (2.2) for a more precise definition) is thus the parameter of
interest; the location θ and the standardized null symmetric density f1 either are specified or play
the role of nuisance parameters, whereas the scale σ (not necessarily a standard error) always is
a nuisance.

The paper is organized as follows. In Section 2.1 we describe the Edgeworth-type families of
local alternatives, extending (1.4), that we are considering. Section 2.2 establishes the local and
asymptotic normality (with respect to location, scale and the asymmetry parameters) result to be
used throughout; actually, we establish a slightly stronger version of LAN, called ULAN (uni-
form LAN), which allows us to handle the problems related with estimated nuisance parameters.
The classical LeCam theory then is used in Section 3.1 for developing asymptotically optimal
procedures for testing symmetry (ξ = 0), with specified or unspecified location θ but specified
standardized symmetric density f1. The more realistic case of an unspecified f1 is treated in
Section 3.2, where we obtain versions of the optimal (at given f1) tests that remain valid under
g1 �= f1, for specified (Section 3.2.1) and unspecified (Section 3.2.2) location θ , respectively.
The particular case of pseudo-Gaussian procedures (which are optimal for Gaussian f1 but valid
under any symmetric density with finite moments of order six) is studied in detail in Section 3.3
and their relation with classical tests of symmetry is discussed. We also show that the Laplace
tests (which are optimal for double-exponential f1 but valid under any symmetric density with
finite fourth-order moment) are closely related to the Fechner-type tests derived in [3]. The finite-
sample performances of these tests are investigated via simulations in Section 4, where they are
applied to the classical skew-normal and skew-t densities.
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2. A class of locally asymptotically normal families of
asymmetric distributions

2.1. Families of asymmetric densities based on Edgeworth approximations

Denote by X(n) := (X
(n)
1 , . . . ,X

(n)
n ), n ∈ N an i.i.d. n-tuple of observations with common den-

sity f . The null hypotheses we are interested in are:

(a) The hypothesis H(n)
θ of symmetry with respect to specified location θ ∈ R: under H(n)

θ ,
the Xi ’s have density function

x �→ f (x) := σ−1f1
(
(x − θ)/σ

)
(2.1)

(all densities are over the real line, with respect to the Lebesgue measure) for some un-
specified σ ∈ R

+
0 , where f1 belongs to the class of standardized symmetric densities

F0 :=
{
h1 :h1(−z) = h1(z) for all z ∈ R and

∫ 1

−∞
h1(z)dz = 0.75

}
.

The scale parameter σ (associated with the symmetric density f ) that we are considering
here thus is not the standard deviation, but the median of the absolute deviations |Xi − θ |;
this avoids making any moment assumptions.

(b) The hypothesis H(n) :=⋃
θ∈R

H(n)
θ of symmetry with respect to unspecified location (and

scale): there exist (θ, σ ) such that the Xi ’s have density (2.1).

In both cases, the standardized density f1 may be specified (Section 3.1) or not (Sections 3.2–
3.4). The specified-f1 problem, however, mainly serves as a preparation for the more realistic
unspecified-f1 one.

As explained in the introduction, a characterization of efficient testing requires the definition
of families of asymmetric alternatives exhibiting some adequate structure, such as local asymp-
totic normality, at the null. For a selected class of densities f enjoying the required regularity
assumptions, we therefore are embedding the null hypothesis of symmetry into families of dis-
tributions indexed by θ ∈ R (location), σ ∈ R

+
0 (scale) and a parameter ξ ∈ R characterizing

asymmetry. More precisely, consider the class F1 of densities f1 satisfying:

(i) (symmetry and standardization) f1 ∈ F0;
(ii) (absolute continuity) there exists ḟ1 such that, for all z1 < z2,

f1(z2) − f1(z1) =
∫ z2

z1

ḟ1(z)dz;

(iii) (strong unimodality) z �→ φf1(z) := −ḟ1(z)/f1(z) is monotone increasing;
(iv) (finite Fisher information) K(f1) := ∫ +∞

−∞ z4φ2
f1

(z)f1(z)dz, hence also, under strong uni-
modality,

I(f1) :=
∫ +∞

−∞
φ2

f1
(z)f1(z)dz and J (f1) :=

∫ +∞

−∞
z2φ2

f1
(z)f1(z)dz
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are finite;
(v) (polynomial tails) ∫ ∞

y

f1(z)dz = O(y−β) as y → ∞

for some β > 0 and

φf1(z) = o(zβ/2−2) as z → ∞.

That class F1 thus consists of all symmetric standardized densities f1 that are absolutely contin-
uous, strongly unimodal (that is, log-concave) and have finite information I(f1) and J (f1) for
location and scale, and, as we shall see, K(f1) for asymmetry, with tails satisfying (v).

For all f1 ∈ F1, denote by κ(f1) := J (f1)/I(f1) the ratio of information for scale and infor-
mation for location; κ(f1), as we shall see, for Gaussian density (f1 = φ1) reduces to kurtosis
(κ(φ1) = 3), and can be interpreted as a generalized kurtosis coefficient. Finally, write P(n)

θ,σ,ξ ;f1

for the probability distribution of X(n) when the Xi ’s are i.i.d. with density

f (x) = σ−1f1

(
x − θ

σ

)
− ξσ−1ḟ 1

(
x − θ

σ

)((
x − θ

σ

)2

− κ(f1)

)
I [|x − θ | ≤ σ |z∗|]

(2.2)

− sign(ξ)σ−1f1

(
x − θ

σ

)
{I [x − θ > sign(−ξ)σ |z∗|] − I [x − θ < sign(ξ)σ |z∗|]}.

Here θ ∈ R and σ ∈ R
+ clearly are location and scale parameters, ξ ∈ R is a measure of skew-

ness, κ(f1) (strictly positive for f1 ∈ F1) the generalized kurtosis coefficient just defined and
z∗ the unique (for ξ small enough; unicity follows from the monotonicity of φf1 ) solution of
f1(z

∗) = ξ ḟ1(z
∗)((z∗)2 − κ(f1)). The function f defined in (2.2) is indeed a probability density

(non-negative, integrating up to one), since it is obtained by adding and subtracting the same
probability mass

|ξ |
σ

∫ ∞

θ

min

(
ḟ 1

(
x − θ

σ

)((
x − θ

σ

)2

− κ(f1)

)
, f1

(
x − θ

σ

))
dx

on both sides of θ (according to the sign of ξ ). Note that ξ > 0 implies f (x) = 0 for x − θ <

−σ |z∗| and f (x) = 2σ−1f1((x − θ)/σ ) for x − θ > σ |z∗|. Moreover, x �→ f (x) is continuous
whenever ḟ1(x) is; vanishes for x ≤ θ + σz∗ if ξ > 0, for x ≥ θ + σz∗ if ξ < 0; and is left- or
right-skewed according as ξ < 0 or ξ > 0. As for z∗, it tends to −∞ as ξ ↓ 0, to ∞ as ξ ↑ 0; in
the Gaussian case, it is easy to check that |z∗| = O(|ξ |−1/3) as ξ → 0.

The intuition behind this class of alternatives is that, in the Gaussian case, (2.2), with
ξ = n−1/2τ yields (for x ∈ [θ ± σz∗]) the first-order Edgeworth development of the density
of the standardized mean of an i.i.d. n-tuple of variables with third-order moment 6τσ 3 (where
standardization is based on the median σ of absolute deviations from θ ). For a “small” value of
the asymmetry parameter ξ , of the form n−1/2τ , (2.2) thus describes the type of deviation from
symmetry that corresponds to the classical central limit context. Hence, if a Gaussian density
is justified as resulting from the additive combination of a large number of small independent
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symmetric shocks, the locally asymmetric f results from the same additive combination of inde-
pendent but slightly skew shocks. As we shall see, the locally optimal test in such a case happens
to be the traditional test based on b

(n)
1 (see (1.2)).

Besides the Gaussian one (with standardized density φ1(z) := √
a/2π exp(−az2/2)), interest-

ing special cases of (2.2) are obtained in the vicinity of:

(i) The double-exponential or Laplace distributions, with standardized density

f1(z) = fL(z) := (1/2d) exp(−|z|/d),

I(f1) = 1/d2, J (f1) = 2 and K(f1) = 24d2.
(ii) The logistic distributions, with standardized density

f1(z) = fLog(z) := √
b exp

(−√
bz
)
/
(
1 + exp

(−√
bz
))2

,

I(f1) = b/3, J (f1) = (12 + π2)/9 and K(f1) = π2(120 + 7π2)/45b.
(iii) The power-exponential distributions, with standardized densities

f1(z) = fexpη
(z) := Cexpη

exp(−(gηz)
2η),

η ∈ N0, I(f1) = 2g2
ηη
(2 − 1/2η)/
(1 + 1/2η), J (f1) = 1 + 2η and K(f1) = 2gηη/


(1 + 1/2η) (the positive constants Cexpη
, a, b, d and gη are such that f1 ∈ F1).

Although not strongly unimodal, the Student distributions with ν > 2 degrees of freedom also
can be considered here (strong unimodality indeed is essentially used as a sufficient condition
for the existence of z∗ in (2.2) – an existence that can be checked directly in the Student case).
Standardized Student densities take the form

f1(z) = ftν (z) := Ctν (1 + aνz
2/ν)−(ν+1)/2,

with I(f1) = aν(ν + 1)/(ν + 3), J (f1) = 3(ν + 1)/(ν + 3) and K(f1) = 15ν(ν + 1)/aν(ν −
2)(ν + 3) (Ctν and aν are normalizing constants). Note that the corresponding Gaussian values,
namely I(φ1) = a ≈ 0.4549, J (φ1) = 3 and K(φ1) = 15/a, are obtained by taking limits as
ν → ∞.

Figures 1 and 2 provide graphical representations of some densities in the Gaussian (f1 = φ1)
and double-exponential (f1 = fL) Edgeworth families (2.2), respectively. In the Gaussian case,
the skewed densities are continuous, while the double-exponential ones, due to the discontinuity
of ḟL(x) at x = 0, exhibit a discontinuity at the origin.

2.2. Uniform local asymptotic normality (ULAN)

The main technical tool in our derivation of optimal tests is the uniform local asymptotic nor-
mality (ULAN), with respect to ϑ := (θ, σ, ξ)′, at (θ, σ,0)′, of the parametric families

P (n)
f1

:=
⋃
σ>0

P (n)
σ ;f1

:=
⋃
σ>0

{
P(n)

θ,σ,ξ ;f1
| θ ∈ R, ξ ∈ R

}
, (2.3)
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Figure 1. Graphical representation of the Gaussian Edgeworth family (2.2) (f1 = φ1), for ξ = 0, 0.05,
0.10 and 0.15.

where f1 ∈ F1. More precisely, the following result holds (see the Appendix for proof).

Proposition 2.1 (ULAN). For any f1 ∈ F1, θ ∈ R, and σ ∈ R
+
0 , the family P (n)

f1
is ULAN at

(θ, σ,0)′, with (writing Zi for Z
(n)
i (θ, σ ) := σ−1(X

(n)
i − θ) and φf1 for −ḟ1/f1) central se-

quence

�
(n)
f1

(ϑ) =:
⎛⎜⎝�

(n)
f1;1(ϑ)

�
(n)
f1;2(ϑ)

�
(n)
f1;3(ϑ)

⎞⎟⎠
(2.4)

= n−1/2
n∑

i=1

⎛⎝ σ−1φf1(Zi)

σ−1
(
φf1(Zi)Zi − 1

)
φf1(Zi)

(
Z2

i − κ(f1)
)
⎞⎠

and full-rank information matrix

�f1(ϑ) =
(

σ−2 I(f1) 0 0
0 σ−2

(
J (f1) − 1

)
0

0 0 γ (f1)

)
, (2.5)

where γ (f1) := K(f1) − J 2(f1)/I(f1).
More precisely, for any ϑ (n) := (θ(n), σ (n),0)′ such that θ(n) − θ = O(n−1/2) and σ (n) − σ =

O(n−1/2), and for any bounded sequence τ (n) = (t(n), s(n), τ (n))′ ∈ R
3, we have, under P(n)

ϑ (n);f1
,

Figure 2. Graphical representation of the double-exponential Edgeworth family (2.2) (f1 = fL ), for ξ = 0,
0.05, 0.10 and 0.15.
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as n → ∞,

�
(n)

ϑ(n)+n−1/2τ (n)/ϑ (n);f1
:= log

(dP(n)

ϑ (n)+n−1/2τ (n);f1

dP(n)

ϑ (n);f1

)

= τ (n)′�(n)
f1

(
ϑ (n)

)− 1

2
τ (n)′�f1(ϑ)τ (n) + oP(1)

and

�
(n)
f1

(
ϑ (n)

) L−→ N (0,�f1(ϑ)).

The diagonal form of the information matrix �f1(ϑ) confirms that location, scale and skew-
ness, in the parametric family (2.3), play distinct and well-separated roles. The practical conse-
quences of that orthogonality (in the sense of information) property, as we shall see, are twofold:

(a) The fact that location and scale are unspecified has no cost in terms of efficiency and under
specified standardized density f1 when testing for symmetry.

(b) Substituting root-n-consistent (and, in principle, duly discretized: see assumption (C2)
below) estimators for the true values has no impact on the asymptotic validity and local
powers, under specified standardized density f1, of tests for symmetry.

Note that orthogonality between the scale and skewness components of �
(n)
f1

(ϑ) automatically
follows from the symmetry of f1, while for location and skewness, this orthogonality is a conse-
quence of the definition of κ(f1). The Gaussian versions of (2.4) and (2.5) are

�
(n)
φ1

(ϑ) = n−1/2
n∑

i=1

⎛⎜⎝
aσ−1Zi

σ−1(aZ2
i − 1)

aZi

(
Z2

i − 3

a

)
⎞⎟⎠

and

�φ1(ϑ) =
(

aσ−2 0 0
0 2σ−2 0
0 0 6/a

)
,

respectively (recall that a ≈ 0.4549).

3. Locally asymptotically optimal tests

The various test statistics described in this section are listed, for easy reference, in Table 3, placed
at the end of Section 5.
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3.1. Locally asymptotically optimal tests: Specified density

For specified f1 ∈ F1, consider the null hypothesis

H(n)
θ;f1

:=
⋃

σ∈R
+
0

{
P(n)

θ,σ,0;f1

}
of symmetry with respect to some specified location θ , and the null hypothesis

H(n)
f1

:=
⋃
θ∈R

⋃
σ∈R

+
0

{
P(n)

θ,σ,0;f1

}
of symmetry with respect to unspecified θ . ULAN and the diagonal structure of (2.5) imply that
substituting discretized root-n-consistent estimators θ̂ and σ̂ for the unknown θ and σ has no
influence, asymptotically, on the ξ -part of the central sequence.

Recall that a sequence of estimators λ̂(n) defined in a sequence of experiments {P(n)
λ | λ ∈ �}

indexed by some parameter λ is root-n-consistent and asymptotically discrete if, under P(n)
λ , as

n → ∞:

(C1) λ̂(n) − λ = OP(n−1/2).
(C2) The number of possible values of λ̂(n) in balls with O(n−1/2) radius centered at λ is

bounded as n → ∞.

An estimator λ(n) satisfying (C1) but not (C2) is easily discretized by letting, for some arbitrary
constant c > 0, λ

(n)
# := (cn1/2)−1 sign(λ(n))�cn1/2|λ(n)|�, which satisfies both (C1) and (C2).

Subscripts # in the sequel are used for estimators (θ̂#, σ̂#, . . . ) satisfying (C1) and (C2). It should
be noted, however, that (C2) has no implications in practice, where n is fixed, as the discretization
constant c can be chosen arbitrarily large.

It follows from the diagonal form of the information matrix (2.5) that locally uniformly as-
ymptotically most powerful tests of H(n)

θ;f1
(resp., of H(n)

f1
) can be based on �

(n)
f1;3(θ, σ̂#,0) (resp.,

on �
(n)
f1;3(θ̂#, σ̂#,0)), hence on T

(n)
f1

(θ, σ̂#) (resp., on T
(n)
f1

(θ̂#, σ̂#)), where

T
(n)
f1

(θ, σ ) := 1√
nγ (f1)

n∑
i=1

φf1(Zi(θ, σ ))
(
Z2

i (θ, σ ) − κ(f1)
)
. (3.1)

Root-n-consistent (under the null hypothesis of symmetry) estimators of θ and σ that do not
require any moment assumptions are, for instance, the medians θ̂ := Med(X

(n)
i ) and σ̂ :=

Med(|X(n)
i − θ̂ |) of the X

(n)
i ’s and of their absolute deviations from θ̂ , respectively.

The following proposition then results from classical results on ULAN families (see, e.g.,
Chapter 11 of [11]).

Proposition 3.1. Let f1 ∈ F1. Then:
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(i) T
(n)
f1

(θ̂#, σ̂#) = T
(n)
f1

(θ, σ ) + oP(1) is asymptotically normal, with mean zero under

P(n)
θ,σ,0;f1

, mean τγ 1/2(f1) under P(n)

θ,σ,n−1/2τ ;f1
and variance one under both.

(ii) The sequence of tests rejecting the null hypothesis of symmetry (with standardized density
f1) whenever T

(n)
f1

(θ, σ̂#) (resp., T
(n)
f1

(θ̂#, σ̂#)) exceeds the (1 − α) standard normal quan-

tile zα is locally asymptotically most powerful at asymptotic level α for H(n)
θ;f1

(resp., for

H(n)
f1

) against
⋃

ξ>0
⋃

σ∈R
+
0
{P(n)

θ,σ,ξ ;f1
} (resp.,

⋃
ξ>0

⋃
θ∈R

⋃
σ∈R

+
0
{P(n)

θ,σ,ξ ;f1
}).

This confirms that unspecified location θ and scale σ do not induce any loss of efficiency when
the standardized density f1 itself is specified.

The Gaussian version of (3.1) is

T
(n)
φ1

(θ, σ ) :=
√

a3

6n

n∑
i=1

Zi(θ, σ )

(
Z2

i (θ, σ ) − 3

a

)
=
√

a

6n

n∑
i=1

(
aZ3

i (θ, σ ) − 3Zi(θ, σ )
);

thanks to the linearity of Gaussian scores, it easily follows from a traditional Slutsky argument
that θ̂ and σ̂ in T

(n)
φ1

(θ̂, σ̂ ) need not be discretized. Under Gaussian densities, both T
(n)
φ1

(θ̂ , σ̂ ) and

T
(n)
φ1

(θ, σ̂ ) are asymptotically equivalent to T
(n)
φ1

(X̄(n), σ̂ ) = (na3/6)1/2m
(n)
3 /σ̂ 3 = √

n/6 b
(n)
1 +

oP(1), that is, to S
(n)
2 given in (1.3). The latter is thus locally asymptotically optimal under

Gaussian assumptions, whether θ is specified or not, whereas the specified-θ test based on
m

(n)
3 (θ)/(m

(n)
6 (θ))1/2 (more precisely, on S

(n)
1 (θ) given in (1.1)) is suboptimal. The fact that

m
(n)
3 (θ̂) yields a better performance than m

(n)
3 (θ) under specified location θ (see the comments

after Proposition 3.5 for a comparison of local powers) looks puzzling at first sight. The reason is
that orthogonality, in the Fisher information sense, between asymmetry and location, is a “built-
in” feature of Edgeworth families. Contrary to S

(n)
2 , which is shift invariant, m

(n)
3 (θ) and S

(n)
1 (θ)

are sensitive to location shifts. Therefore, tests based on S
(n)
1 (θ) are “wasting away” some power

on location alternatives (which are irrelevant when θ is specified), to the detriment of asymmetry
alternatives.

Locally asymptotically maximin two-sided tests are easily derived along the same lines.

3.2. Locally asymptotically optimal tests: Unspecified density

The tests based on (3.1) achieve local and asymptotic optimality at correctly specified f1, which
sets the parametric efficiency bounds for the problem, but has limited practical value, as these
tests are not valid anymore under density g1 �= f1. If Proposition 3.1 is to be adapted to the more
realistic null hypotheses H(n)

θ :=⋃
g1

H(n)
θ;g1

and H(n) :=⋃
g1

H(n)
g1 under which the (symmetric)

density remains unspecified, the test statistic T
(n)
f1

needs to be adapted in order to cope with three

problems: its centering under the null and g1 �= f1 (T (n)
f1

in the previous section only had to be
centered under density g1 = f1), its scaling (same remark) and (still under the null and g1 �= f1)
the impact of the substitution of estimators σ̂ (and θ̂ ) for the unspecified values of σ (and θ ) on
its asymptotic distribution.
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3.2.1. Specified location

Let us first assume that both θ and σ are specified. The test statistic T
(n)
f1

in Proposition 3.1 is es-

sentially a scaled version of �
(n)
f1;3. More generally, write �

(n)
f1;3(κ) for n−1/2 ∑n

i=1 φf1(Zi)(Z
2
i −

κ), where κ ∈ R
+
0 denotes a strictly positive real number; an adequate sample-based value will be

selected later on. Note that �
(n)
f1;3(κ) remains centered under P(n)

θ,σ,0;g1
, irrespective of the choice

of κ . Indeed, the functions z �→ φf1(z)z
2 and z �→ φf1(z) are skew symmetric, and their expecta-

tions under any symmetric density are automatically zero – provided that they exist. The variance
under P(n)

θ,σ,0;g1
of �

(n)
f1;3(κ) is then

γ κ
g1

(f1) := Eg1

[(
φf1(Zi)(Z

2
i − κ)

)2]= Kg1(f1) − 2κJg1(f1) + κ2 Ig1(f1),

where

Ig1(f1) :=
∫ ∞

−∞
φ2

f1
(z)g1(z)dz, Jg1(f1) :=

∫ ∞

−∞
z2φ2

f1
(z)g1(z)dz

and (still, provided that those integrals exist)

Kg1(f1) :=
∫ +∞

−∞
z4φ2

f1
(z)g1(z)dz.

We know from LeCam’s third lemma that, under P(n)
θ,σ,0;g1

, the impact on �
(n)
f1;3(κ) of an esti-

mated scale depends on the asymptotic joint distribution (under P(n)
θ,σ,0;g1

) of �
(n)
f1;3(κ) and �

(n)
g1;2.

More precisely, LeCam’s third lemma (see, e.g., page 90 of [17]) tells us that if, under P(n)
θ,σ,0;g1

,⎛⎜⎝
�

(n)
f1;3(κ)

log

(dP(n)

θ,σ+n−1/2τ,0;g1

dP(n)
θ,σ,0;g1

)⎞⎟⎠ L−→ N
((

μ1

−1

2
d2

2

)
,

(
d2

1 d11

d11 d2
2

))
as n → ∞, (3.2)

then, under P(n)

θ,σ+n−1/2τ,0;g1
, �

(n)
f1;3(κ)

L−→ N (μ1 + d11, d
2
1 ). In the present context, Proposi-

tion 2.1 yields that

log

(dP(n)

θ,σ+n−1/2τ,0;g1

dP(n)
θ,σ,0;g1

)
= τ�

(n)
g1;2(θ, σ,0) − 1

2
τ 2σ−2(J (g1) − 1

)+ oP(1) (3.3)

as n → ∞, under P(n)
θ,σ,0;g1

; hence (still as n → ∞ under P(n)
θ,σ,0;g1

),(
�

(n)
f1;3(κ)

�
(n)
g1;2(θ, σ,0)

)
= n−1/2

n∑
i=1

(
φf1(Zi)(Z

2
i − κ)

σ−1
(
φg1(Zi)Zi − 1

))
(3.4)

L−→ N
((

Jg1(f1)

0

)
,

(
d2

1 d11

d11 d2
2

))
,
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with d2
2 = σ−2(J (g1) − 1) and d11 = τσ−1

∫∞
−∞ φf1(z)(z

2 − κ)(φg1(z)z − 1)g1(z)dz = 0 (as
the integral of a skew-symmetric function). We conclude that (3.2) holds with d11 = 0.

LeCam’s third lemma therefore shows that the effect on the asymptotic distribution of �
(n)
f1;3(κ)

of a O(n−1/2) perturbation of σ is asymptotically nil; the asymptotic linearity result of Proposi-
tion A.1 and a classical argument on asymptotically discrete estimators (see, e.g., Lemma 4.4 in
[10]) allow for extending this conclusion to the stochastic OP(n−1/2) perturbations induced by
substituting a duly discretized root-n-consistent estimator σ̂

(n)
# for σ . Such a substitution conse-

quently does not affect the asymptotic behavior of �
(n)
f1;3(κ).

For f1 ∈ F1 and g1 ∈ Ff1 := {g1 ∈ F1 : Kg1(f1) < ∞} (due to strong unimodality, Kg1(f1) <

∞ also implies Ig1(f1) < ∞ and Jg1(f1) < ∞), let

γ (n)(f1) = γ (n)(f1, θ, σ ) := K(n)(f1) − 2κ(f1)J (n)(f1) + κ2(f1)I (n)(f1), (3.5)

where

I (n)(f1) = I (n)(f1, θ, σ ) := n−1
n∑

i=1

φ2
f1

(Zi(θ, σ )), (3.6)

J (n)(f1) = J (n)(f1, θ, σ ) := n−1
n∑

i=1

Z2
i (θ, σ )φ2

f1
(Zi(θ, σ )) (3.7)

and

K(n)(f1) = K(n)(f1, θ, σ ) := n−1
n∑

i=1

Z4
i (θ, σ )φ2

f1
(Zi(θ, σ )) (3.8)

under P(n)
θ,σ,0;g1

are consistent estimates of Ig1(f1), Jg1(f1) and Kg1(f1), respectively. Now in

practice, I (n)(f1), J (n)(f1) and K(n)(f1), hence γ (n)(f1), cannot be computed from the obser-
vations and Zi(θ, σ̂ #) is to be substituted for Zi(θ, σ ) in (3.6)–(3.8), yielding γ (n)(f1, θ, σ̂ #).
This substitution in general requires a slight reinforcement of regularity assumptions. Along
the same lines as above (LeCam’s third lemma and asymptotic linearity), we easily obtain that
γ (n)(f1, θ, σ̂ #) − γ (n)(f1, θ, σ ) is oP(1) under P(n)

θ,σ,0;g1
provided that the asymptotic covariance

of γ (n)(f1, θ, σ ) and �
(n)
g1;2 is finite. A simple computation (and the strong unimodality of f1 and

g1) shows that a sufficient condition for this is

g1 ∈ F ∗
f1

:=
{
h1 ∈ Ff1 :

∫ ∞

−∞
z5φ2

f1
(z)φh1(z)h1(z)dz < ∞

}
. (3.9)

Defining the test statistic

T̂
(n)
f1

(θ, σ ) := 1√
nγ (n)(f1, θ, σ )

n∑
i=1

φf1(Zi(θ, σ ))
(
Z2

i (θ, σ ) − κ(f1)
)

(3.10)
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and the cross-information quantities

Ig1(f1, g1) :=
∫ +∞

−∞
φf1(z)φg1(z)g1(z)dz,

Jg1(f1, g1) :=
∫ +∞

−∞
z2φf1(z)φg1(z)g1(z)dz

and

Kg1(f1, g1) :=
∫ +∞

−∞
z4φf1(z)φg1(z)g1(z)dz

(which for f1 ∈ F1 and g1 ∈ F ∗
f1

are finite because of Cauchy–Schwarz), we thus have the fol-
lowing result.

Lemma 3.1. Let f1 ∈ F1 and g1 ∈ F ∗
f1

. Then:

(i) T̂
(n)
f1

(θ, σ̂ #) = T̂
(n)
f1

(θ, σ ) + oP(1) is asymptotically normal, with mean zero under

P(n)
θ,σ,0;g1

, mean

τ
Kg1(f1, g1) − Jg1(f1, g1)(κ(f1) + κ(g1)) + Ig1(f1, g1)κ(f1)κ(g1)

[Kg1(f1) − 2Jg1(f1)κ(f1) + Ig1(f1)κ2(f1)]1/2
(3.11)

under P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.

(ii) The sequence of tests rejecting the null hypothesis H(n)
θ := ⋃

g1∈F ∗
f1

H(n)
θ;g1

of symmetry

with respect to specified θ whenever T̂
(n)
f1

(θ, σ̂#) exceeds the (1 − α) standard normal
quantile zα is locally uniformly asymptotically most powerful at asymptotic level α for
H(n)

θ against
⋃

ξ>0
⋃

σ∈R
+
0
{P(n)

θ,σ,ξ ;f1
}.

The tests based on T̂
(n)
f1

(θ, σ̂#) enjoy all the validity (under H(n)
θ ) and optimality (against⋃

ξ>0
⋃

σ∈R
+
0
{P(n)

θ,σ,ξ ;f1
}) properties one can expect. However, a closer look reveals that they

are quite unsatisfactory on one count: under g1 �= f1, their behavior strongly depends on the
arbitrary choice of the concept of scale (here, the median of absolute deviations).

Consider, for example, the Gaussian version of (3.10), which takes the form

T̂
(n)
φ1

(θ, σ ) = 1√
nγ (n)(φ1)

n∑
i=1

(
aZ3

i (θ, σ ) − 3Zi(θ, σ )
)
,

where

γ (n)(φ1) = γ (n)(φ1, θ, σ ) = a2σ−6m
(n)
6 (θ) − 6aσ−4m

(n)
4 (θ) + 9σ−2m

(n)
2 (θ).
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The test based on T̂
(n)
φ1

(θ, σ̂ ) (here again, Slutsky’s lemma allows for not discretizing σ̂ ) is a
pseudo-Gaussian test, hence optimal under Gaussian assumptions; the asymptotic shift (3.11) is
τ
√

6/a under P(n)

θ,σ,n−1/2τ ;φ1
, and

τ
[
5aμ4(g1) − (

9 + 3aκ(g1)
)
μ2(g1) + 3κ(g1)

][a2μ6(g1) − 6aμ4(g1) + 9μ2(g1)]−1/2,

where μk(g1) := ∫∞
−∞ zkg1(z)dz, under P(n)

θ,σ,n−1/2τ ;g1
. This asymptotic shift strongly depends on

a, hence on our (arbitrary) choice of a scale parameter. Setting to one the standard deviation
instead of the median of absolute deviations would significantly modify the local behaviour of
T̂

(n)
f1

(θ, σ̂#) as soon as g1 �= f1. This does not affect optimality properties (which hold under f1),
but is highly undesirable.

Now, that unpleasant feature of T̂
(n)
φ1

is entirely due to the choice of κ = κ(f1) as a (non-
random) centering in (3.10). That choice was entirely motivated by asymptotic orthogonality
considerations under P(n)

θ,σ,0;f1
, and does not affect the validity of the test. It follows that replac-

ing κ(f1) with any data-dependent sequence κ(n) such that κ(n) − κ(f1) = oP(1) under P(n)
θ,σ,0;f1

asymptotically has no impact on T̂
(n)
f1

(θ, σ ) under P(n)
θ,σ,0;f1

. Let us show that this sequence κ(n)

can be chosen in order to cancel the unpleasant dependence of the test statistic on the definition
of scale.

Provided that

f1 ∈ F ◦
1 := {h1 ∈ F1 : z �→ φh1(z) is differentiable, with derivative φ̇h1},

integration by parts yields

Ig1(f1, g1) =
∫ ∞

−∞
φ̇f1(z)g1(z)dz

and

Jg1(f1, g1) = 2
∫ ∞

−∞
zφf1(z)g1(z)dz +

∫ ∞

−∞
z2φ̇f1(z)g1(z)dz.

Therefore, Ig1(f1, g1), Jg1(f1, g1) and κg1(f1, g1) := Jg1(f1, g1)/Ig1(f1, g1) under P(n)
θ,σ,0;g1

are consistently estimated by

I (n)◦(f1) = I (n)◦(f1, θ, σ ) := 1

n

n∑
i=1

φ̇f1(Zi(θ, σ )),

J (n)◦(f1) = J (n)◦(f1, θ, σ ) := 2

n

n∑
i=1

Zi(θ, σ )φf1(Zi(θ, σ )) + 1

n

n∑
i=1

Z2
i (θ, σ )φ̇f1(Zi(θ, σ ))

and

κ(n)◦(f1) = κ(n)◦(f1, θ, σ ) := J (n)◦(f1)/I (n)◦(f1), (3.12)

respectively.
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Clearly, κ(n)◦(f1) satisfies the requirement that κ(n)◦(f1) − κ(f1) = oP(1) under P(n)
θ,σ,0;f1

.

In practice, however, κ(n)◦(f1, θ, σ ) cannot be computed from the observations, and κ(n)◦(f1, θ,

σ̂ #), where Zi(θ, σ̂ #) has been substituted for Zi(θ, σ ), is to be used instead. As in the evaluation
of γ (n)(f1) above (see (3.5)), this substitution requires mild additional regularity conditions.
LeCam’s third lemma then applies exactly along the same lines, implying that

κ(n)◦(f1, θ, σ̂ #) − κ(n)◦(f1, θ, σ ) = oP(1)

under P(n)
θ,σ,0;g1

as soon as the asymptotic covariances of I (n)◦(f1) and J (n)◦(f1) with �
(n)
g1;2 are

finite. A simple computation (and the strong unimodality of f1 and g1) shows that a sufficient
conditions for this is

g1 ∈ F ◦
f1

:=
{
h1 ∈ F ∗

f1
:
∫ ∞

−∞
z3φ̇f1(z)φh1(z)h1(z)dz < ∞

(3.13)

and
∫ ∞

−∞
zφ̇f1(z)φh1(z)h1(z)dz < ∞

}
(no redundancy, since φ̇f1 is not necessarily monotone).

Emphasize the dependence of �
(n)
f1;3(κ) on θ and σ by writing �

(n)
f1;3(κ, θ, σ ): it follows

from Lemma A.5 in the Appendix that, for f1 ∈ F ◦
1 and g1 ∈ F ◦

f1
, the difference between

�
(n)
f1;3(κ

(n)◦(f1, θ, σ̂#), θ, σ̂#) and �
(n)
f1;3(κg1(f1, g1), θ, σ ) is oP(1) under P(n)

θ,σ,0;g1
. Letting (still

for f1 ∈ F ◦
1 )

T
(n)◦
f1

(θ, σ ) := 1√
nγ (n)◦(f1)

n∑
i=1

φf1(Zi(θ, σ ))
(
Z2

i (θ, σ ) − κ(n)◦(f1)
)
, (3.14)

where

γ (n)◦(f1) = γ (n)◦(f1, θ, σ ) := K(n)(f1) − 2κ(n)◦(f1)J (n)(f1) + (
κ(n)◦(f1)

)2 I (n)(f1),

we thus have the following result.

Proposition 3.2. Let f1 ∈ F ◦
1 and g1 ∈ F ◦

f1
. Then:

(i) T
(n)◦
f1

(θ, σ̂#) = T
(n)◦
f1

(θ, σ ) + oP(1) is asymptotically normal, with mean zero under

P(n)
θ,σ,0;g1

, mean

τ
Kg1(f1, g1) − Jg1(f1, g1)κg1(f1, g1)

[Kg1(f1) − 2Jg1(f1)κg1(f1, g1) + Ig1(f1)κ2
g1

(f1, g1)]1/2
(3.15)

under P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.
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(ii) The sequence of tests rejecting the null hypothesis H(n)
θ := ⋃

g1∈F ◦
f1

H(n)
θ;g1

of symme-

try (with specified location θ , unspecified scale σ and unspecified standardized den-
sity g1 ∈ F ◦

f1
) whenever T

(n)◦
f1

(θ, σ̂#) exceeds the (1 − α) standard normal quantile

zα is locally asymptotically most powerful at asymptotic level α for H(n)
θ against⋃

ξ>0
⋃

σ∈R
+
0
{P(n)

θ,σ,ξ ;f1
}.

The advantage of the test statistic (3.14) compared to (3.10) is that, irrespective of the underly-
ing density g1, its behavior does not depend on the definition of the scale parameter. The case of
a Gaussian reference density (f1 = φ1), however, is slightly different due to the particular form
of the score function φf1 ; see Section 3.3.

3.2.2. Unspecified location

We now turn to the case under which both f1 and the location θ are unspecified. Again, θ is to
be replaced with some estimator, but additional care has to be taken about the asymptotic impact
of this substitution. Still, from LeCam’s third lemma, it follows that the impact, under P(n)

θ,σ,0;g1
,

of an estimated θ on �
(n)
f1;3(κ) can be obtained from the asymptotic behavior of(

�
(n)
f1;3(κ)

�
(n)
g1;1(θ, σ,0)

)
= n−1/2

n∑
i=1

(
φf1(Zi)(Z

2
i − κ)

σ−1φg1(Zi)

)
,

which is asymptotically normal with asymptotic covariance matrix(
γ κ
g1

(f1) δκ
g1

(f1, g1)

δκ
g1

(f1, g1) σ−2 I(g1)

)
,

where δκ
g1

(f1, g1) := σ−1(Jg1(f1, g1) − κIg1(f1, g1)). Clearly, this covariance δκ
g1

(f1, g1) van-
ishes iff κ = κg1(f1, g1), which, for g1 = f1, coincides with κ(f1).

Assuming that an estimate κ(n)(f1) such that κ(n)(f1) − κg1(f1, g1) = oP(1) under P(n)
θ,σ,0;g1

exists, �
(n)
f1;3(κ

(n)(f1)) is asymptotically equivalent to �
(n)
f1;3(κ(f1)) under P(n)

θ,σ,0;f1
, and asymp-

totically uncorrelated with �
(n)
g1;1(θ, σ,0) and �

(n)
g1;2(θ, σ,0) (hence, asymptotically insensitive

(in probability) to root-n perturbations of both θ and σ ) under P(n)
θ,σ,0;g1

. It follows from Sec-

tion 3.2.1 that κ(n)◦(f1, θ, σ ) defined in (3.12) is such an estimator. The same reasoning as
in Section 3.2.1 implies that this still holds when substituting, in �

(n)
f1;3(κ), any estimators θ̂#

and σ̂# satisfying (C1) and (C2) for θ and σ . Finally, Lemma A.5 in the Appendix ensures
that �

(n)
f1;3(κ

(n)◦(f1, θ̂#, σ̂#), θ̂#, σ̂#) can be substituted for �
(n)
f1;3(κg1(f1, g1), θ, σ ). We thus have

shown the following result.

Proposition 3.3. Let f1 ∈ F ◦
1 and g1 ∈ F ◦

f1
. Then:

(i) T
(n)◦
f1

(θ̂#, σ̂#) = T
(n)◦
f1

(θ, σ̂#)+oP(1) = T
(n)◦
f1

(θ, σ )+oP(1) is asymptotically normal, with

mean zero under P(n)
θ,σ,0;g1

, mean (3.15) under P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.
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(ii) The sequence of tests rejecting the null hypothesis H(n) := ⋃
g1∈F ◦

f1

⋃
θ∈R

H(n)
θ;g1

of

symmetry (with unspecified location θ , unspecified scale σ and unspecified standard-
ized density g1) whenever T

(n)◦
f1

(θ̂#, σ̂#) exceeds the (1 − α) standard normal quan-

tile zα is locally asymptotically most powerful at asymptotic level α for H(n) against⋃
ξ>0

⋃
θ∈R

⋃
σ∈R

+
0
{P(n)

θ,σ,ξ ;f1
}.

This test is based on the same test statistic T
(n)◦
f1

as the specified-location test of Proposi-

tion 3.2, except that the (here unspecified) location θ is replaced by an estimator θ̂#. The local
powers of the two tests coincide: asymptotically, again, there is no loss of efficiency due to the
non-specification of θ .

3.3. Pseudo-Gaussian tests

Particularizing the reference density f1 as the standard normal one φ1 in the tests of Sec-
tions 3.2.1 and 3.2.2 in principle yields pseudo-Gaussian tests, based on the test statistics
T

(n)◦
φ1

(θ) or T
(n)◦
φ1

(θ̂). Due to the particular form of the Gaussian score function, however, the
Gaussian statistic can be given a much simpler form. Indeed, Ig1(φ1, g1) = I(φ1) = a does
not depend on g1, and needs not be estimated, while Jg1(φ1, g1) = J (φ1) = 3aμ2(g1), so that

κg1(f1, g1) is consistently estimated by 3m
(n)
2 (θ)/σ 2. This, after elementary computation, yields

the test statistic

T (n)†(θ) := 1√
nγ (n)†

n∑
i=1

(Xi − θ)
(
(Xi − θ)2 − 3m

(n)
2 (θ)

)
, (3.16)

where γ (n)† := γ (n)†(θ) := m
(n)
6 (θ) − 6m

(n)
2 (θ)m

(n)
4 (θ) + 9(m

(n)
2 (θ))3. For this test statistic

T (n)†(θ), the asymptotic shift (3.15) under P(n)

θ,σ,n−1/2τ ;g1
now takes the form

τ [5μ4(g1) − 9μ2
2(g1)][μ6(g1) − 6μ2(g1)μ4(g1) + 9μ3

2(g1)]−1/2.

This shift does not depend on a anymore, and still reduces to τ
√

6/a under P(n)

θ,σ,n−1/2τ ;φ1
(the

same value as for T̂
(n)
φ1

(θ, σ ), which confirms that optimality under Gaussian densities has been
preserved); nor does it depend on the scale.

The tests based on the asymptotically standard normal null distribution of T (n)† are optimal
under Gaussian assumptions, but remain valid when those assumptions are violated. Again, a
simple Slutsky argument allows for replacing θ (if unspecified) with any consistent estimator θ̂

without going through discretization; moreover, (3.16) does not depend on σ . The tests based on
T (n)†(θ) and T (n)†(X̄(n)) both are closely related to the traditional test of symmetry based on
b

(n)
1 . More precisely, under any P(n)

θ,σ,0;g1
, g1 ∈ (F ◦

φ1
=)Fφ1 (note that the assumption g1 ∈ F ◦

φ1
=

Fφ1 implies that g1 has finite moments of order six),

T (n)†(θ) = T (n)†(X̄(n)
)+ oP(1) = S

(n)
2 + oP(1), (3.17)
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where S
(n)
2 is the empirically standardized form (1.3) of b

(n)
1 (see (1.3)).

Summing up, we thus have the following result.

Proposition 3.4. Let g1 ∈ Fφ1 and θ̂ = θ + OP(n−1/2); recall that μk(g1) := ∫∞
−∞ zkg1(z)dz

stands for g1’s moment of order k. Then:

(i) T (n)†(θ̂) = T (n)†(θ) + oP(1) is asymptotically normal, with mean zero under P(n)
θ,σ,0;g1

,
mean

τ [5μ4(g1) − 9μ2
2(g1)]/[μ6(g1) − 6μ2(g1)μ4(g1) + 9μ3

2(g1)]1/2

under P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.

(ii) The sequence of tests rejecting the null hypothesis of symmetry (with specified loca-
tion θ ) H(n)

θ := ⋃
g1∈Fφ1

H(n)
θ;g1

whenever T (n)†(θ) exceeds the (1 − α) standard nor-
mal quantile zα is locally asymptotically most powerful at asymptotic level α against⋃

ξ>0
⋃

σ∈R
+
0
{P(n)

θ,σ,ξ ;φ1
}.

(iii) The sequence of tests rejecting the null hypothesis of symmetry (with unspecified loca-
tion) H(n) :=⋃

g1∈Fφ1

⋃
θ∈R

H(n)
θ;g1

whenever T (n)†(θ̂) exceeds the (1 −α) standard nor-
mal quantile zα is locally asymptotically most powerful at asymptotic level α against⋃

ξ>0
⋃

θ∈R

⋃
σ∈R

+
0
{P(n)

θ,σ,ξ ;φ1
}.

For the sake of completeness, we also provide (with the same notation) the following result on
the asymptotic behavior of the (suboptimal) test based on m

(n)
3 (θ). Details are left to the reader.

Proposition 3.5. Let g1 ∈ Fφ1 . Then, S
(n)
1 := n1/2m

(n)
3 (θ)/(m

(n)
6 (θ))1/2 is asymptotically

normal, with mean zero under P(n)
θ,σ,0;g1

, mean τ [5μ4(g1) − 3κ(g1)μ2(g1)]/μ1/2
6 (g1) under

P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.

Under Gaussian densities (g1 = φ1), the asymptotic shifts of T
(n)◦
φ1

(θ) (Proposition 3.3(i)) and

S
(n)
1 (Proposition 3.5) are 16τ/

√
6 and 16τ/

√
15, respectively; the asymptotic relative efficiency

of T (n)†(θ) with respect to S
(n)
1 is thus as high as 2.5 in the vicinity of Gaussian densities. This,

which is not a small difference, confirms the suboptimality of m
(n)
3 (θ)-based tests.

3.4. Laplace tests

Replacing the Gaussian reference density φ1 with the double-exponential one fL, we similarly
obtain the Laplace tests. The assumption that f1 ∈ F ◦

1 unfortunately rules out fL, since φfL (z) =
sign(z)/d is not differentiable, so that the construction of κ(n)◦(f1) in (3.12) does not apply for
f1 = fL. Now, a direct construction is possible: Ig1(fL, g1) indeed reduces to 2g1(0)/d – which
is consistently estimated by I (n)◦(fL) := 2ĝ1(0)/d (where ĝ1, e.g., is some kernel estimator of
g1). Similarly, Jg1(fL, g1) reduces to (2/d)

∫∞
−∞ |z|g1(z)dz – which is consistently estimated

by J (n)◦(fL) := (2/nd)
∑n

i=1 |Zi(θ, σ̂#)|; the scaling constant d is easily computed, yielding
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d = 1/(log 2) ≈ 1.44. Then,

κ(n)◦(fL) := J (n)◦(fL)/I (n)◦(fL) = 1

nĝ1(0)

n∑
i=1

|Zi(θ, σ̂#)|

is such that κ(n)◦(fL) − κ(fL) = oP(1) under P(n)
θ,σ,0;fL

, as required.

The Laplace tests are based on T
(n)◦

L (θ) (specified θ ) or T
(n)◦

L (θ̂) (unspecified θ ), where

T
(n)◦

L (θ) := 1√
nγ (n)◦(fL)

n∑
i=1

sign(Zi(θ, σ̂#))
(
(Zi(θ, σ̂#))

2 − κ(n)◦(fL)
)

(3.18)

with

γ (n)◦(fL) = m
(n)
4

σ̂
4
#

− 2
m

(n)
2

nσ̂
2
#ĝ1(0)

n∑
i=1

|Zi(θ, σ̂#)| +
(

1

nĝ1(0)

n∑
i=1

|Zi(θ, σ̂#)|
)2

.

These tests share with the Gaussian Fechner test (see [3]) the use of the score function z �→
sign(z)z2. The orthogonalization, however, differs, since the Fechner and Edgeworth families the
tests were built on are different. The following proposition summarizes their properties; details
are left to the reader.

Proposition 3.6. Let g1 ∈ FfL , θ̂ = θ + OP(n−1/2) and denote by μ|k|(g1) := ∫∞
−∞ |z|kg1(z)dz

the absolute moment of order k of g1. Then,

(i) T
(n)◦

L (θ̂) = T
(n)◦

L (θ) + oP(1) is asymptotically normal, with mean zero under P(n)
θ,σ,0;g1

,
mean

τ [4μ|3|(g1) − 2μ2|1|(g1)/g1(0)]
[μ4(g1) − 2μ2(g1)μ|1|(g1)/g1(0) + μ2|1|(g1)/(g1(0))2]1/2

under P(n)

θ,σ,n−1/2τ ;g1
and variance one under both.

(ii) The sequence of tests rejecting the null hypothesis of symmetry (with specified loca-
tion θ ) H(n)

θ := ⋃
g1∈FfL

H(n)
θ;g1

whenever T
(n)◦

L (θ) exceeds the (1 − α) standard nor-

mal quantile zα is locally asymptotically most powerful at asymptotic level α against⋃
ξ>0

⋃
σ∈R

+
0
{P(n)

θ,σ,ξ ;fL
}.

(iii) The sequence of tests rejecting the null hypothesis of symmetry (with unspecified loca-
tion) H(n) := ⋃

g1∈FfL

⋃
θ∈R

H(n)
θ;g1

whenever T
(n)◦

L (θ̂) exceeds the (1 − α) standard

normal quantile zα is locally asymptotically most powerful at asymptotic level α against⋃
ξ>0

⋃
θ∈R

⋃
σ∈R

+
0
{P(n)

θ,σ,ξ ;fL
}.

Comparing the asymptotic shifts of the pseudo-Gaussian tests and the Laplace ones yields as-
ymptotic relative efficiency values; the asymptotic efficiency of tests based on T (n)† with respect



1082 D. Cassart, M. Hallin and D. Paindaveine

to those based on T
(n)◦

L is 1.76 in the vicinity of Gaussian densities and 0.7 in the vicinity of dou-

ble exponential ones. Finally, note that the empirical median X
(n)
1/2 here provides a much more

sensible estimator of θ than the empirical mean X̄(n); it has been used for θ̂ in the simulations of
T

(n)◦
L (θ̂ ) in Section 4.

4. Finite sample performances

We performed a first simulation study on the basis of N = 5000 independent samples of size
n = 100 from (2.2), with normal and double-exponential densities f1 and skewness parameter
values ξ = 0.1 and ξ = 0.2. Each of those samples was subjected, at asymptotic level α = 5%,
to the classical specified location test of skewness based on m

(n)
3 (θ) (i.e., on (1.1)), the (optimal)

pseudo-Gaussian tests based on b
(n)
1 (i.e., on (1.3)) and the corresponding Laplace and logistic

tests. For the sake of completeness, the two triples tests proposed by Randles et al. [13], which
are based on the signs of Xi + Xj − 2Xk , 1 ≤ i < j < k ≤ n, are also included in this simula-
tion study. Those tests, which are location-invariant, do not follow from any argument of group
invariance and are not distribution-free.

Rejection frequencies are reported in Table 1.
Note that all tests considered here, except for Randles’, are extremely conservative, and in

most cases hardly reach the nominal 5% rejection frequency under the null. Randles’ tests, on
the other hand, significantly over-reject, which does not facilitate comparisons. Despite that,

Table 1. Rejection frequencies (out of N = 5000 replications), under various symmetric and skewed nor-
mal and double-exponential distributions from the Edgeworth families (2.2), with ξ = 0,0.1,0.2, of the

classical tests of skewness, based on m
(n)
3 (θ) and b

(n)
1 , the Gaussian, Laplace and logistic tests, and the

triples tests T
(n)
R1 and T

(n)
R1 of [13]

Test S N (ξ) S L(ξ)

ξ ξ

0 0.1 0.2 0 0.1 0.2

m
(n)
3 (θ) 0.0372 0.1136 0.0996 0.0306 0.6938 0.8722

T (n)†(θ) 0.0434 0.7276 0.9958 0.0252 0.4596 0.6774

b
(n)
1 0.0416 0.6986 0.9746 0.0444 0.7458 0.8930

T
(n)◦

L (θ) 0.0520 0.5424 0.9474 0.0406 0.9090 0.9998

T
(n)◦

L (X
(n)
1/2) 0.0280 0.4440 0.8360 0.0284 0.8838 0.9960

T
(n)◦
Log (θ) 0.0492 0.7336 0.9954 0.0378 0.8516 0.9894

T
(n)◦
Log (X̄(n)) 0.0362 0.6626 0.9716 0.0384 0.8516 0.9880

T
(n)
R1 0.0518 0.6786 0.9606 0.0576 0.9276 0.9986

T
(n)
R2 0.0608 0.6992 0.9640 0.0650 0.9350 0.9988
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the tests based on b
(n)
1 , T

(n)◦
L (X

(n)
1/2) and T

(n)◦
Log (X̄(n)) exhibit excellent peformances, and largely

outperform those based on m
(n)
3 (θ) (although the latter requires θ to be known).

The Edgeworth families considered throughout this paper, however, served as a theoretical
guideline in the construction of our Edgeworth testing procedures, and never were meant as an
actual data generating process. One could argue that analyzing performances under alternatives
of the Edgeworth type creates an unfair bias in favor of our methods. Therefore, we also gener-
ated N = 5000 independent samples of size n = 100 from the skew-normal S N (λ) and skew-t
St (ν, λ) densities (with ν = 2, ν = 4 and ν = 8 degrees of freedom) defined by Azzalini and
Capitanio [1], for various values of their skewness coefficient λ (λ = 0 implying symmetry);
since the sign of λ is not directly related to that of ξ , we only performed two-sided tests. That
class of skewed densities was chosen in view of its increasing popularity among practitioners.

None of the tests considered in this simulation example are optimal in this Azzalini and Capi-
tanio context. Inspection of Table 2 nevertheless reveals that the classical tests of skewness based
on m

(n)
3 (θ) and b

(n)
1 collapse under t2 and t4, which have infinite sixth-order moments, and under

the related St (2, λ) and St (4, λ) densities. The same tests fail to achieve the 5% nominal level
under the Student distribution with 8 degrees of freedom (despite finite sixth-order moments)
and show weak performance under the St (8, λ) density. Remark that the suboptimality of the
test based on m

(n)
3 (θ), which, as a consequence of Proposition 3.1, may be considered as an ar-

tificial consequence of the choice of skewed families of the Edgeworth type, nevertheless also
very neatly appears here. The triples tests behave uniformly well; note, however, their tendency
to over-rejection, in particular under Student densities.

5. Conclusions and perspectives

We have derived the optimal tests for testing the hypothesis of symmetry within families of
skewed densities mimicking, in the Gaussian case, the type of local asymmetry observed in a
central limit behaviour. The resulting tests were obtained for specified and unspecified locations,
under specified or unspecified densities (satisfying appropriate assumptions). Local powers and
asymptotic relative efficiencies are computed and finite-sample performances are investigated in
the context of classical skew-normal and skew-t distributions.

Establishing the optimality properties of the traditional test based on the Pearson–Fisher coef-
ficient b

(n)
1 was one of the objectives of this work, and we show that this test is indeed optimal

in the vicinity of Gaussian symmetry. Interestingly, its optimality holds for the specified-location
as well as for the unspecified-location hypothesis of symmetry and is preserved if centering, in
the computation of the test statistic, is based on robust root-n-consistent estimators of location

rather than on the sample mean X̄
(n)

.
Table 3 provides a summary of the various tests described throughout Section 3, along with

their validity and optimality properties.
These tests naturally extend into nonparametric rank-based ones. The hypothesis of sym-

metry indeed enjoys strong group invariance features. The null hypothesis H(n)
θ of symmetry

with respect to θ is generated by the group G(n)
θ ,◦ of all transformations Gh of R

n such that
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Table 2. Rejection frequencies (out of N = 5000 replications), under various symmetric and related skew-normal and skew-t distributions [1]

S N (λ) and St (ν, λ) (ν = 2,4,8 and various λ) of the classical tests of skewness, based on m
(n)
3 (θ) and b

(n)
1 , the Gaussian, Laplace and logistic

tests, and the triples tests T
(n)
R1 and T

(n)
R1 of [13]

Test λ

S N (λ) St (2, λ) St (4, λ) St (8, λ)

0 1 2 3 0 2 4 6 0 2 4 6 0 2 4 6

m
(n)
3 (θ) 0.0476 0.0482 0.0952 0.1936 0.0072 0.0106 0.0126 0.0144 0.0192 0.0190 0.0298 0.0436 0.0316 0.0608 0.1302 0.1754

T (n)†(θ) 0.0374 0.0634 0.2988 0.5942 0.0046 0.0118 0.0182 0.0268 0.0144 0.0184 0.0586 0.1134 0.0260 0.1422 0.4078 0.5428

b
(n)
1 0.0418 0.0616 0.3066 0.6130 0.0172 0.0232 0.0308 0.0396 0.0252 0.0302 0.0754 0.1298 0.0322 0.1604 0.4186 0.5484

T
(n)◦

L (θ) 0.0460 0.0690 0.2682 0.5406 0.0180 0.0414 0.0740 0.0988 0.0332 0.0406 0.1304 0.2514 0.0456 0.2054 0.5640 0.6906

T
(n)◦

L (X
(n)
1/2) 0.0334 0.0472 0.2022 0.4736 0.0168 0.0288 0.0520 0.0678 0.0206 0.0302 0.0950 0.1798 0.0304 0.1518 0.4834 0.6260

T
(n)◦
Log (θ) 0.0468 0.0742 0.3542 0.7010 0.0154 0.0286 0.0496 0.0666 0.0236 0.0318 0.1082 0.2086 0.0342 0.2104 0.5846 0.7508

T
(n)◦
Log (X̄(n)) 0.0354 0.0568 0.2988 0.6426 0.0144 0.0256 0.0408 0.0492 0.0228 0.0276 0.0882 0.1694 0.0288 0.1712 0.5046 0.6696

T
(n)
R1 0.0540 0.0778 0.3602 0.7082 0.0618 0.1032 0.1798 0.2312 0.0508 0.0636 0.1842 0.3444 0.0530 0.2592 0.6766 0.8336

T
(n)
R2 0.0598 0.0886 0.3812 0.7258 0.0656 0.1098 0.1882 0.2424 0.0556 0.0688 0.1938 0.3582 0.0598 0.2740 0.6940 0.8422
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Table 3. A summary of the various test statistics considered throughout the paper, with reference to their definitions, the testing problem (specified
or unspecified location – scale throughout remains unspecified) addressed, the standardized densities g1 for which they are valid, the densities at
which they are optimal and the proposition (lemma) where their asymptotic properties are described

Test statistic Reference Location θ Validity (comments) Optimality (comments) Asymptotic properties

S
(n)
1 (θ) or m

(n)
3 (θ) (1.1) Specified Any g1 with finite Suboptimal at the Gaussian Proposition 3.5

(classical) 6th-order moments

S
(n)
2 or b

(n)
1 (1.3) Unspecified Any g1 with finite At the Gaussian, uniformly in θ, σ Proposition 3.4

(classical) 6th-order moments (= T (n)†(X̄
(n)

) + oP(1)) (3.17)

T
(n)
f1

(θ, σ̂ #) (3.1) Specified Specified f1 ∈ F1 At fσ , uniformly in σ Proposition 3.1

T
(n)
f1

(θ̂#, σ̂ #) (3.1) Unspecified Specified f1 ∈ F1 At fσ , uniformly in θ, σ Proposition 3.1

T̂
(n)
f1

(θ, σ̂ #) (3.10) Specified Any g1 ∈ F ∗
f1

(3.9) At fσ , uniformly in σ (bad behavior Lemma 3.1

under local alternatives and g1 �= f1)

T
(n)◦
f1

(θ, σ̂ #) (3.14) Specified Any g1 ∈ F ◦
1 (3.13) At fσ , uniformly in σ (same as T̂

(n)
f1

, Proposition 3.2

except for its bad behavior under
local alternatives and g1 �= f1)

T
(n)◦
f1

(θ̂#, σ̂ #) (3.14) Unspecified Any g1 ∈ F ◦
1 (3.13) At fσ , uniformly in θ, σ Proposition 3.3

T (n)†(θ) (3.16) Specified Any g1 ∈ Fφ1 (implies At the Gaussian, uniformly in σ Proposition 3.4
(pseudo-Gaussian) finite 6-order moments)
T (n)†(θ̂) (3.16) Unspecified Any g1 ∈ Fφ1 (implies At the Gaussian, uniformly in θ, σ Proposition 3.5
(pseudo-Gaussian) finite 6-order moments)

T
(n)◦

L (θ) (3.18) Specified Any g1 ∈ FfL (implies At the double exponential, Proposition 3.6
(Laplace) finite 4-order moments) uniformly in σ

T
(n)◦

L (θ̂) (3.18) Unspecified Any g1 ∈ FfL (implies At the double exponential, Proposition 3.6
(Laplace) finite 4-order moments) uniformly in θ, σ
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Gh(x1, . . . , xn) := (h(x1), . . . , h(xn)), where limx→±∞ h(x) = ±∞, and x �→ h(x) is continu-
ous, monotone increasing and skew-symmetric with respect to θ (that is, satisfies h(θ − z)− θ =
−(h(θ +z)−θ)). A maximal invariant for that group is known to be the vector (s1(θ), . . . , sn(θ)),
along with the vector (R

(n)
+,1(θ), . . . ,R

(n)
+,n(θ)), where si(θ) is the sign of Xi − θ and R

(n)
+,i (θ) the

rank of |Xi − θ | among |X1 − θ |, . . . , |Xn − θ |. General results on semi-parametric efficiency
[7] indicate that, in such a context, the expectation of the central sequence �

(n)
f1

(ϑ) conditional
on those signed ranks yields a version of the semi-parametrically efficient (at f1 and ϑ ) central
sequence.

That rank-based approach is adopted in a companion paper [4]. For instance, the rank-based
counterpart of the specified-θ test statistic of Proposition 3.6(ii) is the (strictly distribution-free,
irrespective of any moment assumptions) van der Waerden test based on

˜T (n)
vdW(θ) := 1√

n˜γ (n)(φ1)

n∑
i=1

si(θ)�−1
(

n + 1 + R
(n)
+,i (θ)

2(n + 1)

)((
�−1

(
n + 1 + R

(n)
+,i (θ)

2(n + 1)

))2

−3

)
,

where ˜γ (n)(φ1) := n−1 ∑n
r=1 �−1( n+1+r

2(n+1)
)((�−1( n+1+r

2(n+1)
))2 − 3)2 and � stands for the standard

normal distribution function. The unspecified-θ case under such approach, however, is consider-
ably more delicate.

Appendix

A.1. Proof of Proposition 2.1

The proof relies on [16], Lemma 1, which involves a set of six jointly sufficient conditions.
Most of them readily follow from the form of local likelihoods and are left to the reader. The
most delicate one is the quadratic mean differentiability of (θ, σ, ξ) �→ g

1/2
θ,σ,ξ ;f1

(x), which we
establish in the following lemma, where gθ,σ,ξ ;f1(x) is the density defined in (2.2).

Lemma A.1. Let f1 ∈ F1, θ ∈ R, σ ∈ R
+
0 and ξ ∈ R. Define

gθ,σ,ξ ;f1(x) := σ−1f1

(
x − θ

σ

)
− ξ

σ
ḟ 1

(
x − θ

σ

)((
x − θ

σ

)2

− κ(f1)

)
I [|x − θ | ≤ σ |z∗|]

− sign(ξ)σ−1f1

(
x − θ

σ

)
{I [x − θ > sign(−ξ)σ |z∗|]

− I [x − θ < sign(ξ)σ |z∗|]},

Dθg
1/2
θ,σ,0;f1

(x) := 1

2
σ−3/2f

1/2
1

(
x − θ

σ

)
φf1

(
x − θ

σ

)
,

Dσ g
1/2
θ,σ,0;f1

(x) := 1

2
σ−3/2f

1/2
1

(
x − θ

σ

)((
x − θ

σ

)
φf1

(
x − θ

σ

)
− 1

)
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and

Dξg
1/2
θ,σ,ξ ;f1

(x)|ξ=0 := 1

2
σ−1/2f

1/2
1

(
x − θ

σ

)
φf1

(
x − θ

σ

)((
x − θ

σ

)2

− κ(f1)

)
.

Then, as r, s and t → 0,

(i)
∫

{g1/2
θ+t,σ+s,r;f1

(x) − g
1/2
θ+t,σ+s,0;f1

(x) − rDξg
1/2
θ+t,σ+s,ξ ;f1

(x)|ξ=0}2 dx = o(r2).

(ii)
∫ {

g
1/2
θ+t,σ+s,0;f1

(x) − g
1/2
θ,σ,0;f1

(x) −
(

t

s

)′(Dθg
1/2
θ,σ,0;f1

(x)

Dσ g
1/2
θ,σ,0;f1

(x)

)}2

dx = o

(∥∥∥∥( t

s

)∥∥∥∥2
)

.

(iii)
∫

{(Dξg
1/2
θ+t,σ+s,ξ ;f1

(x)|ξ=0 − Dξg
1/2
θ,σ,ξ ;f1

(x)|ξ=0)}2 dx = o(1).

(iv)
∫ ⎧⎪⎨⎪⎩g

1/2
θ+t,σ+s,r;f1

(x) − g
1/2
θ,σ,0;f1

(x) −
(

t

s

r

)′
⎛⎜⎝ Dθg

1/2
θ,σ,0;f1

(x)

Dσ g
1/2
θ,σ,0;f1

(x)

Dξg
1/2
θ,σ,ξ ;f1

(x)|ξ=0

⎞⎟⎠
⎫⎪⎬⎪⎭

2

dx

= o

⎛⎝∥∥∥∥∥
(

t

s

r

)∥∥∥∥∥
2⎞⎠ .

Proof. (i) Decompose
∫ {g1/2

θ+t,σ+s,r;f1
(x) − g

1/2
θ+t,σ+s,0;f1

(x) − rDξg
1/2
θ+t,σ+s,ξ ;f1

(x)}2 dx into
a1 + 2a2, where

a1 =
∫

|u|<|z∗|

{(
1

σ + s
f1(u)

)1/2[
1 + rφf1(u)

(
u2 − κ(f1)

)]1/2 −
(

1

σ + s
f1(u)

)1/2

− r

2
(σ + s)−1/2 ḟ1(u)

f
1/2
1 (u)

(
u2 − κ(f1)

)}2

(σ + s)du

and

a2 =
∫

u>|z∗|

{(
(σ + s)−1f1(u)

)1/2 − r

2
(σ + s)−1/2 ḟ1(u)

f
1/2
1 (u)

(
u2 − κ(f1)

)}2

(σ + s)du.

Since, for |x| < 1, (1 + x)1/2 = 1 + x
2 (1 + λx)−1/2 for some λ ∈ (0,1), one easily obtains that

a1 = r2

4

∫
|u|<|z∗|

{
(σ + s)−1/2 ḟ1(u)

f
1/2
1 (u)

(
u2 − κ(f1)

)
× ((

1 + λrφf1(u)
(
u2 − κ(f1)

))−1/2 − 1
)}2

(σ + s)du.
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For |u| < 1, one has (1 − (1 + λu)−1/2)2 ≤ 2 2−λ
1−λ

, and the integrand is bounded by

2
2 − λ

1 − λ

(
u2 − κ(f1)

)2
(

ḟ
1/2
1 (u)

f
1/2
1 (u)

)2

,

which is square-integrable; Lebesgue’s dominated convergence theorem thus implies that a1 is
o(r2). Turning to a2, we have that a2 ≤ C((σ + s)−1a21 + a22), where

a21 :=
∫

u>|z∗|
f1(u)du and a22 := r2

4

∫
u>|z∗|

(
ḟ1(u)

f
1/2
1 (u)

)2(
u2 − κ(f1)

)2 du.

The definition of F1 implies that a21 = O((z∗)−β), hence that a21 = o(r2) if r(z∗)β/2 → ∞ as
r → 0. This latter condition holds, since φf1(z) = o(zβ/2−2) and since the definition of z∗ entails
that

−1 = r(z∗)β/2 φf1(z
∗)

z∗(β/2−2)

(z∗2 − κ(f1))

z∗2
.

An application of Lebesgue’s dominated convergence theorem again yields a22 = o(r2).
(ii) This is a particular case of Lemma A.1 in [6] (here in a simpler univariate context).
(iii) The fact that Dξg

1/2
θ,σ,ξ ;f1

(x)|ξ=0 is square-integrable implies that

‖Dξg
1/2
θ+t,σ,ξ ;f1

(x)|ξ=0 − Dξg
1/2
θ,σ,ξ ;f1

(x)|ξ=0‖L2 = o(1)

as t tends to zero. Define f1;exp(x) := f1(ex) and (f
1/2
1;exp(x))′ := 1

2f
−1/2
1 (ex)ḟ1(ex)ex . For the

perturbation of σ , we have∫ {(
Dξg

1/2
θ,σ+s,ξ ;f1

(x)|ξ=0 − Dξg
1/2
θ,σ,ξ ;f1

(x)|ξ=0
)}2 dx

= 2σ

∫ ∞

0

∣∣∣∣σ−1/2z

((
1 + s

σ

)−3/2

(f
1/2
1;exp)

′
(

ln(z) − ln

(
1 + s

σ

))
− (f

1/2
1;exp)

′(ln(z))

)
− σ−1/2z−1κ(f1)

×
((

1 + s

σ

)1/2

(f
1/2
1;exp)

′
(

ln(z) − ln

(
1 + s

σ

))
+ (f

1/2
1;exp)

′(ln(z))

)∣∣∣∣2 dz

≤ C(c1 + c2),

where

c1 =
∫ ∞

−∞

(
e(3/2)(u−ln(1+s/σ ))(f

1/2
1;exp)

′
(

u − ln

(
1 + s

σ

))
− e(3/2)u(f

1/2
1;exp)

′(u)

)2

du
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and

c2 =
∫ ∞

−∞

(
e−(1/2)(u−ln(1+s/σ ))(f

1/2
1;exp)

′
(

u − ln

(
1 + s

σ

))
− e−(1/2)u(f

1/2
1;exp)

′(u)

)2

du.

Now, both e−(1/2)u(f
1/2
1;exp)

′(u) and e(3/2)u(f
1/2
1;exp)

′(u) are square-integrable since f1 ∈ F1.
Therefore, quadratic mean continuity implies that c1 and c2 are o(1) as s → 0.

(iv) The left-hand side in (iv) is bounded by C(b1 + b2 + b3), where

b1 =
∫

{g1/2
θ+t,σ+s,r;f1

(x) − g
1/2
θ+t,σ+s,0;f1

(x) − rDξg
1/2
θ+t,σ+s,ξ ;f1

(x)}2 dx,

b2 =
∫ {

g
1/2
θ+t,σ+s,0;f1

(x) − g
1/2
θ,σ,0;f1

(x) − (t, s)

(
Dθg

1/2
θ,σ,0;f1

(x)

Dσ g
1/2
θ,σ,0;f1

(x)

)}2

dx

and

b3 =
∫ {

r
(
Dξg

1/2
θ+t,σ+s,ξ ;f1

(x) − Dξg
1/2
θ,σ,ξ ;f1

(x)
)}2

dx.

The result then follows from (i)–(iii). �

A.2. Asymptotic linearity

A.2.1. Asymptotic linearity of �
(n)
f1;3

The asymptotic linearity of �
(n)
f1;3 is required in the construction of the optimal parametric test

of Section 3.2.2. Note that the proof below needs uniform local asymptotic normality in θ and σ

only.

Proposition A.1. Let f1 ∈ F1 and g1 ∈ Ff1 . Then, under P(n)
θ,σ,0;g1

, as n → ∞,

(i) �
(n)
f1;3(θ +n−1/2t, σ,0) = �

(n)
f1;3(θ, σ,0)− tσ−1(Jg1(f1, g1)− κ(f1)Ig1(f1, g1))+ oP(1)

for all t ∈ R.
(ii) �

(n)
f1;3(θ, σ + n−1/2s,0) = �

(n)
f1;3(θ, σ,0) + oP(1) for all s ∈ R.

Proof. Define

D
(n)
f1;3(θ, σ ) := n−1/2

n∑
i=1

φf1

(
Z

(n)
i (θ, σ )

)(
Z

(n)
i (θ, σ )

)2
.

Letting Kf1(u) := φf1(G
−1
1+(u)) (G−1

1+(u))2 with G1+(z) := (2G1(z) − 1)I [z ≥ 0], note that

D
(n)
f1;3(θ, σ,0) = n−1/2

n∑
i=1

si(θ)Kf1

(
G1+

(∣∣Z(n)
i (θ, σ )

∣∣)).



1090 D. Cassart, M. Hallin and D. Paindaveine

Writing θ(n) for θ + n−1/2t , Z
(n)
i for Z

(n)
i (θ, σ ), s

(n)
i for sign(Z

(n)
i ), Z

(n)
i;n for Z

(n)
i (θ(n), σ ) and

s
(n)
i;n for sign(Z

(n)
i;n), let us show that

n−1/2
n∑

i=1

s
(n)
i;nKf1

(
G1+

(∣∣Z(n)
i;n

∣∣))− n−1/2
n∑

i=1

s
(n)
i Kf1

(
G1+

(∣∣Z(n)
i

∣∣))+ tσ−1 Jg1(f1, g1)

is oP(1); the proofs of (ii) and that of

n−1/2
n∑

i=1

φf1

(
Z

(n)
i;n

)= n−1/2
n∑

i=1

φf1

(
Z

(n)
i

)− tσ−1 Ig1(f1, g1) + oP(1)

follow along the same lines and are therefore left to the reader. Let

K
(l)
f1

(u) := Kf1

(
2

l

)
l

(
u − 1

l

)
I

[
1

l
< u ≤ 2

l

]
+ Kf1(u)I

[
2

l
< u ≤ 1 − 2

l

]
+ Kf1

(
1 − 2

l

)
l

((
1 − 1

l

)
− u

)
I

[
1 − 2

l
< u ≤ 1 − 1

l

]
.

Continuity of u �→ Kf1(u) implies continuity of u �→ K
(l)
f1

(u) on the interval ]0,1[. Moreover,
since this function is compactly supported, it is bounded, for any (sufficiently large) l ∈ N0, by
the monotone increasing function u �→ Kf1(u). Let E0 denote expectation under P(n)

θ,σ,0;g1
. One

easily shows that D
(n)
f1;3(θ, σ ) decomposes into D

(n,m)
1 +D

(n,m)
2 −R

(n,m)
1 +R

(n,m)
2 +R

(m)
3 where,

defining J (l)
g1 (f1, g1) := ∫ 1

0 K
(l)
f1

(u)φg1(G
−1
1 (u))du,

D
(n,l)
1 = n−1/2

n∑
i=1

si;nK(l)
f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− n−1/2
n∑

i=1

siK
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣))
− n1/2E0

[
si;nK(l)

f1

(
G1+

(∣∣Z(n)
i;n

∣∣))],
D

(n,l)
2 = n1/2E0

[
si;nK(l)

f1

(
G1+

(∣∣Z(n)
i;n

∣∣))]+ tσ−1 J (l)
g1

(f1, g1),

R
(n,l)
1 = n−1/2

n∑
i=1

si
(
Kf1

(
G1+

(∣∣Z(n)
i

∣∣))− K
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣))),
R

(n,l)
2 = n−1/2

n∑
i=1

si;n
(
Kf1

(
G1+

(∣∣Z(n)
i;n

∣∣))− K
(l)
f1

(
G1+

(∣∣Z(n)
i;n

∣∣)))
and

R
(l)
3 = tσ−1(Jg1(f1, g1) − J (l)

g1
(f1, g1)

)
.

In order to conclude, we prove that D
(n,l)
1 and D

(n,l)
2 are oP(1) under P(n)

θ,σ,0;g1
, as n → ∞, for

fixed l, and that R
(n,l)
1 , R

(n,l)
2 and R

(l)
3 are oP(1) under the same sequence of hypotheses, as
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l → ∞, uniformly in n. For the sake of convenience, those three results are treated separately
(Lemmas A.2–A.4).

Lemma A.2. For any fixed l, D
(n,l)
1 = oP(1) as n → ∞, under P(n)

θ,σ,0;g1
.

Lemma A.3. For any fixed l, D
(n,l)
2 = oP(1) as n → ∞, under P(n)

θ,σ,0;g1
.

Lemma A.4. (i) Under P(n)
θ,σ,0;g1

, R
(n,l)
1 = oP(1) as l → ∞, uniformly in n.

(ii) R
(n,l)
2 = oP(1) as l → ∞, under P(n)

θ,σ,0;g1
(for n sufficiently large), uniformly in n.

(iii) R
(l)
3 is o(1) as l → ∞.

Proof of Lemma A.2. Consider the i.i.d. variables

T
(n,l)
i := si;nK(l)

f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− siK
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)).
One easily verifies that D

(n,l)
1 = n−1/2 ∑n

i=1(T
(n,l)
i − E0[T (n,l)

i ]). Writing Var0 for variances

under P(n)
θ,σ,0;g1

, we have that

E0
(
D

(n,l)
1

) ≤ n−1E0

[(
n∑

i=1

(
T

(n,l)
i − E0

[
T

(n,l)
i

]))2]

≤ n−1 Var0

[
n∑

i=1

(
T

(n,l)
i − E0

[
T

(n,l)
i

])]= Var0
[
T

(n,l)
i

]≤ E0
[(

T
(n,l)
i

)2]
,

and it only remains to show that

E0
[(

T
(n,l)
i

)2]= E0
[(

si;nK(l)
f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− siK
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2]= o(1)

as n → ∞. Now,(
si;nK(l)

f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− siK
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2

= (
si;nK(l)

f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− si;nK(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣))+ si;nK(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣))
− siK

(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2

≤ 2
(
K

(l)
f1

(
G1+

(∣∣Z(n)
i;n

∣∣))− K
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2 + 2
(
K

(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2
(si;n − si)

2.

Because u �→ K
(l)
f1

(u) is continuous and |Z(n)
i;n − Z

(n)
i | is oP(1), K

(l)
f1

(G1+(|Z(n)
i;n |)) −

K
(l)
f1

(G1+(|Z(n)
i |)) also is oP(1). Moreover, since K

(l)
f1

is bounded, this convergence to zero also

holds in quadratic mean. Similarly, K(l)
f1

(G1+(|Z(n)
i |))(si;n−si) = oP(1) since K

(l)
f1

(G1+(|Z(n)
i |))
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is bounded and |si;n − si | is oP(1). Finally, both si;n and si are bounded, implying that this con-
vergence to zero also holds in quadratic mean. �

Proof of Lemma A.3. Let B
(n,l)
1 := n−1/2 ∑n

i=1 siK
(l)
f1

(G1+(|Z(n)
i |)). As n → ∞, under

P(n)
θ,σ,0;g1

, B
(n,l)
1 is asymptotically N (0,E[(K(l)

f1
(U))2]), where U stands for a random vari-

able uniformly distributed over the unit interval. Also, letting B
(n,l)
2 := n−1/2 ∑n

i=1 si;n ×
K

(l)
f1

(G1+|Z(n)
i;n |), it follows from ULAN that B

(n,l)
2 − tσ−1 J (l)

g1 (f1, g1) is asymptotically

N (0,E[(K(l)
f1

(U))2]) as n → ∞, under P(n)
θ,σ,0;g1

. Since D
(n,l)
1 = B

(n,l)
2 − B

(n,l)
1 − E0[B(n,l)

2 ] =
oP(1), we have that B

(n,l)
2 − E0[B(n,l)

2 ] is asymptotically N (0,E[(K(l)
f1

(U))2]) as n → ∞, under

P(n)
θ,σ,0;g1

. Therefore, still as n → ∞, D
(n,l)
2 = E0[B(n,l)

2 ] − tσ−1 J (l)
g1 (f1, g1) = o(1). �

Proof of Lemma A.4. (i) We have that

E0
[(

R
(n,l)
1

)2] ≤ CE0
[(

Kf1

(
G1+

(∣∣Z(n)
i

∣∣))− K
(l)
f1

(
G1+

(∣∣Z(n)
i

∣∣)))2]
= C

∫ ∞

−∞
(
Kf1(u) − K

(l)
f1

(u)
)2 du;

for any u ∈]0,1[, K
(l)
f1

(u) converges to Kf1(u) and the integrand is bounded (uniformly in l)

by 4(Kf1(u))2, which is integrable on ]0,1[. Lebesgue’s dominated convergence theorem thus

implies that E0[(R(n,l)
1 )2] = o(1) as l → ∞, uniformly in n.

(ii) The claim here is the same as in (i), with Z
(n)
i;n replacing Z

(n)
i . Accordingly, (ii) holds under

P(n)

θ(n),σ,0;g1
. That it also holds under P(n)

θ,σ,0;g1
follows from Lemma 3.5 in [9].

(iii) Note that

∣∣Jg1(f1, g1) − J (l)
g1

(f1, g1)
∣∣2 =

∣∣∣∣∫ 1

0
φg1(G

−1
1 (u))

(
K

(l)
f1

(u) − Kf1(u)
)

du

∣∣∣∣2
≤ I(g1)

∫ 1

0

((
K

(l)
f1

(u) − Kf1(u)
))2 du,

where the integrand is bounded by 4(Kf1(u))2, which is square-integrable. Pointwise conver-

gence of K
(l)
f1

(u) to Kf1(u) implies that Jg1(f1, g1) − J (l)
g1 (f1, g1) = o(1) as l → ∞. The result

follows. �

A.2.2. Substitution of �
(n)
f1;3(κ

(n)◦(f1, θ̂#, σ̂#), θ̂#, σ̂#) for �
(n)
f1;3(κg1(f1, g1), θ, σ ).

Lemma A.5. Let f1 ∈ F ◦
1 and g1 ∈ F ◦

f1
. Then, under P(n)

θ,σ,0;g1
:

(i) �
(n)
f1;3(κg1(f1, g1), θ̂#, σ̂#) − �

(n)
f1;3(κg1(f1, g1), θ, σ ) = oP(1).

(ii) �
(n)
f1;3(κ

(n)◦(f1, θ̂#, σ̂#), θ̂#, σ̂#) − �
(n)
f1;3(κg1(f1, g1), θ̂#, σ̂#) = oP(1).
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(iii) �
(n)
f1;3(κ

(n)◦(f1, θ̂#, σ̂#), θ̂#, σ̂#) − �
(n)
f1;3(κg1(f1, g1), θ, σ ) = oP(1).

Proof. Part (i) is a direct consequence of Proposition A.1. The left-hand side in (ii) can be written
as

T
(n)
1 × T

(n)
2 := (

κ(n)◦(f1, θ̂#, σ̂#) − κg1(f1, g1)
)× n−1/2

n∑
i=1

φf1

(
Z

(n)
i (θ̂#, σ̂#)

)
(A.1)

where T
(n)
1 is oP(1). Now, ULAN implies that

T
(n)

2 = n−1/2
n∑

i=1

φf1

(
Z

(n)
i (θ, σ )

)+ (σ−1 Ig1(f1, g1),0)n1/2
((

θ̂#
σ̂#

)
−
(

θ

σ

))
+ oP(1), (A.2)

as n → ∞ under P(n)
θ,σ,0;g1

. Hence, the central limit theorem and the root-n-consistency of θ̂# and
σ̂# entail that (A.2) is OP(1); the result follows. As for (iii), it is a direct consequence of (i) and
(ii). �
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