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It is often reasonable to assume that the dependence structure of a bivariate continuous distribution belongs
to the class of extreme-value copulas. The latter are characterized by their Pickands dependence function.
In this paper, a procedure is proposed for testing whether this function belongs to a given parametric fam-
ily. The test is based on a Cramér–von Mises statistic measuring the distance between an estimate of the
parametric Pickands dependence function and either one of two nonparametric estimators thereof studied
by Genest and Segers [Ann. Statist. 37 (2009) 2990–3022]. As the limiting distribution of the test statistic
depends on unknown parameters, it must be estimated via a parametric bootstrap procedure, the validity of
which is established. Monte Carlo simulations are used to assess the power of the test and an extension to
dependence structures that are left-tail decreasing in both variables is considered.

Keywords: extreme-value copula; goodness of fit; parametric bootstrap; Pickands dependence function;
rank-based inference

1. Introduction

Let X and Y be continuous random variables with cumulative distribution functions F and G,
respectively. Following Sklar [36], the joint behavior of the pair (X,Y ) can be characterized at
every (x, y) ∈ R

2 by the relation

H(x,y) = Pr(X ≤ x,Y ≤ y) = C{F(x),G(y)} (1)

through a unique copula C that captures the dependence between X and Y .
When H is known, its marginal distributions can easily be retrieved from it. The copula can

also be readily identified as it is simply the joint distribution of the pair (U,V ) = (F (X),G(Y )).
In practice, however, H is often unknown, and the relation between X and Y must be modeled
from data.

A copula model for H assumes that equation (1) holds for some F , G and C from specific
parametric classes. This approach was used, for example, by Frees and Valdez [11] and Klug-
man and Parsa [25] to analyze data from the Insurance Services Office, Inc. on the indemnity
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payment (X) and allocated loss adjustment expense (Y ) for 1500 general liability claims ran-
domly chosen from late settlement lags. Based on their work and subsequent analysis by other
authors, it is reasonable to assume that for these data, F is inverse paralogistic, G is Pareto and C

is a Gumbel–Hougaard extreme-value copula.
Extreme-value copulas characterize the limiting dependence structure of suitably normalized

componentwise maxima. They are of special interest in insurance [7], finance [6,29] and hydrol-
ogy [34], where the occurrence of joint extremes is a risk management concern.

Pickands [31] showed that if C is a bivariate extreme-value copula, then

C(u, v) = exp

[
log(uv)A

{
log(v)

log(uv)

}]
(2)

for all u,v ∈ (0,1) and a mapping A : [0,1] → [1/2,1], referred to as the Pickands dependence
function, which is convex and such that max(t,1 − t) ≤ A(t) ≤ 1 for all t ∈ [0,1]. For instance,
an extreme-value copula is said to belong to the Gumbel–Hougaard family if there exists θ ∈
[1,∞) such that for all t ∈ [0,1], we have

A(t) = {tθ + (1 − t)θ }1/θ . (3)

A test that a copula C is of the form (2) was developed by Ghoudi et al. [20]; it was recently
refined by Ben Ghorbal et al. [1]. Under the assumption that C is an extreme-value copula, it
may be of interest to check whether its Pickands dependence function A belongs to a specific
parametric class, say A = {Aθ : θ ∈ O}, where O is an open subset of R

p for some integer p.
The purpose of this paper is to examine how the hypothesis H0 :A ∈ A can be tested with

a random sample (X1, Y1), . . . , (Xn,Yn) from H . As for all goodness-of-fit tests reviewed
by Berg [2] and Genest et al. [18], the proposed procedure is based on pseudo-observations
(U1,V1), . . . , (Un,Vn) from copula C, defined, for i ∈ {1, . . . , n}, by

Ui = Fn(Xi), Vi = Gn(Yi), (4)

where Fn and Gn are rescaled empirical counterparts of F and G, respectively, given by

Fn(x) = 1

n + 1

n∑
i=1

1(Xi ≤ x), Gn(y) = 1

n + 1

n∑
i=1

1(Yi ≤ y)

for all x, y ∈ R. This approach is justified because, as copulas themselves, the pairs (U1,V1), . . . ,

(Un,Vn) of normalized ranks are invariant under strictly increasing transformations of X and Y .
As shown by Kim et al. [24], it also leads to efficient and robust estimators.

The proposed test is described in Section 2 and its asymptotic null distribution is given in
Section 3, where a parametric bootstrap is proposed for the calculation of P -values. In Section 4,
the distributional result is extended to alternatives that are left-tail decreasing in both variables.
This is instrumental in studying the consistency and power of the test, which are considered
in Sections 5 and 6, respectively. The paper concludes with an illustrative example. Technical
proofs are grouped in a series of appendices.

All procedures discussed herein are implemented in the R package copula [38] available via
the Comprehensive R Archive Network at http://cran.r-project.org.

http://cran.r-project.org
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2. Proposed goodness-of-fit test

Let (X1, Y1), . . . , (Xn,Yn) be a random sample from some unknown continuous bivariate distri-
bution H whose underlying copula is of the form (2) with Pickands dependence function A. In
order to test the hypothesis

H0 :A ∈ A = {Aθ : θ ∈ O},
a natural way to proceed is to compare a nonparametric estimator An of A to a parametric esti-
mator Aθn . Several measures of distance can be used for this purpose, but the Cramér–von Mises
statistic

Sn =
∫ 1

0
n|An(t) − Aθn(t)|2 dt (5)

generally leads to more powerful tests than, say, the Kolmogorov–Smirnov statistic [18]. The
choices of Aθn and An are discussed next.

2.1. Parametric estimation of A

Under H0, Aθ may be estimated by Aθn using a consistent estimate θn of θ . Such an estimate can
be derived from the pairs (U1,V1), . . . , (Un,Vn) via the maximum pseudo-likelihood method
considered by Genest et al. [14] and Shih and Louis [35].

To illustrate this approach in a concrete case, let Aθ be the generator of the Gumbel–Hougaard
copula defined in (3). For all u,v ∈ (0,1), write

Cθ(u, v) = exp

[
log(uv)Aθ

{
log(v)

log(uv)

}]

= exp[−{| log(u)|θ + | log(v)|θ }1/θ ].
As Aθ is twice differentiable on (0,1), the copula Cθ has a density given by cθ (u, v) =
∂2Cθ(u, v)/∂u∂v everywhere on (0,1)2. The maximum pseudo-likelihood estimator θn is then
the value θ ∈ O = (1,∞) at which the function

�(θ) =
n∑

i=1

log{cθ (Ui,Vi)}

reaches its global maximum. An advantage of this method is that it can be used even when the
parameter space O is multidimensional.

When θ is real-valued, a simpler technique which also yields a consistent estimator is based
on the inversion of Kendall’s tau. As shown by Ghoudi et al. [20], the relation

τ(C) = −1 + 4
∫ ∫ 1

0
C(u, v)dC(u, v) =

∫ 1

0

t (1 − t)

A(t)
dA′(t)
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is valid for any extreme-value copula C. When A ∈ A, τ is a function of θ and a rank-based
moment estimate of the latter is obtained by solving the equation τn = τ(θ) for θ , where τn

is the sample value of Kendall’s tau. In the Gumbel–Hougaard model, for instance, we find
τ(θ) = 1 − 1/θ and hence θn = max{1,1/(1 − τn)}.

When O ⊂ R, we can also obtain consistent, rank-based estimates of θ by exploiting its one-
to-one relationship with other nonparametric measures of dependence such as Spearman’s rho,
that is,

ρ(C) = −3 + 12
∫ ∫ 1

0
uv dC(u, v) = −1 +

∫ 1

0

1

{A(t)}2
dt.

2.2. Nonparametric estimation of A

Nonparametric estimators of A are proposed by Genest and Segers [19]. For i ∈ {1, . . . , n}, set
ξi(0) = − log(Ui), ξi(1) = − log(Vi) and

ξi(t) = min

{− log(Ui)

1 − t
,
− log(Vi)

t

}

for all t ∈ (0,1), where Ui and Vi are as in equation (4). Also, let

AP
n(t) = 1

/{
1

n

n∑
i=1

ξi(t)

}
, ACFG

n (t) = exp

[
−γ − 1

n

n∑
i=1

log{ξi(t)}
]
,

where γ = − ∫ ∞
0 log(x)e−x dx ≈ 0.577 is Euler’s constant.

The functions AP
n and ACFG

n are rank-based versions of the estimators of A introduced by
Pickands [31] and Capéraà et al. [4], respectively. As noted by Genest and Segers [19], these
estimators can be altered to meet the end-point conditions AP

n(0) = ACFG
n (0) = 1 and AP

n(1) =
ACFG

n (1) = 1. However, this makes no difference asymptotically.
Both AP

n and ACFG
n can be expressed as functionals of the empirical copula, which may be

defined for all u,v ∈ [0,1] by

Cn(u, v) = 1

n

n∑
i=1

1(Ui ≤ u,Vi ≤ v).

To be specific, the following relations hold for all t ∈ [0,1]:

AP
n(t) = 1

/∫ 1

0
Cn(x

1−t , xt )
dx

x
,

ACFG
n (t) = exp

{
−γ +

∫ 1

0
{Cn(x

1−t , xt ) − 1(x > e−1)} dx

x log(x)

}
.

It was shown by Rüschendorf [33] that under weak regularity conditions, the process
√

n(Cn −
C) converges in law to a Gaussian limit C, that is,

√
n(Cn − C) � C as n → ∞. We may thus
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expect AP
n and ACFG

n to be consistent and asymptotically Gaussian. This is shown by Genest and
Segers [19], provided that A is twice continuously differentiable. Their Theorem 3.2 states that

A
P
n = √

n(AP
n − A) � A

P, A
CFG
n = √

n(ACFG
n − A) � A

CFG

as n → ∞ in C[0,1], where, for all t ∈ [0,1],

A
P(t) = −A2(t)

∫ 1

0
C(x1−t , xt )

dx

x
,

A
CFG(t) = A(t)

∫ 1

0
C(x1−t , xt )

dx

x log(x)
.

Remark. Observe that, in principle, the statistics SP
n and SCFG

n could be extended to arbitrary
dimension d ≥ 3 because d-variate extreme-value copulas are characterized by (d − 1)-place
Pickands dependence functions [10]. At present, however, multivariate analogs of the rank-based
estimators AP

n and ACFG
n are unavailable. To see how the estimation can proceed in the d-variate

case when the marginal distributions are known, refer to [39] or [21].

3. Asymptotic null distribution of the test statistic

The asymptotic distribution of the goodness-of-fit statistic Sn depends on the joint behavior of
	n = √

n(θn − θ) and either A
P
n or A

CFG
n under H0. Suppose that the class A = {Aθ : θ ∈ O}

satisfies the following conditions:

(A) the parameter space O is an open subset of R
p;

(B) for every θ ∈ O, Aθ is twice continuously differentiable on (0,1);
(C) the gradient Ȧθ (t) of Aθ(t) with respect to θ satisfies

lim
ε↓0

sup
‖θ∗−θ‖<ε

sup
t∈[0,1]

‖Ȧθ∗(t) − Ȧθ (t)‖ → 0, (6)

where ‖ · ‖ denotes the �2-norm.

As is proved in Appendix A, the process An,θn = √
n(An − Aθn) is then asymptotically

Gaussian, both when An = AP
n and An = ACFG

n .

Proposition 1. Assume H0 holds, that is, C is an extreme-value copula with Pickands depen-
dence function A = Aθ0 for some θ0 ∈ O. Further, assume that A = {Aθ : θ ∈ O} meets condi-
tions (A)–(C).

(a) If (AP
n,	n) converges to a Gaussian limit (AP,	), then An,θn � A

P − Ȧ�
θ0

	 as n → ∞
in C[0,1].

(b) If (ACFG
n ,	n) converges to a Gaussian limit (ACFG,	), then An,θn � A

CFG − Ȧ�
θ0

	 as
n → ∞ in C[0,1].
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The weak convergence of the statistic Sn defined in (5) follows immediately from Proposition 1
and the continuous mapping theorem (see, e.g., [37], Theorem 1.3.6). As the limit depends on
the unknown parameter value θ0, we must resort to resampling techniques to carry out the test.
The following parametric bootstrap procedure can be used to this end. Its validity depends on
regularity conditions adapted from [17]. These conditions, listed in Appendix B, can be verified
for many families of extreme-value copulas.

Parametric bootstrap procedure

(1) Compute An from the pairs (U1,V1), . . . , (Un,Vn) of normalized ranks and estimate θ

using a rank-based estimator, as discussed in Section 2.
(2) Compute the test statistic Sn defined in (5).
(3) For some large integer N , repeat the following steps for every k ∈ {1, . . . ,N}:

(3.1) generate a random sample (X1k, Y1k), . . . , (Xnk,Ynk) from copula Cθn and deduce
the associated pairs (U1k,V1k), . . . , (Unk , Vnk) of normalized ranks;

(3.2) let Ank and θnk stand for the versions of An and θn derived from the pairs
(U1k,V1k), . . . , (Unk,Vnk);

(3.3) compute

Snk =
∫ 1

0
n|Ank(t) − Aθnk

(t)|2 dt.

(4) An approximate P -value for the test is given by N−1 ∑N
k=1 1(Snk ≥ Sn).

4. Extension to left-tail decreasing copulas

The statistic Sn can be used to build goodness-of-fit tests for the more general hypothesis

H ∗
0 :C ∈ C = {Cθ : θ ∈ O},

where C is a parametric family of copulas that are left-tail decreasing (LTD) in both arguments.
From [30], Exercise 5.35, a copula C is LTD in this sense if and only if, for all 0 < u ≤ u′ ≤ 1
and 0 < v ≤ v′ ≤ 1,

C(u, v)

uv
≥ C(u′, v′)

u′v′ . (7)

This condition is satisfied for extreme-value copulas, which Garralda-Guillem [13] showed to be
stochastically increasing in both variables.

The following result, proved in Appendix C, implies that when C is an LTD copula, AP
n and

ACFG
n are consistent, asymptotically Gaussian estimators of AP

C and ACFG
C , respectively, where,

for all t ∈ [0,1],

AP
C(t) = 1

/∫ 1

0
C(x1−t , xt )

dx

x

and

ACFG
C (t) = exp

[
−γ +

∫ 1

0
{C(x1−t , xt ) − 1(x > e−1)} dx

x log(x)

]
.
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Proposition 2. Suppose that the copula C has a continuous density and satisfies condition (7).
Then

√
n(AP

n −AP
C) � A

P
C and

√
n(ACFG

n −ACFG
C ) � A

CFG
C as n → ∞ in C[0,1], where, for all

t ∈ [0,1],

A
P
C(t) = −{AP

C(t)}2
∫ 1

0
C(x1−t , xt )

dx

x
,

A
CFG
C (t) = ACFG

C (t)

∫ 1

0
C(x1−t , xt )

dx

x log(x)
.

Incidentally, the mappings AP
C and ACFG

C are well defined for any copula C, whether or not it is
LTD. They reduce to the Pickands dependence function A when C is of the form (2). Otherwise,
they typically differ from one another, but retain some of the properties of Pickands dependence
functions. These facts are summarized in the following proposition, the proof of which is left to
the reader.

Proposition 3. Let C be a copula and let AC denote either AP
C or ACFG

C . Also, let W and M

denote the lower and upper Fréchet–Hoeffding bounds, respectively. The following statements
then hold:

(a) AW(t) ≥ AC(t) ≥ AM(t) = max(t,1 − t) for all t ∈ [0,1];
(b) if C(u, v) ≥ uv for all u,v ∈ [0,1], then AC(t) ≤ 1 for all t ∈ [0,1];
(c) if C(u, v) = C(v,u) for all u,v ∈ [0,1], then AC(t) = AC(1 − t) for all t ∈ [0,1];
(d) if C is an extreme-value copula with Pickands dependence function A, then AC = A.

The bounds AP
W , ACFG

W and AP
M = ACFG

M are depicted in the left panel of Figure 1. As a further
example, consider the Farlie–Gumbel–Morgenstern copula with parameter θ ∈ [−1,1], defined

Figure 1. Left panel: graph of the bounds AP
W

(top curve), ACFG
W

(middle curve) and AP
M

= ACFG
M

(bottom

curve). Right panel: graph of AP
C

(dashed) and ACFG
C

(dotted) for the Farlie–Gumbel–Morgenstern copula
with θ = 1/2 (upper curves) and 1 (lower curves).
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for all u,v ∈ [0,1] by Cθ(u, v) = uv + θuv(1 − u)(1 − v). Condition (7) is met if θ ≥ 0 and it is
easy to check that for all t ∈ [0,1],

AP
θ (t) = 2t2 − 2t − 4

2t2 − 2t − 4 + (3t2 − 3t)θ
, ACFG

θ (t) =
(

2

2 + t − t2

)θ

. (8)

These functions are graphed in the right panel of Figure 1.
Invoking Proposition 2, we can proceed as in Appendix A to show the convergence of the

goodness-of-fit process in the case of LTD copulas, whence the following result. The parametric
bootstrap algorithm described in Section 3 also applies mutatis mutandis and remains valid under
such H ∗

0 .

Proposition 4. Assume H ∗
0 holds, that is, C is an LTD copula such that C = Cθ0 for some

θ0 ∈ O. Let AP = {AP
C :C ∈ C} and ACFG = {ACFG

C :C ∈ C}.
(a) If AP meets conditions (A)–(C) and (AP

n,	n) converges to a Gaussian limit (AP
C,	), then

An,θn � A
P
C − Ȧ�

θ0
	 as n → ∞ in C[0,1].

(b) If ACFG meets conditions (A)–(C) and (ACFG
n ,	n) converges to a Gaussian limit

(ACFG
C ,	), then An,θn � A

CFG
C − Ȧ�

θ0
	 as n → ∞ in C[0,1].

5. Consistency of the test

Suppose that C /∈ C is an LTD copula and that the hypothesis H ∗
0 :C ∈ C is being tested with

the Cramér–von Mises statistic Sn. Let An denote either AP
n or ACFG

n and let A stand for AP
C or

ACFG
C , as the case may be. Further, assume that θn is a consistent, rank-based estimator of some

θ∗ ∈ O. The test based on Sn is then consistent, provided that A �= Aθ∗ .
To see this, decompose the process An,θn as

√
n(An − Aθn) = √

n(An − A) − √
n(Aθn − Aθ∗) + √

n(A − Aθ∗). (9)

Assume conditions (A)–(C) hold for A = AP or ACFG and that as n → ∞, (
√

n(An −
A),

√
n(θn − θ∗)) � (A,	∗) to a Gaussian limit, where A stands for either A

P or A
CFG. We can

then proceed exactly as in Appendix A to see that as n → ∞,
√

n(An − A) − √
n(Aθn − Aθ∗) �

A − Ȧ�
θ∗	∗. If A �= Aθ∗ , then supt∈[0,1]

√
n|A(t) − Aθ∗(t)| → ∞ and hence, for every ε > 0,

lim
n→∞ Pr(Sn > ε) = 1.

In particular, the test based on Sn is consistent whenever C is an extreme-value copula and the
hypothesized family C also consists of extreme-value copulas. However, consistency may fail
otherwise, for it may happen that A = Aθ∗ , even if H ∗

0 is false.
To illustrate this point, consider the functions AP

θ and ACFG
θ given in (8). As the latter are

convex, they can be used to generate new families of extreme-value copulas, which may be
called the FGM–P and FGM–CFG families.
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Now, suppose that C is the Farlie–Gumbel–Morgenstern copula with parameter θ > 0 and that
the statistic Sn is used to test H0 :A ∈ A when:

(a) A is the Gumbel–Hougaard family of copulas;
(b) A is the FGM–CFG family of extreme-value copulas.

In case (a), the tests based on AP
n and ACFG

n would be consistent because AP
θ and ACFG

θ both
differ from the Pickands dependence function of the Gumbel–Hougaard given in (3). In case (b),
the test based on AP

n would also be consistent because AP
θ �= ACFG

θ∗ . The test based on ACFG
n may

fail to be consistent, however, given that ACFG
θ coincides with the Pickands dependence function

of the FGM–CFG family. Consistency of the test would then depend on the behavior of θn.
Suppose, for instance, that θ is estimated by inversion of Kendall’s tau. As n → ∞, θn would

approach 2θ/9, which is the population value of this dependence measure for the FGM copula.
For the FGM–CFG family, however, Kendall’s tau is 7θ/10 + θ2/30, which coincides with 2θ/9
only when θ = 0, that is, at independence where the difference between the two models is im-
material. Therefore, the test based on ACFG

n would be consistent in this case, provided that θ is
estimated by inversion of Kendall’s tau. A similar conclusion would be reached for inversion of
Spearman’s rho and maximum pseudo-likelihood estimation.

6. Power study

Equation (9) and the accompanying discussion suggest that just as for consistency, the power
of the test based on Sn depends on how different A = AP

C or ACFG
C is from its parametric esti-

mate Aθ∗ under H0. This issue is investigated graphically in Section 6.1 and via simulations in
Sections 6.2 and 6.3.

6.1. General considerations

Consider the following three sets of LTD copula families.

Group I: Symmetric extreme-value copulas: the Gumbel–Hougaard (GH), Galambos (GA),
Hüsler–Reiss (HR) and Student extreme-value (t-EV) copula with four degrees of freedom.

Group II: Symmetric non-extreme-value copulas: the Clayton (C), Frank (F), Normal (N) and
Plackett (P).

Group III: Asymmetric extreme-value copulas: asymmetric versions of the Gumbel–Hougaard
(a-GH), Galambos (a-GA), Hüsler–Reiss (a-HR), and Student extreme-value (a-t-EV) copula
with four degrees of freedom.

Figure 2 shows the Pickands dependence functions of the copulas in Group I when τ = 0.25,
0.50, 0.75. Although the curves are not identical, they are very similar. When the statistic Sn

is used to distinguish between these models, therefore, the test will be consistent, but can be
expected to have little power, even in moderate sample sizes.

In Figure 3, the functions AP
C and ACFG

C are plotted for the copulas in Group II and the same
values of tau. For comparison purposes, the curve corresponding to the Gumbel–Hougaard cop-
ula is added. Here, the differences between the curves are much more pronounced. Thus, the
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Figure 2. Pickands dependence functions of the Gumbel–Hougaard, Galambos, Hüsler–Reiss and t-EV
copulas when τ = 0.25, τ = 0.50 and τ = 0.75.

power of the test based on Sn may be expected to rise quickly (and be approximately the same)
if the copula family under H0 is from Group I.

Figure 4 shows the Pickands dependence functions of the copulas in Group III. These copulas
were derived using Khoudraji’s device [15,23,28], which transforms any symmetric copula Cθ

Figure 3. Plots of AP
C

(top) and ACFG
C

(bottom) when C is the Gumbel–Hougaard (GH), Clayton (C),
Frank (F), Normal (N) and Plackett (P) copula with τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right).
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Figure 4. Pickands dependence functions for the Gumbel–Hougaard copula and four asymmetric ex-
treme-value copulas with τ = 0.20: the asymmetric Gumbel–Hougaard (a-GH), Galambos (a-GA),
Hüsler–Reiss (a-HR) and t-EV (a-t-EV) with four degrees of freedom.

into a non-exchangeable model via the formula

Cλ,κ,θ (u, v) = u1−λv1−κCθ (u
λ, vκ)

for all u,v ∈ [0,1] and arbitrary choices of λ �= κ ∈ (0,1). Furthermore, if Cθ is an extreme-value
copula with Pickands dependence function Aθ , then Cλ,κ,θ is also an extreme-value copula. Its
Pickands dependence function is given, at all t ∈ [0,1], by

Aλ,κ,θ (t) = (1 − κ)t + (1 − λ)(1 − t) + {κt + λ(1 − t)}Aθ

{
κt

κt + λ(1 − t)

}
.

Note that the dependence in Cλ,κ,θ is limited since, by the Fréchet–Hoeffding inequality,

Cλ,κ,θ (u, v) ≤ u1−λv1−κ min(uλ, vκ) = min(uv1−κ , vu1−λ).

As the right-hand term is the Marshall–Olkin copula MOλ,κ , Example 5.5 in [30], implies that

τ(Cλ,κ,θ ) ≤ τ(MOλ,κ ) = κλ

κ + λ − κλ
.

In the present study, the values λ = 0.3, κ = 0.8 were used and, hence, τ(Cλ,κ,θ ) could not
exceed 0.279. For each choice of copula family Cθ in Group III, the parameter θ was set to make
Kendall’s tau equal to 0.20.

Figure 4 shows that the Pickands dependence functions of the copulas in Group III are very
similar, though distinct. They are, however, easily distinguished from their symmetric counter-
parts with the same value of tau. Thus, although these extreme-value copulas would be difficult
to tell apart on the basis of Sn in moderate samples, the test may still be reasonably powerful
against copulas in Group I.
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6.2. Monte Carlo study

The observations in Section 6.1 were confirmed through simulations. To this end, 1000 random
samples of size n = 300 were generated from 28 different copulas, C, corresponding to the
following scenarios:

(a) C belongs to Group I or II and τ(C) ∈ {0.25,0.50,0.75};
(b) C belongs to Group III and τ(C) = 0.20.

The statistics SP
n and SCFG

n were computed for each data set. Four hypotheses of the form H0 :A ∈
A were then tested. The choices for A were the families of Pickands dependence functions for
extreme-value copulas in Group I.

All tests were carried out at the 5% level. Each P -value was computed on the basis of N =
1000 parametric bootstrap samples. For comparison purposes, goodness of fit was also checked
with the general purpose statistic

Tn =
n∑

i=1

|Cn(Ui,Vi) − Cθn(Ui,Vi)|2.

This particular test statistic was chosen because of its good overall performance in the large scale
simulation studies of Berg [2] and Genest et al. [18].

Tables 1–4 report the percentages of rejection of the four null hypotheses under each scenario.
Although this made little difference, these results are for the end-point-corrected versions of AP

n

and ACFG
n , defined for all t ∈ [0,1] by

1/AP
n,c(t) = 1/AP

n(t) − (1 − t){1/AP
n(0) − 1} − t{1/AP

n(1) − 1}
and

logACFG
n,c (t) = log{ACFG

n (t)} − (1 − t) log{ACFG
n (0)} − t log{ACFG

n (1)}.
Before commenting on the results, note that for copulas in Groups I and II, the real-valued

dependence parameter of each data set was estimated by inversion of Kendall’s tau; its imple-
mentation relied on the numerical approximation technique of Kojadinovic and Yan [26]. For
copulas in Group III, which involve several parameters, maximum pseudo-likelihood estimation
was used [14,35].

6.3. Results

It is clear from Table 1 that when n = 300, the tests based on Tn, SP
n and SCFG

n cannot distinguish
between copulas in Group I. When τ = 0.25, all rejection rates are within sampling error from
the nominal level. There are only small signs of improvement as τ rises to 0.50 and 0.75. The
best scores are obtained when testing for the Hüsler–Reiss model with SCFG

n when τ = 0.75.
Globally, there is little to choose between the tests.

Table 2 shows what happens when n = 1000. Power is on the rise, especially when τ = 0.75.
In the latter case, it seems preferable to base the test on SCFG

n rather than on SP
n – both do better
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Table 1. Percentage of rejection of H0 for copulas in Group I when n = 300

H0 True τ = 0.25 τ = 0.50 τ = 0.75

Tn SP
n SCFG

n Tn SP
n SCFG

n Tn SP
n SCFG

n

GH GH 4.2 3.8 4.0 4.0 4.8 3.6 4.2 5.3 5.5
GA 4.8 4.3 4.2 4.4 3.8 3.8 4.8 4.3 4.3
HR 4.8 4.2 4.0 5.4 3.4 3.9 3.7 3.1 1.7
t-EV 4.2 3.8 4.5 5.1 5.5 6.4 4.8 7.5 8.9

GA GH 4.5 4.7 3.9 4.0 5.8 4.7 4.4 5.6 6.8
GA 4.3 4.6 4.0 5.5 3.9 4.8 4.3 4.7 4.6
HR 4.6 4.8 4.2 5.0 3.4 3.4 3.7 3.7 1.8
t-EV 4.6 4.7 4.4 5.3 8.0 7.1 5.7 8.2 10.9

HR GH 4.6 6.4 4.4 4.3 9.6 7.5 4.5 9.6 15.7
GA 4.3 5.4 4.5 5.1 6.6 7.2 5.1 8.4 11.7
HR 4.9 5.2 4.2 5.3 4.3 3.9 4.0 4.3 3.3
t-EV 4.6 5.9 4.8 5.8 13.7 11.5 6.6 14.9 29.3

t-EV GH 4.2 3.4 4.0 4.1 3.9 2.9 4.0 3.3 2.4
GA 4.1 4.3 4.4 4.8 3.4 3.9 4.6 3.0 1.7
HR 4.7 4.1 4.4 5.4 3.2 3.4 3.8 2.2 1.3
t-EV 4.6 3.7 4.2 4.7 4.8 5.2 4.1 4.3 4.7

Table 2. Percentage of rejection of H0 for copulas in Group I when n = 1000

H0 True τ = 0.25 τ = 0.50 τ = 0.75

Tn SP
n SCFG

n Tn SP
n SCFG

n Tn SP
n SCFG

n

GH GH 4.9 4.7 5.3 4.0 5.9 6.0 3.8 5.2 5.4
GA 5.1 5.8 4.0 5.9 4.4 5.1 4.8 3.8 4.2
HR 5.1 6.3 6.3 5.1 6.3 9.0 3.4 3.5 9.2
t-EV 5.4 4.4 5.4 6.1 6.2 6.9 5.4 9.8 15.9

GA GH 5.2 7.4 6.1 4.4 8.1 8.4 4.3 5.6 7.3
GA 5.0 5.6 4.0 5.4 5.1 5.4 4.8 4.4 5.2
HR 4.4 5.0 5.2 4.5 4.5 6.2 3.5 3.1 6.2
t-EV 6.1 6.9 6.6 6.7 9.4 12.7 5.5 12.8 23.1

HR GH 6.2 10.6 8.6 5.1 17.6 17.8 5.5 18.1 40.2
GA 5.4 6.6 4.1 5.6 8.1 8.8 5.5 12.7 23.4
HR 4.6 5.9 5.5 4.2 4.9 5.1 3.4 4.7 5.6
t-EV 6.6 10.1 8.2 8.2 27.0 34.4 6.5 45.2 81.7

t-EV GH 4.7 4.7 5.3 4.4 4.4 5.7 4.0 3.4 3.0
GA 4.8 5.6 4.2 5.6 4.8 6.0 4.8 3.0 3.7
HR 5.3 6.4 6.1 5.5 8.5 12.3 4.3 3.9 28.7
t-EV 5.1 4.5 5.5 5.6 4.8 5.3 5.2 4.5 4.7
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Table 3. Percentage of rejection of H0 for copulas in Group II when n = 300

H0 True τ = 0.25 τ = 0.50 τ = 0.75

Tn SP
n SCFG

n Tn SP
n SCFG

n Tn SP
n SCFG

n

GH C 98.8 99.5 82.1 100.0 100.0 100.0 100.0 100.0 100.0
F 36.6 11.0 48.0 82.0 7.1 100.0 92.1 27.2 100.0
N 26.9 21.9 21.8 43.5 44.9 66.9 37.5 18.7 82.3
P 34.3 17.3 43.4 68.0 44.6 98.6 65.0 71.6 100.0

GA C 98.9 99.7 84.0 100.0 100.0 100.0 100.0 100.0 100.0
F 39.8 15.1 50.1 83.4 10.2 100.0 92.1 29.9 100.0
N 28.1 25.7 21.9 44.0 49.0 69.5 37.4 21.5 83.2
P 37.7 23.4 45.0 70.8 57.1 99.0 65.7 76.7 100.0

HR C 99.1 99.9 84.5 100.0 100.0 100.0 100.0 100.0 100.0
F 42.3 18.8 52.5 85.2 18.9 100.0 93.7 42.1 100.0
N 28.3 29.0 22.5 46.0 55.7 73.3 38.9 34.8 89.8
P 41.1 28.8 48.3 75.1 74.5 99.5 73.1 92.1 100.0

t-EV C 98.6 99.5 82.6 100.0 100.0 100.0 100.0 100.0 100.0
F 36.7 11.1 48.3 81.3 5.0 100.0 90.9 18.9 100.0
N 26.5 21.8 21.7 43.5 42.7 66.2 36.9 10.6 74.2
P 34.8 17.2 43.7 67.7 35.7 98.1 62.1 53.2 99.8

Table 4. Percentage of rejection of H0 for copulas in Group III when n = 300

H0 True Tn SP
n SCFG

n

GH a-GH 32.7 40.9 86.5
a-GA 33.5 42.8 86.7
a-HR 28.4 37.5 83.5
a-t-EV 33.1 41.4 88.6

GA a-GH 33.4 40.8 89.2
a-GA 34.0 42.3 89.3
a-HR 28.4 38.1 86.5
a-t-EV 32.7 40.6 90.5

HR a-GH 36.2 37.5 93.3
a-GA 31.7 39.1 89.7
a-HR 32.6 40.9 90.3
a-t-EV 40.5 42.8 92.3

t-EV a-GH 32.0 41.2 87.1
a-GA 33.2 43.3 87.8
a-HR 27.3 38.4 83.6
a-t-EV 31.3 40.7 88.7
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than the test based on Tn. Overall, the results remain disappointingly low, except when testing
for the Hüsler–Reiss model with τ ≥ 0.50.

These observations are in line with Figure 2, which shows striking similarities between the
Gumbel–Hougaard, Galambos, Hüsler–Reiss and t-EV copula with four degrees of freedom.
While SP

n and SCFG
n still have difficulty telling them apart when the sample size is 1000, their

power eventually rises when n → ∞, as explained in Section 5. To illustrate this point, samples of
various sizes were generated from the Gumbel–Hougaard copula with τ = 0.50 and the statistic
SCFG

n was used to test for the Galambos family. The following results, based on 1000 repetitions
and N = 1000 bootstrap samples, give an idea of the sample sizes needed to differentiate models
in Group I:

Sample size n 5 000 10 000 20 000 40 000

Percentage of rejection of H0 10.8 22.6 60.2 97.3

Returning to the case n = 300, we can see from Table 3 that the test based on SCFG
n is quite

good at detecting non-extreme-value LTD alternatives from Group II. Its power is higher than
those of SP

n and Tn, except when the data are generated from the Clayton or the Normal copula
with τ = 0.25. Interestingly, the general purpose test based on Tn is often second best. The
statistic SP

n has the edge only for the Clayton when τ = 0.25; it does very poorly against the
Frank, and against the Normal when τ = 0.75.

These results are in close agreement with the plots displayed in Figure 3. Consider, for in-
stance, the case where SP

n is used to test for the Gumbel–Hougaard copula from weakly depen-
dent data (τ = 0.25). From Table 3, the alternatives can be ranked as follows in decreasing order
of power:

Clayton � Normal � Plackett � Frank.

Looking at Figure 3, we find that this ordering is concordant with the overall degree of dissim-
ilarity between AP

C and A. In this case, as in others, it is found that at fixed sample size, curves
that look alike are harder to distinguish than others.

Finally, Table 4 shows that the statistic SCFG
n is much better than the other two at detecting

asymmetric extreme-value alternatives. The overall good performance of this test is consistent
with evidence from [19] that ACFG

n is generally a better nonparametric estimator of the Pickands
dependence function than AP

n. When the margins are known, this phenomenon is well docu-
mented; see, for example, [4,22] or [32].

7. Conclusion

Copula models are now common. As illustrated, for instance, by Ben Ghorbal et al. [1], so are
situations in which the dependence structure of a random pair (X,Y ) is well represented by an
extreme-value copula, even though X and Y themselves do not necessarily exhibit extreme-value
behavior. In such cases, the statistics considered here can be used to test the goodness of fit of
specific parametric copula families of the form (2) such as the Gumbel–Hougaard, Galambos,
Hüsler–Reiss or Student extreme-value copula.
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Theoretical and empirical evidence presented here shows that the nonparametric tests based
on the Cramér–von Mises statistic Sn are generally consistent and that they are an effective tool
for distinguishing between symmetric and asymmetric extreme-value copulas, as well as for
detecting other left-tail decreasing (LTD) dependence structures.

Except in the presence of massive data, however, it seems very difficult to discriminate be-
tween extreme-value copulas whose Pickands dependence functions are close. This may come as
something of a disappointment, but, on reflection, we may wonder whether, in the light of Fig-
ure 2, there is any practical difference between, say, the Gumbel–Hougaard and the Galambos
copula when they have the same value of Kendall’s tau.

For example, many studies have concluded that a Gumbel–Hougaard copula structure is ad-
equate for the insurance data mentioned in the Introduction; see, for instance, [5,8,9,11,15,16]
or [27]. In these papers, comparisons were made between the Gumbel–Hougaard model and
non-extreme-value copulas that were either Archimedean or meta-elliptical.

As Ben Ghorbal et al. [1] conclude that the data exhibit extreme-value dependence, it may be
worth comparing the Gumbel–Hougaard structure with other extreme-value copulas from Groups
I and III. This is done in Table 5 using the statistics SP

n and SCFG
n and the inversion of Kendall’s

tau to estimate θ . Because the test is yet to be adapted to the case of censoring, the analysis
ignored the 34 claims for which the policy limit was reached. Each P -value in the table is based
on N = 2500 bootstrap samples. Given the comparatively small sample size, n = 1466, it is little
wonder that no model is rejected at the 5% level.

Figure 5 displays the end-point-corrected estimates AP
n,c and ACFG

n,c for the data at hand. For
comparison, the best-fitting symmetric and asymmetric Galambos extreme-value copulas are
superimposed. Although these two models yield the highest P -values, they are not significantly
better than the alternatives listed in Table 5. Given the estimators’ sampling variability, the data
set is simply too small to distinguish between them. This is not a major concern, however, as
predictions derived from these various models would be roughly the same. To paraphrase Box
and Draper ([3], page 424), it may be that all these models are false, but they are nearly equivalent
and probably equally useful.

Figure 5. Nonparametric estimates AP
n,c and ACFG

n,c , and fitted Pickands dependence function, for the
Galambos copula (left) and asymmetric Galambos copula (right).



Goodness-of-fit testing for extreme-value copulas 269

Table 5. Values of the statistics SP
n , SCFG

n and approximate P -values computed using N = 2500 parametric
bootstrap samples for the insurance data

Model SP
n P -value SCFG

n P -value

GH 0.087 0.073 0.048 0.171
GA 0.084 0.074 0.045 0.184
HR 0.088 0.067 0.049 0.157
t-EV 0.088 0.069 0.048 0.166
a-GH 0.052 0.274 0.012 0.152
a-GA 0.046 0.325 0.009 0.244
a-HR 0.051 0.272 0.011 0.174
a-t-EV 0.062 0.204 0.015 0.122

Appendix A: Proof of Proposition 1

Let An denote either AP
n or ACFG

n and write An,θn = An − Bn,θ0 , where Bn,θ0 = √
n(Aθn − Aθ0).

As the sequence 	n is assumed to converge weakly, it is tight. Thus, for given δ > 0, there exists
L = L(δ) such that Pr(‖	n‖ > L) < δ holds for every integer n. Therefore, for given ζ > 0,

Pr
{

sup
t∈[0,1]

|Bn,θ0(t) − Ȧ�
θ0

(t)	n| > ζ
}

≤ Pr
{

sup
t∈[0,1]

|Bn,θ0(t) − Ȧ�
θ0

(t)	n| > ζ,‖	n‖ ≤ L
}

+ Pr(‖	n‖ > L)

≤ Pr
{

sup
t∈[0,1]

|Bn,θ0(t) − Ȧ�
θ0

(t)	n| > ζ,‖	n‖ ≤ L
}

+ δ.

An application of the mean value theorem then implies that for every realization ω of
the process and every t ∈ [0,1], Bn,θ0(t,ω) = Ȧ�

	∗
n(t,ω)(t)	n(ω), where 	∗

n(t,ω) = θ0 +
ε(t,ω)n−1/2	n(ω) for some ε(t,ω) ∈ [0,1]. It then follows from condition (6) that

lim
n→∞ Pr

{
sup

t∈[0,1]
|Bn,θ0(t) − Ȧ�

θ0
(t)	n| > ζ,‖	n‖ ≤ L

}

≤ lim
n→∞ Pr

{
‖	n‖ sup

t∈[0,1]

∣∣Ȧ	∗
n(t)(t) − Ȧθ0(t)| > ζ,‖	n‖ ≤ L

}

≤ lim
n→∞ Pr

{
sup

‖θ−θ0‖≤n−1/2L

sup
t∈[0,1]

|Ȧθ (t) − Ȧθ0(t)| > ζ/L
}

= 0.

This completes the argument.
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Appendix B: Validity of the parametric bootstrap

To avoid repetitions, let An denote either A
P
n or A

CFG
n and let A stand for either A

P or A
CFG.

The following conditions, adapted from [17], ensure the validity of the parametric bootstrap for
computing P -values for the proposed tests.

(a) The family {Cθ : θ ∈ O} of extreme-value copulas must be such that:
(i) the parameter space O is an open subset of R

p;
(ii) members of the family are identifiable, that is, for every ε > 0,

inf
{

sup
t∈[0,1]

‖Aθ(t) − Aθ0(t)‖ : θ ∈ O and ‖θ − θ0‖ > ε
}

> 0;

(iii) the mapping θ �→ Aθ is Fréchet differentiable with derivative θ �→ Ȧθ , that is, for
all θ0 ∈ O,

lim‖h‖↓0
sup

t∈[0,1]

‖Aθ0+h(t) − Aθ0(t) − Ȧ�
θ0

(t)h‖
‖h‖ = 0;

(iv) Cθ has a Lebesgue density cθ for all θ ∈ O;
(v) the density cθ admits first- and second-order derivatives with respect to all compo-

nents of θ ∈ O; the gradient (row) vector with respect to θ is denoted ċθ and the
Hessian matrix is denoted c̈θ ;

(vi) for arbitrary (u, v) ∈ (0,1)2 and every θ0 ∈ O, θ �→ ċθ (u, v)/cθ (u, v) and θ �→
c̈θ (u, v)/cθ (u, v) are continuous at θ0, Cθ0 almost surely;

(vii) for every θ0 ∈ O, there exist a neighborhood N of θ0 and a Lebesgue integrable
function h : (0,1)2 → R such that supθ∈N ‖ċθ (u, v)‖ ≤ h(u, v) holds for all (u, v) ∈
(0,1)2;

(viii) for every θ0 ∈ O, there exist a neighborhood N of θ0 and Cθ0 -integrable functions
h1, h2 : (0,1)2 → R such that for all (u, v) ∈ (0,1)2,

sup
θ∈N

∥∥∥∥ ċθ (u, v)

cθ (u, v)

∥∥∥∥
2

≤ h1(u, v) and sup
θ∈N

∥∥∥∥ c̈θ (u, v)

cθ (u, v)

∥∥∥∥ ≤ h2(u, v).

(b) In addition, the estimators An and θn satisfy the following:
(i) (An,	n,Wn) � (A,	,W) in D([0,1],R) × R

p⊗2 as n → ∞, where the limit is a
centered Gaussian process. Here,

Wn = n−1/2
n∑

i=1

ċ�
θ0

(U∗
i , V ∗

i )

cθ0(U
∗
i , V ∗

i )

for a random sample (U∗
1 ,V ∗

1 ), . . . , (U∗
n ,V ∗

n ) from Cθ0 and W is N (0, IP ), where IP

is the Fisher information matrix; see [17], page 1101.
(ii) Eθ0(	W

�) = J , where J is the p × p identity matrix. Further, Eθ0{A(t)W} = Ȧθ0(t)

for every t ∈ (0,1).
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Condition (b) can be checked as follows, under the assumption that (An,	n) � (A,	) as
n → ∞. First, results from Chapter 5 of [12] can be combined with the functional delta method
(see, e.g., [37], Section 3.9) to see that as n → ∞, (An,	n,Cn,Wn) � (A,	,C,W).

Next, observe that Eθ0{C(u, v)W} = Ċθ0(u, v) for all u,v ∈ [0,1]; see [17], page 1108. Given
that, for all t ∈ [0,1],

A
P(t) = −A2

θ0
(t)

∫ 1

0
Cθ0(x

1−t , xt )
dx

x

and

A
CFG(t) = Aθ0(t)

∫ 1

0
Cθ0(x

1−t , xt )
dx

x log(x)
,

we can see that

Eθ0{AP(t)W} = −A2
θ0

(t)

∫ 1

0
Ċθ0(x

1−t , xt )
dx

x

and

Eθ0{ACFG(t)W} = Aθ0(t)

∫ 1

0
Ċθ0(x

1−t , xt )
dx

x log(x)
.

Interchanging the order of differentiation and integration, we get Eθ0{AP(t)W} =
Eθ0{ACFG(t)W} = Ȧθ0(t) for all t ∈ (0,1).

As for the condition Eθ0(	W) = J , it can be verified using [17], Proposition 4, for the esti-
mators based on maximum pseudo-likelihood and on the inversion of Spearman’s rho. To handle
the estimator based on Kendall’s tau, Proposition 5 in [17] must be used instead.

Appendix C: Proof of Proposition 2

The proof closely mimics the argument presented in [19], Appendix B. To avoid duplication,
the same notation is used and only the critical differences are highlighted. This also offers an
opportunity to correct minor typographical errors in the original source.

First, consider the process given by B
P
n(t) = n1/2{1/AP

n(t) − 1/AP
C(t)} for all t ∈ [0,1] and

show that B
P
n � B = −A

P
C/(AP

C)2 as n → ∞. Then

√
n(AP

n − AP
C) = −(AP

C)2
B

P
n

1 + n−1/2BP
nA

P
C

� A
P
C,

as a consequence of the functional version of Slutsky’s lemma.
Put kn = 2 log(n + 1) and write

B
P
n(t) =

∫ 1

0
Cn(x

1−t , xt )
dx

x
=

∫ ∞

0
Cn

(
e−s(1−t), e−st

)
ds = I1,n + I2,n,
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where, for each t ∈ [0,1],

I1,n(t) =
∫ ∞

kn

Cn

(
e−s(1−t), e−st

)
ds, I2,n(t) =

∫ kn

0
Cn

(
e−s(1−t), e−st

)
ds.

The contribution of I1,n(t) is asymptotically negligible because the fact that s > kn implies that
min(e−s(1−t), e−st ) < 1/(n + 1) and hence that

∣∣Cn

(
e−s(1−t), e−st

)∣∣ = n1/2C
(
e−s(1−t), e−st

) ≤ n1/2 min
(
e−s(1−t), e−st

) ≤ n1/2e−s/2.

Thus, for all t ∈ [0,1],

|I1,n(t)| ≤ n1/2
∫ ∞

kn

C
(
e−s(1−t), e−st

)
ds ≤ n1/2

∫ ∞

kn

e−s/2 ds ≤ 2

n1/2
. (A.1)

Consequently, the asymptotic behavior of B
P
n is determined entirely by I2,n. Invoking the Stute

representation given by Genest and Segers [19], we may write I2,n = J1,n + J2,n + J3,n + o(1),
where, for each t ∈ [0,1],

J1,n(t) =
∫ kn

0
αn

(
e−s(1−t), e−st

)
ds,

J2,n(t) = −
∫ kn

0
αn

(
e−s(1−t),1

)
Ċ1

(
e−s(1−t), e−st

)
ds,

J3,n(t) = −
∫ kn

0
αn(1, e−st )Ċ2

(
e−s(1−t), e−st

)
ds.

Here, Ċ1(u, v) = ∂C(u, v)/∂u, Ċ2(u, v) = ∂C(u, v)/∂v and αn is the empirical process associ-
ated with the pairs (F (X1),G(Y1)), . . . , (F (Xn),G(Yn)).

Fix ω ∈ (0,1/2) and write qω(t) = tω(1 − t)ω for all t ∈ [0,1]. Also, let

K1(s, t) = qω

{
min

(
e−s(1−t), e−st

)}
,

K2(s, t) = qω

(
e−s(1−t)

)
Ċ1

(
e−s(1−t), e−st

)
,

K3(s, t) = qω(e−st )Ċ2
(
e−s(1−t), e−st

)
for all s ∈ (0,∞) and t ∈ [0,1]. The proof that J1,n+J2,n+J3,n has the stated limit then proceeds
exactly as in Appendix B of [19], provided that for i = 1,2,3, there exists an integrable function
K∗

i : (0,∞) → R such that Ki(s, t) ≤ K∗
i (s) for all s ∈ (0,∞) and t ∈ [0,1].

For K1, this is immediate because K1(s, t) ≤ e−ωs/2 for all s ∈ (0,∞) and t ∈ [0,1]. For K2,
the facts that C is LTD and smaller than the Fréchet–Hoeffding upper bound imply that

Ċ1
(
e−s(1−t), e−st

) ≤ es(1−t)C
(
e−s(1−t), e−st

) ≤ es(1−t) min
(
e−s(1−t), e−st

)
.
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Now, set m(t) = max(t,1 − t) and note that qω(e−s(1−t)) ≤ e−ωs(1−t) for all s ∈ (0,∞) and
t ∈ [0,1]. Therefore,

K2(s, t) ≤ es(1−ω)(1−t)e−sm(t) ≤ es(1−ω)m(t)e−sm(t) = e−sωm(t) ≤ e−ωs/2

because m(t) ≥ 1/2 for all t ∈ [0,1]. The argument for K3 is similar.
Turning to the ACFG

n estimator, observe that

B
CFG
n (t) = n1/2{logACFG

n (t) − logACFG
C (t)}

=
∫ 1

0
Cn(x

1−t , xt )
dx

x log(x)
= −

∫ ∞

0
Cn

(
e−s(1−t), e−st

)ds

s

for all t ∈ [0,1]. This process can be written as −(I1,n + I2,n + I3,n), where

I1,n(t) =
∫ ∞

kn

Cn

(
e−s(1−t), e−st

)ds

s
,

I2,n(t) =
∫ kn

�n

Cn

(
e−s(1−t), e−st

)ds

s
,

I3,n(t) =
∫ �n

0
Cn

(
e−s(1−t), e−st

)ds

s

with kn = 2 log(n + 1) as above and �n = 1/(n + 1).
Arguing as in (A.1), we see that |I1,n| ≤ n−1/2. Similarly, I3,n is negligible asymptotically, for

if s ∈ (0, �n) and t ∈ [0,1], then we have

min
(
e−s(1−t), e−st

) ≥ e−1/(n+1) >
n

n + 1

and hence Cn(e−s(1−t), e−st ) = 1. Furthermore, the fact that C is LTD implies that C(e−s(1−t),

e−st ) ≥ e−s for all s ∈ (0,∞) and t ∈ [0,1]. Therefore,∣∣Cn

(
e−s(1−t), e−st

)∣∣ ≤ n1/2(1 − e−s) ≤ n1/2s.

Consequently, |I3,n| ≤ n1/2�n ≤ n−1/2. As a result, the asymptotic behavior of B
CFG
n is de-

termined entirely by I2,n. Following Genest and Segers [19], we can further write I2,n =
J1,n + J2,n + J3,n + o(1), where, for all t ∈ [0,1],

J1,n(t) =
∫ kn

�n

αn

(
e−s(1−t), e−st

)ds

s
,

J2,n(t) = −
∫ kn

�n

αn

(
e−s(1−t),1

)
Ċ1

(
e−s(1−t), e−st

)ds

s
,

J3,n(t) = −
∫ kn

�n

αn(1, e−st )Ċ2
(
e−s(1−t), e−st

)ds

s
.
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The joint asymptotic behavior of these terms can be determined in the same way as before.
The only difference is that the integration measure is now ds/s. For s ∈ [1,∞), the same upper
bounds K∗

1 , K∗
2 , K∗

3 apply and they have already been shown to be integrable on this domain.
To obtain an integrable bound for K1 on (0,1), it suffices to use the fact that K1(s, t) ≤ (1 −
e−sm(t))ω ≤ {sm(t)}ω ≤ sω. The same bound works for both K2 and K3 because Ċi ∈ [0,1] for
i = 1,2. This completes the argument.
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