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For an absolutely continuous (integer-valued) r.v. X of the Pearson (Ord) family, we show that, under natural
moment conditions, a Stein-type covariance identity of order k holds (cf. [Goldstein and Reinert, J. Theoret.
Probab. 18 (2005) 237–260]). This identity is closely related to the corresponding sequence of orthogonal
polynomials, obtained by a Rodrigues-type formula, and provides convenient expressions for the Fourier
coefficients of an arbitrary function. Application of the covariance identity yields some novel expressions
for the corresponding lower variance bounds for a function of the r.v. X, expressions that seem to be known
only in particular cases (for the Normal, see [Houdré and Kagan, J. Theoret. Probab. 8 (1995) 23–30]; see
also [Houdré and Pérez-Abreu, Ann. Probab. 23 (1995) 400–419] for corresponding results related to the
Wiener and Poisson processes). Some applications are also given.
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polynomials; Parseval identity; “Rodrigues inversion” formula; Rodrigues-type formula; Stein-type
identity; variance bounds

1. Introduction

For an r.v. X with density f , mean μ and finite variance σ 2, Goldstein and Reinert [18] showed
the identity (see also [26])

Cov(X,g(X)) = σ 2
E[g′(X∗)], (1.1)

which holds for any absolutely continuous function g : R → R with a.s. derivative g′ such that the
right-hand side is finite. In (1.1), X∗ is defined to be the r.v. with density f ∗(x) = 1

σ 2

∫ x

−∞(μ −
t)f (t)dt = 1

σ 2

∫ ∞
x

(t − μ)f (t)dt , x ∈ R.
Identity (1.1) extends the well-known Stein identity for the standard normal [33,34]; a discrete

version of (1.1) can be found in, for example, [13], where the derivative has been replaced by
the forward difference of g. In particular, identities of the form (1.1) have many applications to
variance bounds and characterizations [4,13,26], and to approximation procedures [11,14,15,18,
27,31,33]. Several extensions and applications can be found in [10,19,29].
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In [23], the (continuous) Pearson family is parametrized by the fact that there exists a quadratic
q(x) = δx2 + βx + γ such that∫ x

−∞
(μ − t)f (t)dt = q(x)f (x), x ∈ R. (1.2)

Typically, the usual definition of a Pearson r.v. is related to the differential equation f ′(x)/f (x) =
(α − x)/p2(x), with p2 being a polynomial of degree at most 2. In fact, the set-up of (1.2)
(including, e.g., the standard uniform distribution with q(x) = x(1−x)/2) will be the framework
of the present work and will hereafter be called “the Pearson family of continuous distributions”.
It is easily seen that under (1.2), the support of X, S(X) = {x :f (x) > 0}, must be an interval,
say (r, s) with −∞ ≤ r < s ≤ ∞, and q(x) remains strictly positive for x ∈ (r, s). Clearly, under
(1.2), the covariance identity (1.1) can be rewritten as

E[(X − μ)g(X)] = E[q(X)g′(X)]. (1.3)

It is known that, under appropriate moment conditions, the functions

Pk(x) = (−1)k

f (x)

dk

dxk
[qk(x)f (x)], x ∈ (r, s), k = 0,1, . . . ,M (1.4)

(where M can be finite or infinite) are orthogonal polynomials with respect to the density f so
that the quadratic q(x) in (1.2) generates a sequence of orthogonal polynomials by the Rodrigues-
type formula (1.4). In fact, this approach is related to the Sturm–Liouville theory, [17], Sec-
tion 5.2; see also [24,28].

In the present paper, we provide an extended Stein-type identity of order k for the Pearson
family. This identity takes the form

E[Pk(X)g(X)] = E
[
qk(X)g(k)(X)

]
, (1.5)

where g(k) is the kth derivative of g (since P1(x) = x −μ, (1.5) for k = 1 reduces to (1.3)). Iden-
tity (1.5) provides a convenient formula for the kth Fourier coefficient of g, corresponding to the
orthogonal polynomial Pk in (1.4). For its proof, we make use of a novel “Rodrigues inversion”
formula that may be of some interest in itself. An identity similar to (1.5) holds for the discrete
Pearson (Ord) family. Application of (1.5) and its discrete analog yields the corresponding lower
variance bounds, obtained in Section 4. The lower bound for the Poisson(λ) distribution, namely,

Varg(X) ≥
n∑

k=1

λk

k! E
2[�k[g(X)]] (1.6)

(cf. [21]) and the corresponding one for the Normal(μ,σ 2) distribution [20],

Varg(X) ≥
n∑

k=1

(σ 2)k

k! E
2[g(k)(X)

]
, (1.7)
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are particular examples (Examples 4.1 and 4.5) of Theorems 4.1 and 4.2, respectively. Both (1.6)
and (1.7) are particular cases of the finite form of Bessel’s inequality and, under completeness,
they can be extended to the corresponding Parseval identity. In Section 5, we show that this can
be done for a fairly large family of r.v.’s, including, of course, the normal, the Poisson and, in
general, all the r.v.’s of the Pearson system which have finite moments of any order. For instance,
when X is Normal(μ,σ 2), inequality (1.7) (and identity (1.5)) can be strengthened to the covari-
ance identity

Cov[g1(X), g2(X)] =
∞∑

k=1

(σ 2)k

k! E
[
g

(k)
1 (X)

]
E

[
g

(k)
2 (X)

]
, (1.8)

provided that for i = 1,2, gi ∈ D
∞(R), E|g(k)

i (X)| < ∞, k = 1,2, . . . , and that E[gi(X)]2 < ∞.
Similar identities hold for Poisson, negative binomial, beta and gamma distributions. These kinds
of variance/covariance expressions may sometimes be useful in inference problems – see, e.g.,
the Applications 5.1 and 5.2 at the end of the paper.

2. Discrete orthogonal polynomials and the covariance identity

In order to simplify notation, we assume that X is a non-negative integer-valued r.v. with mean
μ < ∞. We also assume that there exists a quadratic q(x) = δx2 + βx + γ such that

x∑
j=0

(μ − j)p(j) = q(x)p(x), x = 0,1, . . . , (2.1)

where p(x) is the probability function of X. Relation (2.1) describes the discrete Pearson system
(Ord family) [23]. Let �k be the forward difference operator defined by �[g(x)] = g(x + 1) −
g(x) and �k[g(x)] = �[�k−1[g(x)]] (�0[g] ≡ g, �1 ≡ �). We also set q[k](x) = q(x)q(x +
1) · · ·q(x + k − 1) (with q[0] ≡ 1, q[1] ≡ q).

We first show some useful lemmas.

Lemma 2.1. If h(x) = 0 for x < 0 and

∞∑
x=0

|�j [h(x − j)]�k−j [g(x)]| < ∞ for j = 0,1, . . . , k, (2.2)

lim
x→∞�j [h(x − j)]�k−j−1[g(x)] = 0 for j = 0,1, . . . , k − 1, (2.3)

then

(−1)k
∞∑

x=0

�k[h(x − k)]g(x)

(2.4)

=
∞∑

x=0

h(x)�k[g(x)].
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Proof. We have

∞∑
x=0

h(x)�k[g(x)] = lim
n→∞

n∑
x=0

h(x)
(
�k−1[g(x + 1)] − �k−1[g(x)])

= lim
n→∞

[
h(n + 1)�k−1[g(n + 1)] −

n+1∑
x=0

�[h(x − 1)]�k−1[g(x)]
]

= lim
n→∞h(n + 1)�k−1[g(n + 1)] −

∞∑
x=0

�[h(x − 1)]�k−1[g(x)]

= −
∞∑

x=0

�[h(x − 1)]�k−1[g(x)].

By the same calculation, it follows that

(−1)j
∞∑

x=0

�j [h(x − j)]�k−j [g(x)] = (−1)j+1
∞∑

x=0

�j+1[h(x − j − 1)]�k−j−1[g(x)]

for any j ∈ {0,1, . . . , k − 1}. �

Lemma 2.2. For each n ≥ 0, there exist polynomials Qi,n(x), i = 0,1, . . . , n, such that the
degree of each Qi,n is at most i and

�i
[
q[n](x − n)p(x − n)

] = q[n−i](x − n + i)p(x − n + i)Qi,n(x), i = 0,1, . . . , n. (2.5)

Moreover, the leading coefficient (i.e., the coefficient of xn) of Qn,n is given by lead(Qn,n) =
(−1)n

∏2n−2
j=n−1(1 − jδ), where an empty product should be treated as 1.

Proof. For n = 0, the assertion is obvious and Q0,0(x) = 1. For n = 1, the assertion follows from
the assumption (2.1) with Q0,1(x) = 1, Q1,1(x) = μ−x. For the case n ≥ 2, the assertion will be
proven using (finite) induction on i. Indeed, for i = 0, (2.5) holds with Q0,n(x) = 1. Assuming
that the assertion holds for some i ∈ {0,1, . . . , n − 1} and setting hn(x) = q[n](x − n)p(x − n),
it follows that

�i+1hn(x) = �[�ihn(x)]
= �[hn−i (x)Qi,n(x)]
= �

[
q(x − n + i)p(x − n + i)

(
q[n−i−1](x − n + i + 1)Qi,n(x)

)]
= q(x − n + i + 1)p(x − n + i + 1)�

[
q[n−i−1](x − n + i + 1)Qi,n(x)

]
+ (

μ − (x − n + i + 1)
)
p(x − n + i + 1)q[n−i−1](x − n + i + 1)Qi,n(x),
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where the obvious relation �[q(x)p(x)] = (μ − (x + 1))p(x + 1), equivalent to (2.1), has been
used with x − n + i in place of x. Moreover,

�
[
q[n−i−1](x − n + i + 1)Qi,n(x)

]
= q[n−i−1](x − n + i + 2)�[Qi,n(x)] + Qi,n(x)�

[
q[n−i−1](x − n + i + 1)

]
and

�
[
q[n−i−1](x − n + i + 1)

] = q[n−i−2](x − n + i + 2)
(
q(x) − q(x − n + i + 1)

)
(where, for i = n − 1, the right-hand side of the above should be treated as 0). Observing that

q(x − n + i + 1)q[n−i−2](x − n + i + 2)
(
q(x) − q(x − n + i + 1)

)
= q[n−i−1](x − n + i + 1)

(
q(x) − q(x − n + i + 1)

)
(which is also true in the case where i = n−1), the above calculations show that (2.5) holds with

Qi+1,n(x) = Pi,n(x)Qi,n(x) + q(x)�[Qi,n(x)],
where Pi,n(x) = μ − (x − n + i + 1) + q(x) − q(x − n + i + 1) is a linear polynomial or a
constant. From the above recurrence, it follows immediately that lead(Qi+1:n) = −(1 − (2n −
i − 2)δ) lead(Qi,n), i = 0,1, . . . , n − 1; this, combined with the fact that lead(Q0,n) = 1, yields
the desired result. �

It is easy to see that under (2.1), the support of X, S(X) = {x ∈ Z :p(x) > 0}, is a finite
or infinite integer interval. This integer interval will be denoted by J . Here, the term “integer
interval” means that “if j1 and j2 are integers belonging to J , then all integers between j1 and j2

also belong to J ”.

Lemma 2.3. For each k = 0,1,2, . . . , define the functions Pk(x), x ∈ J , by the Rodrigues-type
formula

Pk(x) = (−1)k

p(x)
�k

[
q[k](x − k)p(x − k)

]
(2.6)

= 1

p(x)

k∑
j=0

(−1)k−j

(
k

j

)
q[k](x − j)p(x − j).

We then have the following:

(a) Each Pk is a polynomial of degree at most k, with lead(Pk) = ∏2k−2
j=k−1(1 − jδ) (in

the sense that the function Pk(x), x ∈ J , is the restriction of a real polynomial Gk(x) =∑k
j=0 c(k, j)xj , x ∈ R, of degree at most k, such that c(k, k) = lead(Pk)).
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(b) Let g be an arbitrary function defined on J (the integer interval support of X) and, if J

is infinite, assume in addition that the functions g and h(x) := q[k](x)p(x) satisfy the require-
ments (2.2) and (2.3) of Lemma 2.1. Then,

E|Pk(X)g(X)| < ∞, E
[
q[k](X)|�k[g(X)]|] < ∞

and the following identity holds:

E[Pk(X)g(X)] = E
[
q[k](X)�k[g(X)]]. (2.7)

Proof. Part (a) follows from Lemma 2.2 since Pk = (−1)kQk,k . For part (b), assume first that
p(0) > 0, that is, the support J is either J = {0,1, . . .} or J = {0,1, . . . ,N} for a positive natural
number N . In the unbounded case, (2.7) follows by an application of Lemma 2.1 to the functions
h(x) = q[k](x)p(x) and g since they satisfy the conditions (2.2) and (2.3). For the bounded case,
it follows by (2.1) that x = N is a zero of q(x) so that q(x) = (N − x)(μ/N − δx), where,
necessarily, δ < μ/(N(N − 1)). Thus, in the case where k > N , q[k](x) = 0 for all x ∈ J so that
the right-hand side of (2.7) vanishes. On the other hand, the left-hand side of (2.7) (with Pk given
by (2.6)) is

∑N
x=0 g(x)

∑k
j=0(−1)k−j

(
k
j

)
q[k](x − j)p(x − j) and it is easy to verify that for all

x ∈ J and all j ∈ {0,1, . . . , k}, the quantity q[k](x − j)p(x − j) vanishes. Thus, when k > N ,
(2.7) holds in the trivial sense 0 = 0. For k ≤ N , the left-hand side of (2.7) equals

k∑
j=0

(−1)k−j

(
k

j

) N−j∑
x=−j

q[k](x)p(x)g(x + j)

=
k∑

j=0

(−1)k−j

(
k

j

)N−j∑
x=0

q[k](x)p(x)g(x + j)

=
N∑

x=0

q[k](x)p(x)

min{k,N−x}∑
j=0

(−1)k−j

(
k

j

)
g(x + j)

=
N−k∑
x=0

q[k](x)p(x)

k∑
j=0

(−1)k−j

(
k

j

)
g(x + j),

where we have made use of the facts that p(x) = 0 for x < 0 and q[k](x) = 0 for N −k < x ≤ N .
Thus, (2.7) is proved under the assumption p(0) > 0. For the general case, where the support of X

is either {m,m + 1, . . . ,N} or {m,m + 1, . . .}, it suffices to apply the same arguments to the r.v.
X − m. �

Theorem 2.1. Suppose that X satisfies (2.1) and has 2n finite moments for some n ≥ 1. The
polynomials Pk , k = 0,1, . . . , n, defined by (2.6), then satisfy the orthogonality condition

E[Pk(X)Pm(X)] = δk,mk!E[
q[k](X)

] 2k−2∏
j=k−1

(1 − jδ), k,m = 0,1, . . . , n, (2.8)
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where δk,m is Kronecker’s delta.

Proof. Let 0 ≤ m ≤ k ≤ n. First, observe that q[k] is a polynomial of degree at most 2k and Pm

a polynomial of degree at most m. Note that the desired result will be deduced if we can ap-
ply (2.7) to the function g = Pm; this can be trivially applied when J is finite. In the remaining
case where J is infinite, we have to verify conditions (2.2) and (2.3) of Lemma 2.1 for the func-
tions h = q[k]p and g = Pm, or, more generally, for any polynomial g of degree less than or
equal to k. Since the case m = 0 is obvious (P0(x) = 1), we assume that 1 ≤ m ≤ k ≤ n. Ob-
serve that (2.2) is satisfied in this case because of the assumption E|X|2k < ∞. Indeed, from
Lemma 2.2, �j [q[k](x − j)p(x − j)] = p(x)q[k−j ](x)Qj,k(x − j + k), where Qj,k is of degree
at most j and q[k−j ] is of degree at most 2k − 2j so that their product is a polynomial of degree
at most 2k − j , while �k−j [g] is a polynomial of degree at most j . On the other hand, since
q(x)p(x) is eventually decreasing and

∑∞
x=0 x2k−2q(x)p(x) < ∞, we have, as y → ∞, that

q(2y)p(2y)y(y + 1)2k−2 ≤
2y∑

x=y+1

x2k−2q(x)p(x) → 0 and

q(2y + 1)p(2y + 1)(y + 1)2k−1 ≤
2y+1∑

x=y+1

x2k−2q(x)p(x) → 0.

Hence, limx→∞ x2k−1q(x)p(x) = 0. For j ≤ k − 1, we have, from Lemma 2.2, that

�j [h(x − j)]�k−j−1[g(x)] = q(x)p(x)R(x),

where

R(x) = q[k−j−1](x + 1)Qj,k(x − j + k)�k−j−1[g(x)]
is a polynomial of degree at most 2k − 1. This, combined with the above limit, verifies (2.3) and
a final application of (2.7) completes the proof. �

The covariance identity (2.7) enables the calculation of the Fourier coefficients of any func-
tion g in terms of its differences �k[g], provided that conditions (2.2) and (2.3) are fulfilled
for g and h(x) = q[k](x)p(x). Since this identity is important for the applications, we state and
prove a more general result that relaxes these conditions. The proof of this result contains a novel
inversion formula for the polynomials obtained by the Rodrigues-type formula (2.6).

Theorem 2.2. Assume that X satisfies (2.1) and has 2k finite moments, and suppose that for
some function g defined on J ,

E
[
q[k](X)|�k[g(X)]|] < ∞.

Then,

E|Pk(X)g(X)| < ∞
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and the covariance identity (2.7) holds. Moreover, provided that k ≥ 1 and X has 2k − 1 finite
moments, the following “Rodrigues inversion” formula holds:

q[k](x)p(x) = 1

(k − 1)!
∞∑

y=x+1

(y − x − 1)k−1Pk(y)p(y), x = 0,1, . . . , (2.9)

where, for x ∈ R, (x)n = x(x − 1) · · · (x − n + 1), n = 1,2, . . . , and (x)0 = 1.

Proof. Relation (2.7) is obvious when k = 0. Also, the assertion follows trivially by
Lemma 2.3(b) if J is finite. Assume, now, that k ≥ 1 and that J is unbounded, fix s ∈ {0,1, . . .}
and consider the function

gs,k(x) := 1

(k − 1)!I (x ≥ s + 1)(x − s − 1)k−1, x = 0,1, . . . .

It is easily seen that the pair of functions g = gs,k and h(x) = q[k](x)p(x) satisfy (2.2) and (2.3)
and also that �k[gs,k(x)] = I (x = s). Thus, by (2.7), we get (2.9) (cf. formulae (3.6) and (3.7),
below, for the continuous case), where Pk is defined by (2.6) and the series converges from
Lemma 2.3(a) and the fact that X has 2k − 1 finite moments (note that 2k − 1 finite moments
suffice for this inversion formula). Since Pk is a polynomial and the left-hand side of (2.9) is
strictly positive for all large enough x, it follows that Pk(y) > 0 for all large enough y. Us-
ing (2.9), the assumption on �k[g] is equivalent to the fact that

1

(k − 1)!
∞∑

x=0

|�k[g(x)]|
∞∑

y=x+1

(y − x − 1)k−1Pk(y)p(y) < ∞

and arguments similar to those used in the proof of Theorem 3.1(b) below show that

1

(k − 1)!
∞∑

x=0

|�k[g(x)]|
∞∑

y=x+1

(y − x − 1)k−1|Pk(y)|p(y) < ∞.

Therefore, we can interchange the order of summation, obtaining

E
[
q[k](X)�k[g(X)]] = 1

(k − 1)!
∞∑

x=0

�k[g(x)]
∞∑

y=x+1

(y − x − 1)k−1Pk(y)p(y)

= 1

(k − 1)!
∞∑

y=1

Pk(y)p(y)

y−1∑
x=0

(y − x − 1)k−1�
k[g(x)]

= E[Pk(X)G(X)],
where

G(x) = 1

(k − 1)!
x−k∑
y=0

(x − 1 − y)k−1�
k[g(y)], x = 0,1, . . . ,
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and where an empty sum should be treated as 0. Taking forward differences, it follows that
�k[G(x)] = �k[g(x)] so that G = g + Hk−1, where Hk−1 is a polynomial of degree at most
k − 1, and the desired result follows from the orthogonality of Pk to polynomials of degree lower
than k. This completes the proof. �

3. The generalized Stein-type identity for the continuous case

The orthogonality of polynomials (1.4) has been shown, for example, in [17]; see also [24,28].
For our purposes, we review some details.

The induction formula, as in (2.5), here takes the form

di

dxi
[qk(x)f (x)] = qk−i (x)f (x)Qi,k(x), i = 0,1, . . . , k, (3.1)

with Q0,k(x) = 1, where Qi,k is a polynomial of degree at most i and the explicit recurrence for
Qi,k is

Qi+1,k(x) = (
μ − x + (k − i − 1)(2δx + β)

)
Qi,k(x) + q(x)Q′

i,k(x), i = 0,1, . . . , k − 1.

This immediately implies that lead(Pk) = (−1)k lead(Qk,k) = ∏2k−2
j=k−1(1−jδ), as in the discrete

case; see also [7,17]. The covariance identity, as in (2.7), here takes the form (after repeated
integration by parts; cf. [22,28])

E[Pk(X)g(X)] = E
[
qk(X)g(k)(X)

]
, (3.2)

provided that the expectations are finite and

lim
x→r+qi+1(x)f (x)Qk−i−1,k(x)g(i)(x)

(3.3)
= lim

x→s−qi+1(x)f (x)Qk−i−1,k(x)g(i)(x) = 0, i = 0,1, . . . , k − 1

(here, (r, s) = {x :f (x) > 0}; that the support is an interval follows from (1.2)), where Qi,k are
the polynomials defined by the recurrence above. Obviously, an alternative condition, sufficient
for (3.3) (and, hence, also for (3.2)), is

lim
x→r+qi+1(x)f (x)xjg(i)(x) = lim

x→s−qi+1(x)f (x)xjg(i)(x) = 0,

(3.4)
i = 0,1, . . . , k − 1, j = 0,1, . . . , k − i − 1.

Assuming that X has 2k finite moments, k ≥ 1, it is seen that (3.4), and hence (3.2), is ful-
filled for any polynomial g of degree at most k. For example, for the upper limit, we have
limx→s− q(x)f (x) = 0 so that (3.4) trivially holds if s < ∞; also, if s = +∞, then (3.4)
follows from q(x)f (x) = o(x−(2k−1)) as x → +∞, which can be shown by observing that
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q(x)f (x) is eventually decreasing, positive and, by the assumption of finite 2kth moment, satis-
fies limx→+∞

∫ x

x/2 y2k−2q(y)f (y)dy = 0. Therefore, the explicit orthogonality relation is

E[Pk(X)Pm(X)] = δk,mk!E[qk(X)]
2k−2∏

j=k−1

(1 − jδ), k,m = 0,1, . . . , n, (3.5)

where δk,m is Kronecker’s delta, provided that X has 2n finite moments. The proof follows by a
trivial application of (3.2) to g(x) = Pm(x), for 0 ≤ m ≤ k ≤ n (cf. [28]).

It should be noted, however, that the condition (3.4) or (3.3) imposes some unnecessary re-
strictions on g. In fact, the covariance identity (3.2) (which enables a general form of the Fourier
coefficients of g to be constructed in terms of its derivatives) holds, in our case, in its full gener-
ality; the proof requires the novel inversion formula (3.6) or (3.7) below, which may be of some
interest in itself.

Theorem 3.1. Assume that X satisfies (1.2) and consider the polynomial Pk(x) defined by (1.4),
where (r, s) = {x :f (x) > 0}.

(a) If X has 2k − 1 finite moments (k ≥ 1), then the following “Rodrigues inversion” formula
holds:

qk(x)f (x) = (−1)k

(k − 1)!
∫ x

r

(x − y)k−1Pk(y)f (y)dy (3.6)

= 1

(k − 1)!
∫ s

x

(y − x)k−1Pk(y)f (y)dy, x ∈ (r, s). (3.7)

(b) If X has 2k finite moments and Eqk(X)|g(k)(X)| < ∞, then E|Pk(X)g(X)| < ∞ and the
covariance identity (3.2) holds.

Proof. (a) Let H1(x), H2(x) be the left-hand side and right-hand side, respectively, of (3.6). It is
easy to see that the integral H2(x) is finite (this requires only 2k − 1 finite moments). Moreover,
expanding (x − y)k−1 in the integrand of H2(x) according to Newton’s formula, it follows that
H

(k)
2 (x) = (−1)kPk(x)f (x), x ∈ (r, s), and, thus, by the definition (1.4), (H1(x) − H2(x))(k) =

H
(k)
1 (x) − H

(k)
2 (x) vanishes identically in (r, s). Therefore, H1 − H2 is a polynomial of degree

at most k − 1. By (3.1), limx→r+ H
(i)
1 (x) = 0 for all i = 0,1, . . . , k − 1 because q(x)f (x) → 0

as x → r+ and, for the case r = −∞, q(x)f (x) = o(x−(2k−2)) as x → −∞ since the (2k −
1)th moment is finite, q is of degree at most 2 and q(x)f (x) is increasing and positive in a
neighborhood of −∞. Similarly, using the fact that Pk is a polynomial of degree at most k and
observing that limx→r+ xi

∫ x

r
yk+j−1−if (y)dy = 0 for all i = 0,1, . . . , k − 1, j = 0,1, . . . , k

(again, 2k − 1 finite moments suffice for this conclusion), it follows that limx→r+ H
(i)
2 (x) = 0

for all i = 0,1, . . . , k − 1. This proves that H1 − H2 vanishes identically in (r, s) and (3.6)
follows. Finally, (3.7) follows from (3.6) and (3.2) with g(y) = (x − y)k−1 (the validity of (3.2)
for polynomials g of degree at most k − 1 can be shown directly, using repeated integration by
parts, as above).
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(b) Suppose that k ≥ 1; otherwise, since P0(x) = 1, we have nothing to show. Since
E[Pk(X)] = E[Pk(X)P0(X)] = 0 from (3.5), either Pk(x) vanishes identically for x ∈ (r, s) (in
which case, (3.2) trivially holds) or, otherwise, it must change sign at least once in (r, s). As-
sume that Pk is not identically zero and consider the change-sign points of Pk in (r, s), say,
ρ1 < ρ2 < · · · < ρm (of course, 1 ≤ m ≤ k because Pk is a polynomial of degree at most k). Fix
a point ρ in the finite interval [ρ1, ρm] and write, with the help of (3.6) and (3.7),

E
[
qk(X)

∣∣g(k)(X)
∣∣]

= (−1)k

(k − 1)!
∫ ρ

r

∣∣g(k)(x)
∣∣ ∫ x

r

(x − y)k−1Pk(y)f (y)dy dx (3.8)

+ 1

(k − 1)!
∫ s

ρ

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1Pk(y)f (y)dy dx.

Because of the assumption on g, both integrals on the right-hand side of (3.8) are finite. We
wish to show that we can change the order of integration in both integrals in the right-hand side
of (3.8). This will follow from Fubini’s theorem if it can be shown that

I (ρ) =
∫ s

ρ

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1|Pk(y)|f (y)dy dx < ∞ (3.9)

and similarly for the other integral in (3.8). Since q(x)f (x) > 0 for all x ∈ (r, s) (see (1.2)), it
follows that qk(x)f (x) > 0 for all x ∈ (r, s) as well. Thus, from (3.7), we get∫ s

x

(y − x)k−1Pk(y)f (y)dy > 0, x ∈ [ρ, s). (3.10)

On the other hand, Pk(x) does not change sign in the interval (ρm, s) and, hence, Pk(x) > 0 for
all x ∈ (ρm, s), showing that∫ s

ρm

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1|Pk(y)|f (y)dy dx

(3.11)

=
∫ s

ρm

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1Pk(y)f (y)dy dx.

By the above considerations, it follows that

H(ρ) := inf
x∈[ρ,ρm]h(x) := inf

x∈[ρ,ρm]

∫ s

x

(y − x)k−1Pk(y)f (y)dy > 0, (3.12)

S(ρ) := sup
x∈[ρ,ρm]

s(x) := sup
x∈[ρ,ρm]

∫ ρm

x

(y − x)k−1|Pk(y)|f (y)dy < ∞, (3.13)

D(ρ) := sup
x∈[ρ,ρm]

d(x) := sup
x∈[ρ,ρm]

∫ s

ρm

(y − x)k−1Pk(y)f (y)dy < ∞ (3.14)
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because the three positive functions h(x), s(x) and d(x) defined above are obviously continu-
ous and x lies in the compact interval [ρ,ρm] (note that h(x) > 0 by (3.10)). Now, from the
inequalities s(x) ≤ S(ρ)

H(ρ)
h(x) and d(x) ≤ D(ρ)

H(ρ)
h(x), x ∈ [ρ,ρm], we conclude that

∫ ρm

ρ

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1|Pk(y)|f (y)dy dx

=
∫ ρm

ρ

∣∣g(k)(x)
∣∣(s(x) + d(x)

)
dx (3.15)

≤ S(ρ) + D(ρ)

H(ρ)

∫ ρm

ρ

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1Pk(y)f (y)dy dx.

Combining (3.11) and (3.15), we see that there exists a finite constant C(ρ) (take, for example,
C(ρ) = max{1, (S(ρ) + D(ρ))/H(ρ)}) such that

I (ρ) ≤ C(ρ)

∫ s

ρ

∣∣g(k)(x)
∣∣ ∫ s

x

(y − x)k−1Pk(y)f (y)dy dx < ∞

and, thus, by (3.9), we can indeed interchange the order of integration in the second integral in
the right-hand side of (3.8). Similar arguments apply to the first integral. By the above arguments
and by interchanging the order of integration in both integrals in the right-hand side of (3.8)
(with g(k) in place of |g(k)|), we obtain

E
[
qk(X)g(k)(X)

] = E[Pk(X)G(X)], (3.16)

where

G(x) = (−1)k

(k − 1)!
∫ ρ

x

(y − x)k−1g(k)(y)dy (3.17)

= 1

(k − 1)!
∫ x

ρ

(x − y)k−1g(k)(y)dy, x ∈ (r, s). (3.18)

Differentiating (3.17) or (3.18) k times, it is easily seen that G(k) = g(k) so that G−g = Hk−1 is a
polynomial of degree at most k − 1 and the desired result follows by (3.16) and the orthogonality
of Pk to polynomials of degree lower than k. This completes the proof of the theorem. �

4. An application to lower variance bounds

A simple application of Theorem 2.2 leads to the following lower variance bound.

Theorem 4.1. Fix n ∈ {1,2, . . .} and assume that X satisfies (2.1) and has 2n finite moments.
Then, for any function g satisfying

E
[
q[k](X)|�k[g(X)]|] < ∞ for k = 0,1, . . . , n, (4.1)
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the bound

Varg(X) ≥
n∑

k=1

E
2[q[k](X)�k[g(X)]]

k!E[q[k](X)]∏2k−2
j=k−1(1 − jδ)

(4.2)

holds (where the kth term in the sum should be treated as zero whenever E[q[k](X)] vanishes)
with equality if and only if g is a polynomial of degree at most n.

Proof. Assume that E[g2(X)] < ∞ (otherwise, we have nothing to show). By Theorem 2.1,

the polynomials {Pk/

√
E[P 2

k (X)]; k = 0,1, . . . ,min{n,N}} form an orthonormal basis of all
polynomials with degree up to n, where N + 1 is the cardinality of J . Observing that the kth
Fourier coefficient for g is, by (2.7), (2.8) and Theorem 2.2,

E[Pk(X)g(X)]
E1/2[P 2

k (X)] = E[q[k](X)�k[g(X)]]
(k!E[q[k](X)]∏2k−2

j=k−1(1 − jδ))1/2
, k ≤ min{n,N},

the desired result follows by an application of the finite form of Bessel’s inequality. �

It is worth mentioning here the similarity of the lower variance bound (4.2) with the Poincaré-
type (upper/lower) bound for the discrete Pearson family, obtained recently in [2], namely

(−1)n

(
Varg(X) −

n∑
k=1

(−1)k+1

k!∏k−1
j=0(1 − jδ)

E
[
q[k](X)(�k[g(X)])2]) ≥ 0. (4.3)

The following examples can be verified immediately.

Example 4.1. If X is Poisson(λ), then q(x) = λ so that δ = 0 and (1.6) follows from (4.2) (see
also [21]). Moreover, the equality in (1.6) holds if and only if g is a polynomial of degree at
most n.

Example 4.2. For the binomial(N,p) distribution, q(x) = (N − x)p so that δ = 0 and
E[q[k](X)] = (N)kp

k(1 − p)k . Thus, (4.2) yields the bound

Varg(X) ≥
min{n,N}∑

k=1

pk

k!(N)k(1 − p)k
E

2[(N − X)k�
k[g(X)]]

with equality only for polynomials of degree at most n. Note that there is equality if n ≥ N .

Example 4.3. For the negative binomial(r,p) with p(x) = (r + x − 1)xp
r(1 − p)x/x!, x =

0,1, . . . , (2.1) is satisfied with q(x) = (1 − p)(r + x)/p. Thus, δ = 0, E[q[k](X)] = (1 −
p)k[r]k/p2k and (4.2) produces the bound

Varg(X) ≥
n∑

k=1

(1 − p)k

k![r]k E
2[[r + X]k�k[g(X)]]
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(in the above formulae and elsewhere in the paper, [x]n = x(x + 1) · · · (x + n − 1) if n ≥ 1 and
[x]0 = 1).

Example 4.4. For the discrete Uniform{1,2, . . . ,N}, (2.1) is satisfied with q(x) = x(N − x)/2;
thus, δ = −1/2 and (4.2) entails the bound (which is an identity if n ≥ N − 1)

Varg(X) ≥ N

min{n,N−1}∑
k=1

(2k + 1)(N − k − 1)!
(k!)2(N + k)! E

2[[X]k(N − X)k�
k[g(X)]].

The lower variance bound for the continuous Pearson system is stated in the following theo-
rem; its proof, being an immediate consequence of (3.2), (3.5), Theorem 3.1 and a straightfor-
ward application of the finite form of Bessel’s inequality (cf. the proof of Theorem 4.1 above), is
omitted.

Theorem 4.2. Assume that X satisfies (1.2) and has finite moment of order 2n for some fixed
n ≥ 1. Then, for any function g satisfying E[qk(X)|g(k)(X)|] < ∞, k = 0,1, . . . , n, we have the
inequality

Varg(X) ≥
n∑

k=1

E
2[qk(X)g(k)(X)]

k!E[qk(X)]∏2k−2
j=k−1(1 − jδ)

(4.4)

with equality if and only if g is a polynomial of degree at most n. (Note that E|X|2n < ∞ implies
δ < (2n − 1)−1 and, thus, that δ /∈ {1,1/2, . . . ,1/(2n − 2)} if n ≥ 2.)

Some examples now follow.

Example 4.5. If X is Normal(μ,σ 2), then q(x) = σ 2 and (4.4) yields the Houdré–Kagan vari-
ance bound (1.7) (see [20]), under the weaker assumptions E|g(k)(X)| < ∞, k = 0,1, . . . , n;
equality holds if and only if g is a polynomial of degree at most n.

Example 4.6. If X is 
(a,λ) with density λaxa−1e−λx/
(a), x > 0, then q(x) = x/λ,
E[qk(X)] = [a]k/λ2k and (4.4) entails the bound

Varg(X) ≥
n∑

k=1

1

k![a]k E
2[Xkg(k)(X)

]

with equality only for polynomials of degree at most n.

Example 4.7. For the standard uniform density, q(x) = x(1 − x)/2, δ = −1/2, E[qk(X)] =
(k!)2/(2k(2k + 1)!) and we get the bound

Varg(X) ≥
n∑

k=1

2k + 1

(k!)2
E

2[Xk(1 − X)kg(k)(X)
]
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with equality only for polynomials of degree at most n. Similar inequalities hold for all beta
densities.

Of course, in the above three examples, the corresponding orthogonal polynomials (1.4) are
the well-known Hermite, Laguerre and Jacobi (Legendre), respectively, so that one can alter-
natively obtain the results using explicit expressions for the variance and generating functions
for the polynomials (see, e.g., [5,6,12,16,19]); this is also the case for the discrete polynomials
corresponding to Examples 4.1–4.4 (namely, Charlier, Krawtchouck, Meixner and Hahn, respec-
tively). However, as will become clear from the following example, the considerations given here
do not only simplify and unify the calculations, but also go beyond the classical polynomials.

Example 4.8. If X follows the tN distribution (Student’s t with N degrees of freedom) with
density

f (x) = 
((N + 1)/2)√
Nπ
(N/2)

(
1 + x2

N

)−(N+1)/2

, x ∈ R,

then it is well known that X has only N − 1 finite integral moments. However, for N > 1,
X satisfies (1.2) and its quadratic q(x) = (N + x2)/(N − 1) has δ = 1/(N − 1). Thus, (4.4)
applies for sufficiently large N (see also [22] for a Poincaré-type bound corresponding to (4.3)).
To this end, it suffices to calculate

E[qk(X)] =
(

N

N − 1

)k k∏
j=1

(
1 + 1

N − 2j

)
, k ≤ (N − 1)/2,

and
∏2k−2

j=k−1(1 − jδ) = (N − k)k/(N − 1)k . Theorem 4.2 yields the (non-classic) bound

Varg(X) ≥
n∑

k=1

E
2[(N + X2)kg(k)(X)]

k!Nk(N − k)k
∏k

j=1(1 + 1/(N − 2j))
, n ≤ N − 1

2
,

with equality only for polynomials of degree at most n.

It seems that it would be difficult to work with the explicit forms of the corresponding or-
thogonal polynomials, obtained by (1.4). Note that a similar bound can be easily obtained for
the Fisher–Snedecor Fn1,n2 distribution and that Schoutens [31] has obtained the corresponding
Stein’s equation, useful in approximating the tN -distribution.

5. A general variance/covariance representation

The main application of the present article (Section 4) presents a convenient procedure for ap-
proximating/bounding the variance of g(X) when g is smooth enough and when X is “nice”
enough (Pearson). Although the procedure is based on the corresponding orthonormal polyno-
mials, φk = Pk/E

1/2[P 2
k ], the main point is that we do not need explicit forms for Pk . All we need
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are the Fourier coefficients of g, ck = E[φkg], but, due to the identities (3.2) and (2.7), the Fourier
coefficients can be simply expressed in terms of the quadratic q and the derivatives/differences
of g when X belongs to the Pearson/Ord family, that is, when (1.2) or (2.1) is satisfied.

A natural question thus arises: is it true that the nth partial sums, given by the right-hand
sides of (4.2) and (4.4), converge to the variance of g(X) as n → ∞? More generally, assume
that we want to calculate Varg(X), when X is an r.v. with finite moments of any order. Let μ

be the probability measure of X, that is, μ satisfies μ(−∞, x] = Pr(X ≤ x), x ∈ R, and assume
that the support of μ, supp(μ), is not concentrated on a finite number of points (otherwise,
the following considerations become trivial). It is well known that there exists an orthonormal
polynomial system (OPS) F = {φ0, φ1, . . .}, which can be obtained by an application of the
Gram–Schmidt orthonormalization process to the real system F0 = {1, x, x2, . . .} ⊂ L2(R,μ).
Each (real) polynomial φk is of degree (exactly) k and satisfies the orthonormality condition
E[φi(X)φj (X)] = ∫

R
φi(x)φj (x)dμ(x) = δij . The members of F are uniquely determined by

the moments of X (of course, any element of F can be multiplied by ±1). For any function
g ∈ L2(R,μ) (i.e., with finite variance), we first calculate the Fourier coefficients

ck = E[g(X)φk(X)] =
∫

R

φk(x)g(x)dμ(x), k = 0,1,2, . . . , (5.1)

and then use the well-known Bessel inequality,

Varg(X) ≥
∞∑

k=1

c2
k, (5.2)

to obtain the desirable lower variance bound. Clearly, Theorems 4.1 and 4.2 just provide conve-
nient forms of the nth partial sum in (5.2) for some particularly interesting cases (Pearson/Ord
system). It is well known that the sum in the right-hand side of (5.2) is equal to the variance (for
all g ∈ L2(R,μ)) if and only if the OPS F is complete in L2(R,μ) (and, thus, it is an ortho-
normal basis of L2(R,μ)). This means that the set of real polynomials, span[F0], is dense in
L2(R,μ). If this is the case, then Bessel’s inequality, (5.2), is strengthened to Parseval’s identity,

Varg(X) =
∞∑

k=1

c2
k for any g ∈ L2(R,μ). (5.3)

The following theorem summarizes and unifies the above observations.

Theorem 5.1. Assume that X has probability measure μ and finite moments of any order.

(a) If X satisfies (1.2) and if g ∈ L2(R,μ) ∩ D∞(r, s), then (5.3) can be written as (cf. The-
orem 4.2)

Varg(X) =
∞∑

k=1

E
2[qk(X)g(k)(X)]

k!E[qk(X)]∏2k−2
j=k−1(1 − jδ)

, (5.4)

provided that the polynomials are dense in L2(R,μ) and that

E
[
qk(X)

∣∣g(k)(X)
∣∣] < ∞, k = 0,1,2, . . . . (5.5)
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(b) Similarly, if X satisfies (2.1), if μ is not concentrated on a finite integer interval and if
g ∈ L2(R,μ), then (5.3) yields the identity (cf. Theorem 4.1)

Varg(X) =
∞∑

k=1

E
2[q[k](X)�k[g(X)]]

k!E[q[k](X)]∏2k−2
j=k−1(1 − jδ)

, (5.6)

provided that the polynomials are dense in L2(R,μ) and that

E
[
q[k](X)|�k[g(X)]|] < ∞, k = 0,1,2, . . . . (5.7)

It should be noted that (5.6) is always true (and reduces to a finite sum) if X belongs to the
discrete Pearson (Ord) family and the support of μ is finite. In this case, the sum adds zero
terms whenever E[q[k](X)] = 0. On the other hand, it is well known (due to M. Riesz) that the
polynomials are dense in L2(R,μ) whenever μ is determined by its moments; see [30] or [3],
page 45. An even simpler sufficient condition is when μ has a finite moment generating function
at a neighborhood of zero, that is, when there exists t0 > 0 such that

MX(t) = EetX < ∞, t ∈ (−t0, t0). (5.8)

A proof can be found in, for example, [8]. Since condition (5.8) can evidently be checked for all
Pearson distributions, we include an alternative proof in the Appendix.

Taking into account the above, we have the following covariance representation.

Theorem 5.2. Assume that X has a finite moment generating function at a neighborhood of zero.

(a) If X satisfies (1.2) and if gi ∈ L2(R,μ) ∩ D∞(r, s), i = 1,2, then

Cov[g1(X), g2(X)] =
∞∑

k=1

E[qk(X)g
(k)
1 (X)] · E[qk(X)g

(k)
2 (X)]

k!E[qk(X)]∏2k−2
j=k−1(1 − jδ)

, (5.9)

provided that for i = 1,2,

E
[
qk(X)

∣∣g(k)
i (X)

∣∣] < ∞, k = 0,1,2, . . . . (5.10)

(b) Similarly, if X satisfies (2.1), then

Cov[g1(X), g2(X)] =
∞∑

k=1

E[q[k](X)�k[g1(X)]] · E[q[k](X)�k[g2(X)]]
k!E[q[k](X)]∏2k−2

j=k−1(1 − jδ)
, (5.11)

where each term with E[q[k](X)] = 0 should be treated as zero, provided that for i = 1,2,

E
[
q[k](X)|�k[gi(X)]|] < ∞, k = 0,1,2, . . . . (5.12)
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Proof. Let αk = E[φk(X)g1(X)] and βk = E[φk(X)g2(X)] be the Fourier coefficients of g1

and g2. It is then a standard inner product property in the Hilbert space that Cov[g1(X), g2(X)] =∑∞
k=1 αkβk . Substituting, for example,

αk = E[φk(X)g1(X)] = E[Pk(X)g1(X)]
E1/2[P 2

k (X)] = E[q[k](X)�k[g1(X)]]
(k!E[q[k](X)

∏2k−2
j=k−1(1 − jδ)])1/2

(and similarly for the continuous case and for βk), we obtain (5.9) and (5.11). �

Application 5.1. Assume that X1,X2, . . . ,Xν is a random sample from Geometric(θ), 0 < θ < 1,
with probability function

p(x) = θ(1 − θ)x, x = 0,1, . . . ,

and let X = X1 + · · ·+Xν be the complete sufficient statistic. The uniformly minimum variance
unbiased estimator, UMVUE, of − log(θ) is then given by (see [2])

Tν = Tν(X) =
⎧⎨
⎩

0, if X = 0,

1

ν
+ 1

ν + 1
+ · · · + 1

ν + X − 1
, if X ∈ {1,2, . . .}.

Since no simple form exists for the variance of Tν , the inequalities (4.3) have been used in [2] in
order to prove asymptotic efficiency. However, X is negative binomial(ν, θ) and

�k[Tν(X)] = (−1)k−1(k − 1)!
[ν + X]k , k = 1,2, . . . ,

so that one finds from (5.6) the exact expression (cf. Example 4.3)

VarTν =
∞∑

k=1

(1 − θ)k

k2
(

ν+k−1
k

) .

Observe that the first term in the series, (1 − θ)/ν, is the Cramér–Rao lower bound.
Now, let Wν;n = Wν;n(X) = [ν + X]n/[ν]n be the UMVUE of θ−n (n = 1,2, . . .) and Uν;n =

Uν;n(X) = (ν − 1)n/[ν − n + X]n be the UMVUE of θn (n = 1,2, . . . , ν − 1). (Wν;n(X) is a
polynomial, of degree n, in X.) It follows that

�k[Wν;n(X)] =
⎧⎨
⎩

(n)k[ν + X + k]n−k

[ν]n , k = 0,1, . . . , n,

0, k = n + 1, n + 2, . . . ,

�k[Uν;n(X)] = (−1)k[n]k(ν − 1)n

[ν − n + X]n+k

, k = 0,1,2, . . . ,
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so that

E
[[ν + X]k�k[Wν;n(X)]] = (n)kE[Wν;n(X)] = (n)kθ

−n, k = 0,1, . . . , n,

E
[[ν + X]k�k[Uν;n(X)]] = (−1)k[n]kE[Uν;n(X)] = (−1)k[n]kθn, k = 0,1, . . . .

Using (2.7), (2.8), (5.6), (5.11) and Example 4.3, we immediately obtain the formulae

Cov[Tν,Wν;n] = θ−n
n∑

k=1

(−1)k−1 (n)k

k[ν]k (1 − θ)k, n = 1,2, . . . ,

Cov[Tν,Uν;n] = −θn

∞∑
k=1

[n]k
k[ν]k (1 − θ)k, n = 1,2, . . . , ν − 1,

Cov[Wν;n,Wν;m] = θ−n−m

min{n,m}∑
k=1

(n)k(m)k

k![ν]k (1 − θ)k, n,m = 1,2, . . . ,

Cov[Uν;n,Uν;m] = θn+m
∞∑

k=1

[n]k[m]k
k![ν]k (1 − θ)k, n,m = 1,2, . . . , ν − 1,

Cov[Wν;n,Uν;m] = θm−n

n∑
k=1

(−1)k
(n)k[m]k
k![ν]k (1 − θ)k,

n = 1,2, . . . , m = 1,2, . . . , ν − 1.

The above series expansions are in accordance with the corresponding results on Bhat-
tacharyya bounds given in [9]; these results are also based on orthogonality and completeness
properties of Bhattacharyya functions, obtained by Seth [32]. Similar series expansions for the
variance can be found in [1,25].

Next, we present a similar application for the exponential distribution.

Application 5.2. Assume that X1,X2, . . . ,Xν is a random sample from Exp(λ), λ > 0, with
density f (x) = λe−λx , x > 0, and let X = X1 + · · · + Xν be the complete sufficient statistic. We
wish to obtain the UMVUE of log(λ) and its variance. Setting U = log(X1), we find that

EU =
∫ ∞

0
e−x log(x)dx − log(λ) = −γ − log(λ),

where γ = 0.5772 . . . is Euler’s constant. Therefore, −γ − U is unbiased and it follows that the
UMVUE of log(λ) is of the form

Lν = Lν(X) = E[−γ − log(X1)|X] = − log(X) − γ +
ν−1∑
j=1

1

j
.
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Since X follows a 
(ν,λ) distribution and L
(k)
ν (X) = (−1)k(k − 1)!X−k , we obtain from (5.4)

(cf. Example 4.6) the formula

VarLν =
∞∑

k=1

1

k2
(

ν+k−1
k

) ,

which is quite similar to the formula for VarTν in Application 5.1. (Once again, the first term in

the series, 1/ν, is the Cramér–Rao bound.) Moreover, the series
∑∞

k=1

(
k2

(
ν+k−1

k

))−1
can be

simplified in a closed form. Indeed, observing that VarL1 = ∑
k≥1 1/k2 = π2/6 and taking into

account the identity

1

k2

((
ν + k − 1

k

)−1

−
(

ν + k

k

)−1)
= (ν − 1)!

ν

(
1

[k]ν − 1

[k + 1]ν
)

, ν, k = 1,2, . . . ,

we have

VarLν − VarLν+1 = (ν − 1)!
ν

∞∑
k=1

(
1

[k]ν − 1

[k + 1]ν
)

= 1

ν2

so that

VarLν = π2

6
− 1 − 1

22
− · · · − 1

(ν − 1)2
=

∑
k≥ν

1

k2
.

Finally, using the last expression and the fact that (k + 1)−2 <
∫ k+1
k

x−2 dx < k−2, we get the
inequalities

∑
k≥ν(k + 1)−2 = VarLν − ν−2 < ν−1 < VarLν , that is,

1 < ν VarLν < 1 + 1/ν,

which shows that Lν is asymptotically efficient.

Appendix

A completeness proof under (5.8). It is well known that, under (5.8), X has finite moments of
any order so that the OPS exists (and is unique). From the general theory of Hilbert spaces, it is
known that F is a basis (i.e., it is complete) if and only if it is total, that is, if and only if there
does not exist a non-zero function g ∈ L2(R,μ) such that g is orthogonal to each φk . Therefore,
it suffices to show that if g ∈ L2(R,μ) and if

E[g(X)φk(X)] = 0 for all k = 0,1, . . . , (A.1)
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then Pr(g(X) = 0) = 1. Since each φk is a polynomial with non-zero leading coefficient, (A.1) is
equivalent to

E[Xng(X)] =
∫

R

xng(x)dμ(x) = 0, n = 0,1, . . . , (A.2)

and it thus suffices to prove that if (A.2) holds, then E|g(X)| = 0. Since, by assumption, the
functions x 
→ xn and x 
→ etx (|t | < t0/2) belong to L2(R,μ), it follows from the Cauchy–
Schwarz inequality that E[etX|g(X)|] < ∞ for |t | < t0/2 and, thus, that

E
[
e|tX||g(X)|] ≤ E[e−tX|g(X)|] + E[etX|g(X)|] < ∞, |t | < t0/2. (A.3)

From Beppo Levi’s theorem and (A.3) it follows that

∞∑
n=0

E

[ |tX|n
n! |g(X)|

]
= E

[ ∞∑
n=0

|tX|n
n! |g(X)|

]
= E

[
e|tX||g(X)|] < ∞, |t | < t0/2,

and, therefore, from Fubini’s theorem and (A.2), we get

E[etXg(X)] = E

[ ∞∑
n=0

tnXn

n! g(X)

]
=

∞∑
n=0

tn

n!E[Xng(X)] = 0, |t | < t0/2. (A.4)

Write g+(x) = max{g(x),0}, g−(x) = max{−g(x),0} and observe that from (A.2) with n = 0,
Eg(X) = 0. It follows that Eg+(X) = Eg−(X) = θ , say, where θ = E|g(X)|/2. Clearly, 0 ≤
θ < ∞ because both g+ and g− are dominated by |g| and, by assumption, |g| ∈ L2(R,μ) ⊂
L1(R,μ). We assume now that θ > 0 and we shall obtain a contradiction. Under θ > 0, we can
define two Borel probability measures, ν+ and ν−, as follows:

ν+(A) = 1

θ

∫
A

g+(x)dμ(x), ν−(A) = 1

θ

∫
A

g−(x)dμ(x), A ∈ B(R).

By definition, both ν+ and ν− are absolutely continuous with respect to μ, with Radon–Nikodym
derivatives

dν+

dμ
= 1

θ
g+(x),

dν−

dμ
= 1

θ
g−(x), x ∈ R.

Since, by (A.4), ∫
R

etxg+(x)dμ(x) =
∫

R

etxg−(x)dμ(x), |t | < t0/2, (A.5)

it follows that the moment generating functions of ν+ and ν− are finite (for |t | < t0/2) and
identical because, from (A.5), we have that, for any t ∈ (−t0/2, t0/2),∫

R

etx dν+(x) = 1

θ

∫
R

etxg+(x)dμ(x) = 1

θ

∫
R

etxg−(x)dμ(x) =
∫

R

etx dν−(x).
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Thus, ν+ ≡ ν− and choosing A+ = {x :g+(x) > 0} ⊆ {x :g−(x) = 0}, we are led to the contra-
diction 1 = ν+(A+) = ν−(A+) = 0.
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