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In two earlier papers, two of the present authors (A.G. and U.S.) extended Lai’s [Ann. Probab. 2 (1974)
432–440] law of the single logarithm for delayed sums to a multiindex setting in which the edges of the nth
window grow like |n|α , or with different α’s, where the α’s belong to (0,1). In this paper, the edge of the
nth window typically grows like n/ logn, thus at a higher rate than any power less than one, but not quite
at the LIL-rate.
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1. Introduction

Let X, {Xk, k ≥ 1} be i.i.d. random variables with mean 0 and partial sums {Sn,n ≥ 1}.
The Hartman–Wintner law of the iterated logarithm (LIL) states that

lim sup
n→∞

(lim inf
n→∞ )

Sn√
2n log logn

= σ (−σ) a.s.

⇐⇒ EX2 < ∞, EX = 0 and EX2 = σ 2.

The sufficiency was proven by Hartman and Wintner [8], the necessity by Strassen [11].
The law of the single logarithm (LSL) is due to Lai [9], and deals with delayed sums or

windows, namely, with

Tn,n+k =
n+k∑

j=n+1

Xj , n ≥ 0, k ≥ 1,

and states that for 0 < α < 1,

lim sup
n→∞

Tn,n+nα√
2nα logn

= σ
√

1 − α a.s.

⇐⇒ E(|X|2/α(log+ |X|)−1/α) < ∞, EX2 = σ 2, EX = 0,

where, throughout, log+ x = max{logx,1}.
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The degenerate boundary case α = 0 contains the trivial one, in that the window reduces to a
single random variable. More precisely, in that case,

Tn,n+1

bn

= Xn+1

bn

a.s.→ 0 as n → ∞ ⇐⇒
∞∑

n=1

P(|X| > bn) < ∞,

which, in turn, holds if and only if Eb−1(|X|) < ∞, where b−1(·) is a (suitably defined) inverse
of {bn}.

The next interesting case with α = 0 is when the span an = logn, that is, the window Tn,n+logn,
in which case the so-called Erdős–Rényi law ([3], Theorem 2, [2], Theorem 2.4.3) tells us that if
EX = 0 and the moment generating function ψX(t) = E exp{tX} exists in a neigborhood of 0,
then for any c > 0,

lim
n→∞ max

0≤k≤n−k

Tk,k+c log k

c logk
= ρ(c) a.s.,

where

ρ(c) = sup
{
x : inf

t
e−txψX(t) ≥ e−1/c

}
.

Note that here the limit actually depends on the distribution of the summands.
For a generalization to more general window widths an such that an/ logn → ∞ as n → ∞,

but still assuming that the moment generating function exists, see, for example, [2], Theo-
rem 3.1.1, where the limit, in contrast to the result just cited, does not depend on the distribution.
Results where the moment condition is somewhat weaker than existence of a moment generating
function were discussed in [10]; here, the limit depends on both the variance and the distribu-
tion. Using strong invariance principles Lai’s result above can be generalized somewhat, see, for
example, [2], Theorem 3.2.1, but there at least the pth moment, p > 2, is needed.

For the boundary case at the other end with α = 1, one has an = n and Tn,2n
d= Sn, and the

correct norming is as in the LIL.
One interesting remaining case is when the window size is larger than any power less than one

and, at the same time, not quite linear. This is the starting point of the present paper. Technically,
we wish to examine windows of the form

Tn,n+an , where an = n

L(n)
(1.1)

with

a differentiable function L(·) ↗ ∞ ∈ S V and
xL′(x)

L(x)
↘ as x → ∞. (1.2)

Notation. L ∈ S V means that L is slowly varying at infinity (see, for example, [1] or [5],
Section A.7).

The typical case one should have in mind is L(n) = logn, that is, the window Tn,n+n/ logn.

Remark 1.1. Strictly speaking, we should write an = [n/L(n)], an = [n/ logn] and so on. How-
ever, in order to avoid trivial and boring technicalities, we shall treat such sequences as integer-
valued whenever convenient.
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In Section 2 we present the setup, the main result and the implications for some typical slowly
varying functions, namely L(x) = (logx)p for p > 0 and iterated logarithms L(x) = logm x,
where logm(x) denotes the m-times iterated logarithm. For the proof, in Section 3, we first review
the exponential inequalities. Section 3.2 then introduces a family of subsequences within which
sufficiency of the moment condition is proved in Sections 3.3–3.6. Section 3.7 deals with the
same issue for the full sequence, while the question of necessity is dealt with in Section 3.8.
Proofs of the corollaries in Section 2 are provided in Section 4, while Section 5 furnishes further
examples, including some with more complicated slowly varying parts.

It turns out that the proof of the main result has some ingredients in common with that of the
classical LIL, primarily in the sense that one needs two truncations, one to match the Kolmogorov
exponential bounds and one to match the moment requirements. Typically (and somewhat frus-
tratingly), it is the thin central part that causes the main trouble in the proof. A weaker result
is obtained if only the first truncation is made. The cost is that too much integrability will be
required. However, for the reader who is not so concerned with optimality, we include a proof
of this weaker version in Section 6, after which we revisit two examples in order to illustrate the
consequences.

2. Setup and main result

Recall that the window widths, an, are assumed to be of the form n/L(n), where the function L

satisfies (1.2). Define {dn,n ≥ 2} by

dn = log
n

an

+ log logn = logL(n) + log logn.

Note that {dn} may be viewed as the additional norming sequence in Theorem 2.1, in the sense
that it corresponds to {log2 n} in the LIL and {logn} in the LSL.

Furthermore, let

f (n) = min{an · dn,n},
with f (·) an increasing interpolating function, that is, f (x) = f[x] for x > 0 and f −1(·), the
corresponding (suitably defined) inverse function.

Here, now, is our main result.

Theorem 2.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If

E(f −1(X2)) < ∞, (2.1)

then

lim sup
n→∞

Tn,n+an√
2andn

= σ a.s. (2.2)
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Conversely, if

P

(
lim sup
n→∞

|Tn,n+an |√
andn

< ∞
)

> 0, (2.3)

then (2.1) holds, EX = 0 and (2.2) holds with σ 2 = VarX.

Remark 2.1. The “natural” necessary moment assumption is (2.1) with f (n) = andn. However,
for very slowly increasing functions L, for example, L(x) = log log log logx, it turns out that
finite variance is needed, and since we then have f (n) = n, (2.1) is equivalent to finite variance.

Remark 2.2. The result also holds for any sequence {an} which is of regular variation of order
α ∈ (0,1). Here, the sufficiency part can be obtained from strong invariance principles, as de-
scribed in, for example, Theorem 3.2.2 in the book [2]. However, for our situation, no strong
invariance principle is available.

Remark 2.3. In addition to the lim sup results, there exist, throughout, lim inf counterparts such
that lim inf · · · = − lim sup · · · a.s. Actually, the set of limit points is the whole interval [−σ,σ ].

The slowly varying function that immediately comes to mind is (of course) the logarithmic
function. The second one would be L(x) = log2 x = log logx and, possibly, L(x) = logm(x).
We precede the proofs by stating the conclusions for these cases as separate corollaries. For
simplicity, we omit the converse parts.

Corollary 2.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If, for some p > 0,

EX2 (log+ |X|)p
log+ log+ |X| < ∞, (2.4)

then

lim sup
n→∞

Tn,n+n/(logn)p√
2(p + 1)(n/(logn)p) log logn

= σ a.s. (2.5)

Corollary 2.2. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and let
Tn,n+k = ∑n+k

j=n+1 Xj . If σ 2 = VarX < ∞, then for any m ≥ 2,

lim sup
n→∞

Tn,n+n/ logm(n)√
2(n/logm(n)) log logn

= σ a.s. (2.6)

Note that in the case m = 2, the normalization is just
√

2n. Proofs of the corollaries are de-
ferred to Section 4 and further examples are given in Section 5.
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3. Proof of Theorem 2.1

In spite of the fact that we are dealing with limit laws for delayed sums, the present topic is, in
fact, too close to the LIL to warrant LSL techniques. In contrast to the proofs in [9] and [6,7],
where one uses exponential bounds and Borel–Cantelli lemmas for the single primed contribution
along a suitably subsequence, and takes care of the double and triple primed contributions for
the full sequence and fills the gaps, we have to resort to the LIL technique where one proves
Borel–Cantelli lemmas and thus also the theorem itself, first for subsequences and then for the
entire sequence.

We thus begin by providing Borel–Cantelli sums along subsequences, after which an appeal
to the Borel–Cantelli lemmas completes the proof for subsequences.

Section 3.7 is devoted to the problem of “filling the gaps” in order to include arbitrary win-
dows.

3.1. Truncation and exponential bounds

The typical approach to proving results of the LIL type requires two truncations: the first to match
the Kolmogorov exponential bounds (see, for example, [5], Section 8.2) and the second to match
the moment requirements.

To this end, we introduce parameters δ > 0 and ε > 0, and let

bn = σδ

ε

√
an

dn

(3.1)

and

X′
n = XnI {|Xn| ≤ bn}, X′′

n = XnI
{
bn < |Xn| < δ

√
f (n)

}
,

X′′′
n = XnI

{|Xn| ≥ δ
√

f (n)
}
.

In the following, all objects with primes or multiple primes refer to the respective truncated
summands.

Since truncation destroys centering, we obtain, using standard procedures, together with the
fact that EX = 0,

|EX′
k| = |−EXkI {|Xk| > bk}| ≤ E|X|I {|Xk| > bk} ≤ EX2I {|X| > bk}

bk

so that

|ET ′
n,n+an

| ≤
∑

n≤k≤n+an

EX2I {|X| > bk}
bk

≤ an · EX2I {|X| > bn}
bn

(3.2)
= ε

σδ
· √andn · EX2I {|X| > bn} = o

(√
andn

)
as n → ∞.



6 A. Gut, F. Jonsson and U. Stadtmüller

Upper bounds

Since

VarX′
k ≤ E(X′

k)
2 ≤ EX2 = σ 2,

it follows that

Var(T ′
n,n+an

) ≤ anσ
2. (3.3)

An application of the Kolmogorov upper exponential bound (see, for example, [5], Lemma 8.2.1)
with x = ε(1 − δ)

√
2dn and cn = 2δ/x, together with (3.2) and (3.3), now yields

P
(
T ′

n,n+an
> ε

√
2andn

) ≤ P
(
T ′

n,n+an
− ET ′

n,n+an
> ε(1 − δ)

√
2andn

)
≤ P

(
T ′

n,n+an
− ET ′

n,n+an
>

ε(1 − δ)

σ

√
2 Var(T ′

n,n+an
)dn

)
(3.4)

≤ exp

{
−2ε2(1 − δ)2

2σ 2
· dn(1 − δ)

}

= exp

{
−ε2(1 − δ)3

σ 2
· dn

}
.

Lower bounds

In order to apply the lower exponential bound (see, for example, [5], Lemma 8.2.2), we first need
a lower bound for the truncated variances:

VarX′
k = EX′

k
2 − (EX′

k)
2 = EX2 − EX2I {|Xk| ≥ bk} − (EX′

k)
2

≥ σ 2 − 2EX2I {|Xk| ≥ bk} ≥ σ 2(1 − δ)

for n large, so that

Var(T ′
n,n+an

) ≥ anσ
2(1 − δ) for n large. (3.5)

It now follows that for any γ > 0,

P
(
T ′

n,n+an
> ε

√
2andn

) ≥ P
(
T ′

n,n+an
− ET ′

n,n+an
> ε(1 + δ)

√
2andn

)
≥ P

(
T ′

n,n+an
− ET ′

n,n+an
>

ε(1 + δ)

σ
√

(1 − δ)

√
2 Var(T ′

n,n+an
)dn

)
(3.6)

≥ exp

{
−2ε2(1 + δ)2

2σ 2(1 − δ)
· dn(1 + γ )

}

= exp

{
−ε2(1 + δ)2(1 + γ )

σ 2(1 − δ)
· dn

}
for n large.
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3.2. A family of subsequences

In order to choose a suitable subsequence, consider the difference equation nk+1 − nk =
cnk/L(nk) with a suitable constant c > 0 to be determined later, or, in continuous variables,

y′ = cy/L(y). (3.7)

With ϕ(y) = ∫ y L(u)du
u

being in the class 
 (see [1] for the notation and Theorem 3.7.3) and
ψ(x) = ϕ−1(x) being in the class � (see [1] for the notation and Theorem 3.10.4), the solution
of the differential equation is given by ψ(cx) and the subsequence of interest is nk = ψ(ck).
Note that nk+1

nk
= 1 + c

L(nk)
→ 1 and that L(nk+1)/L(nk) → 1 as k → ∞.

An important relation in the following is

dnk
= log(L(ψ(ck)) logψ(ck)) ∼ log(ck) ∼ logk as t → ∞ for any c > 0, (3.8)

which is an immediate consequence of the following result.

Lemma 3.1. With a slowly varying function L(·) satisfying (1.2), we have

log(L(t) log t)

logϕ(t)
→ 1 as t → ∞. (3.9)

Proof. With ϕ∗(t) = L(t) log t , we have ϕ(t) ≤ ϕ∗(t) since L(·) ↗. Next,

ϕ∗(t) =
∫ t

1

(
L′(u) logu + L(u)

u

)
du =

∫ t

1

L′(u)uL(u)

L(u)u

∫ u

1

1

v
dv du + ϕ(t)

≤
∫ t

1

L(u)

u

∫ u

1

L′(v)

L(v)
dv du + ϕ(t) ≤ ϕ(t)(1 + log(L(t))),

where we used condition (1.2). Hence,

1 ≥ logϕ(t)

logϕ∗(t)
≥ 1 − log(1 + logL(t))

log(L(t) log t)
→ 1 as t → ∞. �

Remark 3.1. In the classical proof of the LIL, the subsequence has a geometric growth rate:
{λk, k ≥ 1} for some λ close to 1. For the LSL, the subsequence has a polynomial growth rate:
{(k/ logk)1/(1−α), k ≥ 1}. It is therefore natural in the present, intermediate, context to search
for a subsequence with a growth rate between geometric and polynomial, that is, to search for
something like {λkβ

, k ≥ 1} for some β ∈ (0,1). For the canonical case L(n) = logn, it turns out
that nk ∼ ec

√
2k .



8 A. Gut, F. Jonsson and U. Stadtmüller

3.3. Sufficiency along subsequences: T ′
n,n+an

The upper bound

Here, we use c > 0 small. Let {nk = ψ(ck), k ≥ 1}, where nk ↗ ∞ as k → ∞, satisfy

∞∑
k=1

exp

{
−ε2(1 − δ)3

σ 2
· dnk

}
< ∞. (3.10)

Applying (3.4) to {X′
k, k ≥ 1} then yields

∞∑
k=1

P
(|T ′

nk,nk+ank
| > ε

√
2ank

dnk

)
< ∞ (3.11)

for any ε > σ. Note that (3.11) is independent of the special choice of c > 0.

The lower bound

We now choose the sparser subsequence {nk = ψ(ck), k ≥ 1}, where c > 1 and nk ↗ ∞ as
k → ∞, satisfying

∞∑
k=1

exp

{
−ε2(1 + δ)2(1 + γ )

σ 2(1 − δ)
· dnk

}
= ∞ (3.12)

for any ε < σ . Observe that the windows are now non-overlapping since c > 1 implies that
nk+1 > nk + nk/L(nk) eventually. Applying (3.6) to this sequence similarly shows that

∞∑
k=1

P
(
T ′

nk,nk+ank
> ε

√
2ank

dnk

) = ∞. (3.13)

3.4. Sufficiency along subsequences: T ′′
n,n+an

The next step is to prove the analog of (3.11) for T ′′
n,n+an

, that is,

∞∑
k=1

P
(|T ′′

n,n+an
| > δ

√
f (n)

)
< ∞. (3.14)

The symmetric case

We first consider symmetric random variables, beginning by recalling the Kahane–Hoffmann–
Jørgensen inequality (see, for example, [5], Theorem 3.7.5).
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Lemma 3.2. Suppose that X1,X2, . . . ,Xn are independent symmetric random variables with
partial sums Sn, n ≥ 1.

(i) For any x, y > 0,

P(|Sn| > 2x + y) ≤ P
(

max
1≤k≤n

|Xk| > y
)

+ 4
(
P(|Sn| > x)

)2

≤
n∑

k=1

P(|Xk| > y) + 4
(
P(|Sn| > x)

)2
.

(ii) If X1,X2, . . . ,Xn are identically distributed (and x = y), then an iteration yields that
there are constants κi > 0, i = 1,2, such that

P(|Sn| > 9x) ≤ κ1nP (|X1| > x) + κ2
(
P(|Sn| > x)

)4
.

Applying the lemma to T ′′
n,n+an

, we thus obtain, with η = δ/9, that

P
(|T ′′

n,n+an
| > δ

√
f (n)

)
≤ κ1

n+an∑
k=n+1

P
(|X′′

k | > η
√

f (n)
) + κ2

(
P

(|T ′′
n,n+an

| > η
√

f (n)
))4 (3.15)

≤ κ1anP
(|X| > η

√
f (n)

) + κ2
(
P

(|T ′′
n,n+an

| > η
√

f (n)
))4

.

Summing over our subsequence for k0 large (remembering that dnk
∼ logk as k → ∞), we now

have

∞∑
k=k0

ank
P

(|X| > η
√

f (nk)
)

≤
∞∑

k=k0

ank
P

(
f (−1)(X2/η2) > nk

) =
∞∑

k=k0

nk

L(nk)
P

(
f (−1)(X2/η2) > nk

)

≤
∫ ∞

1

ψ(x)

L(ψ(x))
P

(
f (−1)(X2/η2) > cψ(x)

)
dx

(3.16)(
use

ψ(x − 1)

ψ(x)
≥ c > 0, a change of variable y = ψ(x), hence,

dx

dy
= ϕ′(y) = L(y)

y

)

=
∫ ∞

C

y

L(y)
P

(
f (−1)(X2/η2) > cy

)L(y)

y
dy =

∫ ∞

C

P
(
f (−1)(X2/η2) > cy

)
dy

≤ CEf (−1)(X2) < ∞,

which takes care of the first term in the right-hand side of (3.15).
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As for the second one, Chebyshev’s inequality tells us that

P
(|T ′′

n,n+an
| > η

√
f (n)

) ≤ VarT ′′
n,n+an

η2f (n)
≤ anEX2I {bn < |X| < δ

√
f (n + n/L(n))}

η2f (n)

= ε

σδ

EX2I {bn < |X| < δ
√

f (n + n/L(n))}
η2dn

≤ ε

σδ

EX2

η2dn

and, hence, that

(
P

(|T ′′
n,n+an

| > η
√

f (n)
))4 ≤

(
ε

σδη2dn

)4

(EX2)3EX2I
{
bn < |X| < δ

√
f

(
n + n/L(n)

)}
so that

(
σδη2

ε

)4 1

(EX2)3

∞∑
k=k0

P
(∣∣T ′′

nk,nk+nk/L(nk)

∣∣ > η
√

f (nk)
)

(3.17)

≤ C

∞∑
k=k0

EX2I {bnk
< |Xk| < δ

√
f (nk + nk/L(nk))}

d4
nk

≤ C

∞∑
k=k0

1

(log k)4

∫ δ
√

f (nk+nk/L(nk))

bnk

x2 dF(x)

=
∫ ∞

k∗

( ∑
A(k,x)

1

(logk)4

)
x2 dF(x), (3.18)

where k∗ is some irrelevant lower limit and

A(k, x) = {
k :bnk

< |x| < δ

√
f

(
nk + nk/L(nk)

)}
.

In order to invert the double inequality, we first observe that in the case f (n) = andn (the case
f (n) = n is simpler and only the necessary changes are indicated),

ank+nk/L(nk) = nk + nk/L(nk)

L(nk + nk/L(nk))
≤ nk

L(nk)

(
1 + 1

L(nk)

)

and that

dnk+nk/L(nk) = logL
(
nk + nk/L(nk)

) + log log
(
nk + nk/L(nk)

) ∼ logdnk
∼ logk ∼ log(ϕ(nk))

because of the slow variation of L, logL, and logx, and the fact that we have chosen our subse-
quence via the relation nk = ψ(ck), which implies that ϕ(nk) ∼ ck.
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Exploiting this yields

f
(
nk + nk/L(nk)

) = ank+nk/L(nk) · dnk+nk/L(nk)

≤ (1 + δ/2)
nk

L(nk)

(
1 + 1

L(nk)

)
· log(ϕ(nk)) (3.19)

≤ nk

L(nk)
(1 + δ) · log(ϕ(nk)) as k → ∞.

Next, for a slowly varying function L, let L# be its de Bruijn conjugate (see, for example, [1],
Section 1.5), obeying

L(xL#(x))L#(x) → 1 and L(x)L#(xL(x)) → 1 as x → ∞. (3.20)

With its help, we can solve t = ξL(ξ) asymptotically by ξ ∼ tL#(t). Now, for evaluating A(k, x),

we define

L1(u) = 1

L(u) log(ϕ(u))
and L2(u) = log(ϕ(u))

L(u)
,

both of which are slowly varying (in the case f (n) = n, we may define L2 ≡ 1), and their de
Bruijn conjugates L#

1(x) and L#
2(x). Then, with suitable constants ci , we have

A(k, x) ⊂
{
k :

(
δσ

ε

)2
nk

L(nk) log(ϕ(nk))
≤ x2 ≤ δ2 nk

L(nk)
(1 + δ) · log(ϕ(nk))

}

⊂
{
k :

(
δσ

ε

)2
ψ(ck)

L(ψ(ck)) log(ϕ(ψ(ck)))
≤ x2 ≤ δ2 ψ(ck)

L(ψ(ck))
(1 + δ) · log(ϕ(ψ(ck)))

}

⊂ {k : c1ψ(ck)L1(ψ(ck)) ≤ x2 ≤ c2ψ(ck)L2(ψ(ck))}
⊂ {k : c3x

2L#
2(x

2) ≤ ψ(ck) = nk ≤ c4x
2L#

1(x
2)}

⊂ {k : c5ϕ(x2L#
2(x

2)) ≤ k ≤ c6ϕ(x2L#
1(x

2))}.
An application of the mean value theorem, the fact that ϕ′(x) = L(x)/x ↘ as x → ∞ and (3.20)
therefore imply that

Card(A(k, x)) ≤ c6ϕ(x2L#
1(x

2)) − c5ϕ(x2L#
2(x

2)) ≤ C
(
ϕ(x2L#

1(x
2)) − ϕ(x2L#

2(x
2))

)
≤ Cϕ′(x2L#

2(x
2))

(
x2L#

1(x
2) − x2L#

2(x
2)

)
= C

L(x2L#
2(x

2))

x2L#
2(x

2)

(
x2L#

1(x
2) − x2L#

2(x
2)

)

≤ C
log(ϕ(x2L#

2(x
2)))

L2(x2L#
2(x

2))L#
2(x

2)

(
L#

1(x
2) − L#

2(x
2)

)
≤ C log(ϕ(x2L#

2(x
2)))L#

1(x
2).



12 A. Gut, F. Jonsson and U. Stadtmüller

Inserting this into the inner sum in (3.18), we now obtain

∑
A(k,x)

1

(logk)4
≤ C

L#
1(x

2)

(logϕ(x2L#
1(x

2)))3
≤ CL#

2(x
2), (3.21)

where the last inequality follows from the fact that
L#

1(x
2)

(logϕ(x2L#
1(x

2)))3 ≤ CL#
2(x

2) since, using

(3.20),

L#
1(x)

L#
2(x)

∼ L2(xL#
2(x))

L1(xL#
1(x))

≤ L(xL#
1(x))

L(xL#
2(x))

· (log(ϕ(xL#
1(x))))2

≤ C(log(ϕ(xL#
1(x))))2 exp

(∫ xL#
1(x)

xL#
2(x)

ε(t)/t dt

)

≤ C(log(ϕ(xL#
1(x))))2 exp

(
o(1) log

(
L#

1(x)

L#
2(x)

))
,

by the representation theorem for slowly varying functions. (In the case f (n) = n, the inequality
(3.21) is trivial since L#

2 ≡ 1 and L#
1 is decreasing.) Finally, using the fact that f −1(x) ∼ xL#

2(x),
we conclude that the sum in (3.18) converges, which takes care of the second sum in (3.15).

Combining this with (3.16) proves the validity of (3.14) in the symmetric case.

Desymmetrization

In order to prove (3.14) for the general case, we first estimate the truncated means. Remembering
that EXk = 0 for all k, we obtain, by stretching the bounds to the extreme,

|ET ′′
n,n+an

| =
∣∣∣∣∣

n+an∑
k=n+1

EXkI
{
bk < |Xk| < δ

√
fk

}∣∣∣∣∣
≤

n+an∑
k=n+1

E|Xk|I
{
bn < |Xk| < δ

√
f

(
n + n/L(n)

)}

≤ anE|X|I {|X| ≥ bn} ≤ an

bn

EX2I {|X| ≥ bn}

= ε

σδ

√
andnEX2I {|X| ≥ bn} = o

(√
andn

)
as n → ∞

since this is the same estimate as for ET ′
n,n+an

, after which the desired conclusion follows with
the aid of the symmetrization inequalities (see [5], Proposition 3.6.2).
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3.5. Sufficiency along subsequences: T ′′′
n,n+an

In order for |T ′′′
n,n+an

| to surpass the level η
√

andn, it is necessary that at least one of the X′′′’s is
non-zero. For every η > 0 (recall that ank

= nk/L(nk), dnk
∼ logk), this means that

∞∑
k=1

P
(∣∣T ′′′

nk,nk+nk/L(nk)

∣∣ > η
√

ank
dnk

) ≤
∞∑

k=1

ank∑
j=1

P

(
|Xnk+j | > η

2

√
f (nk + j)

)
(3.22)

≤
∞∑

k=1

ank
P

(
|X| > η

2

√
f (nk)

)
< ∞,

by (3.16).

3.6. Sufficiency along subsequences: Combining the contributions

Combining (3.11), (3.14) and (3.22), we conclude that

∞∑
k=1

P
(∣∣Tnk,nk+nk/L(nk)

∣∣ > (ε + 2η)
√

2ank
dnk

)
< ∞ (3.23)

provided ε > σ/(1 − δ)3/2 and, since η and δ may be arbitrarily chosen, that

∞∑
k=1

P
(∣∣Tnk,nk+nk/L(nk)

∣∣ > ε
√

2ank
dnk

)
< ∞ for ε > σ (3.24)

so that, in view of the first Borel–Cantelli lemma,

lim sup
k→∞

Tnk,nk+nk/L(nk)√
2ank

dnk

≤ σ a.s. (3.25)

A completely analogous argument, combining (3.13), (3.14) and (3.22), yields

∞∑
k=1

P
(
Tnk,nk+nk/L(nk) > ε

√
2ank

dnk

) = ∞ for ε < σ (3.26)

and since the windows with this, sparser, subsequence are disjoint, we may apply the second
Borel–Cantelli lemma to conclude that

lim sup
k→∞

Tnk,nk+nk/L(nk)√
2ank

dnk

≥ σ a.s. (3.27)

Finally, combining (3.25) and (3.27) yields

lim sup
k→∞

Tnk,nk+nk/L(nk)√
2ank

dnk

= σ a.s., (3.28)
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which, in addition, proves the sufficiency of the following result, which is Theorem 2.1 for subse-
quences of the form nk = ψ(ck) with c > 1. The necessity follows, of course, from the necessity
for the full sequence, the proof of which is given in Section 3.8 below.

Theorem 3.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, let Tn = ∑n+k

j=n+1 Xj and let, for c > 1,

nk = ϕ(−1)(ck), k ≥ 1,

where ϕ(−1) is the inverse of ϕ(y) = ∫ y L(u)
u

du. If (2.1) holds, then

lim sup
n→∞

Tnk+nk/L(nk)√
2(nk/L(nk)) logk

= σ a.s. (3.29)

Conversely, if

P

(
lim sup
n→∞

|Tnk+nk/L(nk)|√
(nk/L(nk)) logk

< ∞
)

> 0, (3.30)

then (2.1) holds, EX = 0, EX2 < ∞ and (3.29) holds with σ 2 = VarX.

3.7. Sufficiency for the entire sequence

We must thus show that our process behaves accordingly for the entire sequence. Here, the second
Lévy inequality (see, for example, [5], Theorem 3.7.2) is instrumental. Let η > 0 be given. Then,

P

(
max

nk≤n≤nk+1

Sn+an − Sn√
2andn

> (1 + 6η)σ

)

≤ P
(

max
nk≤n≤nk+1

(Sn+an − Snk+ank
) > 2ησ

√
2ank

dnk

)
(3.31)

+ P
(

max
nk≤n≤nk+1

(−Sn + Snk
) > 2ησ

√
2ank

dnk

)

+ P
(

max
nk≤n≤nk+1

(Snk+ank
− Snk

) > (1 + 2η)σ
√

2ank
dnk

)
,

where nk = ψ(cnk) as before with some suitable constant c > 0 to be fixed shortly.
Set ñk = nk + ank

. Since nk+1/nk → 1 and L(·) ∈ S V , the following relations hold eventually
(that is, for k sufficiently large):

nk+1 − nk ≤ cψ ′(c(k + 1)
) = c

nk+1

L(cnk)
≤ 2cank

,

nk ≤ ñk = nk

(
1 + (L(nk))

−1) ≤ nk(1 + η),

ank
≤ añk

≤ ank(1+η) ≤ (1 + η)ank
,
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ñk+1 − ñk ≤ (nk+1 − nk)
(
1 + (L(nk))

−1) ≤ 2c(1 + η)ank
≤ 2c(1 + η)añk

,

dnk
≤ dñk

≤ (1 + η)dnk
.

In the following, we exploit these relations without specifically mentioning them each time.
As a first application, we note that (3.31) can be bounded by

≤ P
(

max
ñk≤n≤ñk+2c(1+η)añk

(Sn − Sñk
) > 2ησ

√
2ank

dnk

)

+ P
(

max
nk≤n≤nk+2cank

(−Sn + Snk
) > 2ησ

√
2ank

dnk

)
(3.32)

+ P
(

max
nk≤n≤nk+1

(Snk+ank
− Snk

) > (1 + 2η)σ
√

2ank
dnk

)
.

Now,

Var
(
Sñk+2c(1+η)añk

− Sñk

) = 2c(1 + η)añk
σ 2 = o(ank

dnk
) as k → ∞,

Var(Snk+2cank
− Snk

) = 2cank
σ 2 = o(ank

dnk
) as k → ∞,

Var(Snk+ank
− Snk

) = ank
σ 2 = o(ank

dnk
) as k → ∞,

that is, the variances are ≤ η4σ 2ank
dnk

for k sufficiently large.
An application of the Lévy inequality to the first two probabilities in (3.32), leaving the third

one as is, then shows that (3.32) can be bounded by

≤ 2P
((

Sñk+2c(1+η)añk
− Sñk

)
> 2ησ

√
2ank

dnk
− √

2 · η2σ
√

ank
dnk

)
+ 2P

(−(Snk+2cank
− Snk

) > 2ησ
√

2ank
dnk

− √
2 · η2σ

√
ank

dnk

)
+ 2P

(
(Snk+ank

− Snk
) > (1 + η)σ

√
2ank

dnk

)
≤ 2P

((
Sñk+2c(1+η)añk

− Sñk

)
> ησ

√
2ank

dnk

)
+ 2P

(−(
Snk+2c(1+η)ank

− Snk

)
> ησ

√
2ank

dnk

)
(3.33)

+ 2P
(
(Snk+ank

− Snk
) > (1 + η)σ

√
2ank

dnk

)
≤ 2P

(∣∣Sñk+2c(1+η)añk
− Sñk

∣∣ >
η√

2c(1 + η)3
σ

√
2 · 2c(1 + η)añk

dñk

)

+ 2P

(
|Snk+2cank

− Snk
| > η√

2c
, σ

√
2 · 2cank

dnk

)

+ 2P
(|Snk+ank

− Snk
| > (1 + η)σ

√
2ank

dnk

)
.
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Summing the three probabilities over k and recalling (3.24) tells us that the total sum converges
whenever

min

{
η√

2c(1 + η)3
,

η√
2c

,1 + η

}
> 1.

Since we can choose c > 0 arbitrarily small, we finally conclude that for any η > 0, we have

∑
k

P

(
max

nk≤n≤nk+1

Sn+an − Sn√
2andn

> (1 + 6η)σ

)
< ∞,

implying the upper inequality for the entire sequence, that is,

lim sup
n→∞

Tn,n+n/L(n)√
2andn

≤ σ a.s.

3.8. Necessity

By the zero-one law, the probability that the lim sup is finite is 0 or 1, hence, being positive, it
equals 1. Consequently, (see [9], page 438),

lim sup
n→∞

|Xn|√
andn

< ∞ a.s.,

from which, in the case andn ≤ f (n), it follows, via the second Borel–Cantelli lemma and the
i.i.d. assumption, that

∞∑
n=1

P
(|Xn| >

√
f (n)

) =
∞∑

n=1

P
(
X2 > f (n)

)
,

which verifies (2.1).
If (2.1) is weaker than finite variance, that is, if andn ≥ f (n), then, by following Feller’s

proof [4] (see also, for example, [5], Section 8.4) of the necessity in the LIL with only obvious
changes involving the replacing of sums by windows, we may conclude that (2.1) – that is, finite
variance – also holds in this case.

An application of the sufficiency part then tells us that (2.1) holds with σ 2 = VarX.
Finally, if EX = μ, then, by the law of large numbers, Sn/f (n) ∼ μn/f (n) → μ · ∞ as

n → ∞, which forces μ to be equal to zero.

4. Proofs of the Corollaries in Section 2

4.1. Proof of Corollary 2.1

In this case, an = n/(logn)p (for n ≥ 9) so that

dn = log
n

n/(logn)p
+ log logn = (p + 1) log logn,
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that is, f (n) = (p + 1)n log logn/(logn)p . It follows that f −1(n) ∼ n(logn)p

(p+1) log logn
as n → ∞ so

that (2.1) turns out as

EX2 (log+ |X|)p
log+ log+ |X| < ∞.

It remains to verify that xL′(x)/L(x) is decreasing. Now, L(x) = (logx)p and L′(x) =
x−1p(logx)p−1 so that xL′(x)/L(x) = p(logx)−1, which indeed decreases.

4.2. Proof of Corollary 2.2

Thus, an = n/ logm(n) for n sufficiently large, so that

dn = log logm(n) + log logn = logm+1(n) + log logn ∼ log logn as n → ∞.

Since andn > n, we have f −1(n) = n as n → ∞, which implies that finite variance is the appro-
priate necessary assumption.

As for (1.2), this time, L(x) = logm x and L′(x) = x−1 ∏m−1
i=1 (logi x)−1 so that xL′(x)/

L(x) = ∏m
i=1(logi x)−1, which indeed decreases.

5. Further examples

In this section we provide some additional examples to illustrate Theorem 2.1. As in Section 2
we omit stating converse results.

The first example mixes powers of logarithms and iterated logarithms.

Example 5.1. Let, for n ≥ 9, an = n(log logn)q/(logn)p , p,q > 0, which means that the slowly
varying function part is L(n) = (logn)p/(log logn)q . Differentiation and some algebraic simpli-
fication yield that xL′(x)/L(x) = p/ logx − q/(logx log2 x), which is ultimately decreasing.
Moreover,

dn = log

(
n(log logn)q

n/(logn)p

)
+ log logn

= (p + 1) log logn − q log log logn ∼ (p + 1) log logn as n → ∞
so that f (n) = (p + 1)n(log logn)q+1/(logn)p , which implies that f −1(n) ∼ Cn(logn)p/

(log logn)q+1 as n → ∞. The following result emerges.

Corollary 5.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If, for some p,q > 0,

EX2 (log+ |X|)p
(log+ log+ |X|)q+1

< ∞, (5.1)
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then

lim sup
n→∞

Tn,n+n(log logn)q/(logn)p√
2(p + 1)(n/(logn)p)(log logn)q+1

= σ a.s. (5.2)

The previous conclusion also holds, in fact, for q = 0, in which case Corollary 5.1 reduces to
Corollary 2.1 since the log log-contribution is of a lower order of magnitude. However, the case
p = 0 requires a separate treatment.

Example 5.2. Let, for n ≥ 9, an = n/(log logn)q , q > 1. Now, L(x) = (log2 x)q gives
xL′(x)/L(x) = q/(logx log2 x), which is decreasing. Moreover,

dn = log

(
n

n/(log logn)q

)
+ log logn = q log log logn + log logn ∼ log logn as n → ∞,

that is, f (n) = n(log logn)1−q , and f −1(n) ∼ n(log logn)q−1 as n → ∞.

Corollary 5.2. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If, for some q > 1,

EX2(log+ log+ |X|)q−1 < ∞, (5.3)

then

lim sup
n→∞

Tn,n+n/(log logn)q√
2n(log logn)1−q

= σ a.s. (5.4)

Example 5.3. Let an = n/ exp{√logn}, n ≥ 1. Since L(x) = exp{√logx}, we have xL′(x)/

L(x) = (logx)−1/2/2, which is decreasing. Moreover,

dn = log exp
{√

logn
} + log logn = √

logn + log logn ∼ √
logn as n → ∞,

which gives f (n) ∼ n
√

logn/ exp{√logn} as n → ∞ so that

f −1(n) ∼ n exp
{√

logn + 1/2
}
/
√

logn as n → ∞.

The following conclusion therefore holds.

Corollary 5.3. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If

EX2 exp{√2 log+ |X|}√
log+ |X| < ∞, (5.5)
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then

lim sup
n→∞

Tn,n+n/ exp{√logn}√
2(n/exp{√logn})√logn

= σ a.s. (5.6)

The following example is a more general version.

Example 5.4. Let, for n ≥ 1, an = n(logn)γ / exp{(logn)β}, where 0 < β < 1 and γ ∈ R. Thus,
L(x) = (logx)−γ exp{(logx)β} and xL′(x)/L(x) = β(logx)β−1 − γ / logx, which is ultimately
decreasing. Furthermore,

dn = log exp{(logn)β} − log log((logn)γ ) + log logn ∼ (logn)β as n → ∞,

which gives

f (n) ∼ n(logn)β+γ / exp{(logn)β} as n → ∞.

It follows that for 0 < β < 1/2,

f −1(n) ∼ n
exp{(logn)β}
(logn)β+γ

as n → ∞,

for 1/2 ≤ β < 2/3,

f −1(n) ∼ n
exp{(logn)β + β(logx)2β−1}

(logn)β+γ
as n → ∞,

and so on. The following conclusion holds.

Corollary 5.4. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . If 0 < β < 1/2 and

EX2 exp{(2 log+ |X|)β}
(log+ |X|)β+γ

< ∞, (5.7)

then

lim sup
n→∞

Tn,n+n(logn)γ / exp{(logn)β }√
2n(logn)γ+β/exp{(logn)β} = σ a.s. (5.8)

6. A simplified Theorem 2.1

As mentioned in the Introduction, this section concerns a weaker result, the proof of which is
much easier, in that only one truncation is made. However, minimal moment conditions are not
obtained.
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Theorem 6.1. Suppose that X,X1,X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ 2, and let Tn,n+k = ∑n+k

j=n+1 Xj . Define sequences {an} and {dn} as in Section 2 and
set

bn =
√

an

dn

.

If EX = 0 and

Eb−1(|X|) < ∞, (6.1)

then

lim sup
n→∞

Tn,n+an√
2andn

= σ a.s. (6.2)

6.1. Proof of Theorem 6.1

Let

X′′
n = XnI

{
|Xn| > σδ

ε
bn

}
= Xn − X′

n.

The contribution of T ′
n,n+an

This part requires no change. In other words, we first let {nk, k ≥ 1}, where nk ↗ ∞ as k → ∞,

satisfy (3.10), and apply (3.4) to {Xnk
, k ≥ 1} to obtain

∞∑
k=1

P
(|T ′

nk,nk+ank
| > ε

√
2ank

dnk

)
< ∞

for the convergence part.
After this, we choose a sparser subsequence {nk, k ≥ 1}, where nk ↗ ∞ as k → ∞, satisfying

(3.12) and apply (3.6) to obtain

∞∑
k=1

P
(
T ′

nk,nk+ank
> ε

√
2ank

dnk

) = ∞

for the divergence part.

The contribution of T ′′
n,n+an

Since the X′′’s have changed, we can use the stronger LSL argument here (see [6,7]). Namely, in
order for the |T ′′

n,n+an
|’s to surpass the level η

√
andn infinitely often, it is necessary that infinitely

many of the X′′’s are non-zero. However, the latter event has zero probability in view of the first
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Borel–Cantelli lemma since

∞∑
n=1

P

(
|Xn| > σδ

ε
bn

)
=

∞∑
n=1

P

(
|X| > σδ

ε
bn

)
< ∞

if and only if (6.1) holds.

Completing the proof

From this point on, the arguments are identical to those of the proof of Theorem 2.1. We therefore
omit the details.

6.2. Revisiting some examples

Corollary 2.1 revisited for p = 1. With an = n/ logn and bn =
√

n/ logn
log logn

, the conclusion from

Theorem 6.1 is, as before,

Tn,n+n/ logn√
4(n/logn) log logn

= σ a.s.,

however, provided (6.1) holds, that is, provided

E(X2 log+ |X| log+ log+ |X|) < ∞,

since b−1(n) ∼ n2 logn log logn. This should be compared with (2.4),

EX2 log+ |X|
log+ log+ |X| < ∞.

Corollary 2.2 revisited for m = 2. With m = 2, an = n/ log logn and bn =
√

n/ log logn
log logn

, the

conclusion from Theorem 6.1 is, as before,

Tn,n+n/ log logn√
2n

= σ a.s.,

however, provided (6.1) holds, that is, provided

EX2(log+ log+ |X|)2 < ∞,

which should be compared with the optimal one which was finite variance.

Corollary 5.1 revisited. Here, an = n(log logn)q/(logn)p , p,q > 0. With

bn =
√

n(log logn)q/(logn)p

log logn
=

√
n(log logn)q−1

(logn)p
,
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assumption (6.1) turns out as

EX2 (log+ |X|)p
(log+ log+ |X|)q−1

< ∞,

to be compared with the weaker

EX2 (log+ |X|)p
(log+ log+ |X|)q+1

< ∞.
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