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Random systems of polynomial equations.
The expected number of roots under
smooth analysis
DIEGO ARMENTANO* and MARIO WSCHEBOR**
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We consider random systems of equations over the reals, with m equations and m unknowns Pi(t) +
Xi(t) = 0, t ∈ R

m, i = 1, . . . ,m, where the Pi ’s are non-random polynomials having degrees di ’s (the
“signal”) and the Xi ’s (the “noise”) are independent real-valued Gaussian centered random polynomial
fields defined on R

m, with a probability law satisfying some invariance properties.
For each i, Pi and Xi have degree di .
The problem is the behavior of the number of roots for large m. We prove that under specified conditions

on the relation signal over noise, which imply that in a certain sense this relation is neither too large nor too
small, it follows that the quotient between the expected value of the number of roots of the perturbed system
and the expected value corresponding to the centered system (i.e., Pi identically zero for all i = 1, . . . ,m),
tends to zero geometrically fast as m tends to infinity. In particular, this means that the behavior of this
expected value is governed by the noise part.

Keywords: random polynomials; Rice formula; system of random equations

1. Introduction and main result

Let f = (f1, . . . , fm),

fi(t) :=
∑

‖j‖≤di

a
(i)
j tj (i = 1, . . . ,m) (1)

be a system of m polynomials in m real variables. The notation in (1) is the following: t :=
(t1, . . . , tm) denotes a point in R

m, j := (j1, . . . , jm) a multi-index of non-negative integers,
‖j‖ = ∑m

h=1 jh, t j = t j1 · · · t jm , a
(i)
j = a

(i)
j1,...,jm

. di is the degree of the polynomial fi .

We denote by Nf (V ) the number of roots of the system of equations

fi(t) = 0 (i = 1, . . . ,m)

lying in the subset V of R
m. Also Nf = Nf (Rm).

If we choose at random the coefficients {a(i)
j }, Nf (V ) becomes a random variable. Classical

results in the case of one polynomial in one variable seem to have started with the work of Marc
Kac [6] (see the book by Bharucha-Reid and Sambandham [3]). Here we will be interested in
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systems with m > 1, and more specifically, in large values of m. This appears to be of a quite
different nature than the case m = 1 and generally speaking, little is known on the distribution
of the random variable Nf (V ) (or Nf ) even for simple choices of the probability law on the
coefficients.

In 1992, Shub and Smale [10] computed the expectation of Nf when the coefficients are
Gaussian centered independent random variables having variances:

E
[(

a
(i)
j

)2] = di !
j1! · · · jm!(di − ‖j‖)! . (2)

Their result was

E(Nf ) = (d1 · · ·dm)1/2. (3)

Some extensions of their work, including new results for one polynomial in one variable, can be
found in [5]. There are also other extensions to multi-homogeneous systems in [8], and, partially,
to sparse systems in [7] and [9]. A similar question for the number of critical points of real-valued
polynomial random functions has been considered in a recent paper by Dedieu and Malajovich
[4].

A general formula for E(Nf (V )) when the random functions fi (i = 1, . . . ,m) are stochas-
tically independent and their law is centered and invariant under the orthogonal group on R

m

can be found in [1]. This includes the Shub–Smale formula (3) as a special case. Very little
in known on higher moments. The only published results of which the authors are aware con-
cern asymptotic variances as m → +∞ (see [1] for non-polynomial systems and [11] for the
Kostlan–Shub–Smale model).

The aim of this paper is to remove the hypothesis that the coefficients have zero expectation (in
some cases, this has been considered for one polynomial in one variable in the above-mentioned
paper [5]).

One way to look at this problem is to start with a non-random system

Pi(t) = 0 (i = 1, . . . ,m), (4)

perturb it with a polynomial noise {Xi(t) : i = 1, . . . ,m}, that is, consider

Pi(t) + Xi(t) = 0 (i = 1, . . . ,m)

and ask what one can say about the number of roots of the new system. Of course, to obtain
results on E(NP+X) we need a certain number of hypotheses both on the “noise” X and the
class of polynomial “signals” P , especially the relation between the size of P and the probability
distribution of X.

Roughly speaking, we prove in Theorem 2 that if the relation signal over noise is neither too
big nor too small, in a sense that will be made precise later on, there exist positive constants C,θ ,
0 < θ < 1 such that

E(NP+X) ≤ CθmE(NX). (5)
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Inequality (5) becomes of interest if the starting non-random system (4) has a large number of
roots, possibly infinite, and m is large. In this situation, the effect of adding polynomial noise is
a reduction at a geometric rate of the expected number of roots, as compared to the centered case
in which all the Pi ’s are identically zero.

Notice that in formula (5), E(NX) can be computed by means of a nice formula once we know
the probability distribution of the noise and that the constants C,θ can be explicitly estimated
from the hypotheses.

We will assume throughout that the polynomial noise X is Gaussian and centered, the real-
valued random processes

X1(·), . . . ,Xm(·)

defined on R
m are independent, with covariance functions

RXi (s, t) := E(Xi(s)Xi(t)) (i = 1, . . . ,m)

depending only on the scalar product 〈s, t〉, that is: RXi (s, t) = Q(i)(〈s, t〉), where

Q(i)(u) =
di∑

k=0

c
(i)
k uk, u ∈ R (i = 1, . . . ,m). (6)

In this case, it is known that a necessary and sufficient condition for Q(i)(〈s, t〉) to be a covari-
ance is that c

(i)
k ≥ 0 for all k = 0, . . . , di and the process Xi can be written as

Xi(t) =
∑

‖j‖≤di

a
(i)
j tj ,

where the random variables a
(i)
j are centered Gaussian, independent and

Var
(
a

(i)
j

) = c
(i)
‖j‖

‖j‖!
j ! (i = 1, . . . ,m; ‖j‖ ≤ di)

(for a proof, see, e.g., [1]).
The Shub–Smale model (2) corresponds to the particular choice

c
(i)
k =

(
di

k

)
(k = 0,1, . . . , di)

which implies

Q(i)(u) = (1 + u)di (i = 1, . . . ,m). (7)

We will use the following notations:
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Q
(i)
u ,Q

(i)
uu denote the successive derivatives of Q(i). We assume that Q(i)(u),Q

(i)
u (u) do not

vanish for u ≥ 0. Put, for x ≥ 0:

qi(x) := Q
(i)
u

Q(i)
, (8a)

ri(x) := Q(i)Q
(i)
uu − (Q

(i)
u )2

(Q(i))2
, (8b)

hi(x) := 1 + x
ri(x)

qi(x)
. (8c)

In (8a) and (8b), the functions in the right-hand side are computed at the point x.
In [1] the following statement was proved:

Theorem 1. For any Borel set V ⊂ R
m we have:

E(NX(V )) = 1√
2π(m+1)/2

�

(
m

2

)∫
V

[
m∏

i=1

qi(‖t‖2)

]1/2

· Eh(‖t‖2)dt (9)

where

Eh(x) = E

([
m∑

i=1

hi(x)ξ2
i

]1/2)

and ξ1, . . . , ξm denote independent standard normal random variables.

Remark. In fact, Theorem 1 is a special case of a general theorem (see [1]), in which the covari-
ance function of the random field is invariant under the action of the orthogonal group, and not
only a function of the scalar product.

Before the statement of our main result, Theorem 2 below, we need to introduce some addi-
tional notations and hypotheses.

We will assume that each polynomial Q(i) does not vanish for u ≥ 0, which amounts to saying
that for each t the (one-dimensional) distribution of Xi(t) does not degenerate. Also, Q(i) has
effective degree di , that is,

c
(i)
di

> 0 (i = 1, . . . ,m).

An elementary calculation then shows that for each polynomial Q(i), as u → +∞:

qi(u) ∼ di

1 + u
, (10a)

hi(u) ∼ c
(i)
di−1

dic
(i)
di

· 1

1 + u
. (10b)
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Since we are interested in the large m asymptotic and the polynomials P,Q can vary with m,
we will require somewhat more than relations (10a) and (10b), as specified in the following
hypotheses:

(H1) hi is independent of i (i = 1, . . . ,m) (but may vary with m). We put h = hi . Of course,
if the polynomials Q(i) do not depend on i, this hypothesis is satisfied. But there are
more general cases, such as covariances having the form Q(u)li (i = 1, . . . ,m).

(H2) There exist positive constants Di,Ei (i = 1, . . . ,m) and q such that

0 ≤ Di − (1 + u)qi(u) ≤ Ei

1 + u
and (1 + u)qi(u) ≥ q (11)

for all u ≥ 0, and moreover

max
1≤i≤m

Di, max
1≤i≤m

Ei

are bounded by constants D,E, respectively, which are independent of m; q is also
independent of m.

Also, there exist positive constants h,h such that

h ≤ (1 + u)h(u) ≤ h (12)

for u ≥ 0.

Notice that the auxiliary functions qi, ri , h (i = 1, . . . ,m) will also vary with m. To simplify
somewhat the notation, we are dropping the parameter m in P,Q,qi, ri , h. However, in (H2) the
constants h,h do not depend on m (see the examples after the statement of Theorem 2 below).

With respect to (H2), it is clear that for each i, qi will satisfy (11) with the possible exception
of the first inequality, and (1+u)h(u) ≤ h for some positive constant h, from the definitions (8a),
(8c), (10a), (10b) and the conditions on the coefficients of Q(i). However, it is not self-evident
from the definition (8c) that h(u) ≥ 0 for u ≥ 0. This will become clear in the proof of Theorem 2
below.

A second set of hypotheses on the system concerns the relation between the “signal” P and
the “noise” X, which roughly speaking should neither be too small nor too big.

Let P be a polynomial in m real variables with real coefficients having degree d and Q a poly-
nomial in one variable with non-negative coefficients, also having degree d , Q(u) = ∑d

k=0 cku
k .

We assume that Q does not vanish on u ≥ 0 and cd > 0. Define

H(P,Q) := sup
t∈Rm

{
(1 + ‖t‖) ·

∥∥∥∥∇
(

P√
Q(‖t‖2)

)
(t)

∥∥∥∥
}
,

K(P,Q) := sup
t∈Rm\{0}

{
(1 + ‖t‖2) ·

∣∣∣∣ ∂

∂ρ

(
P√

Q(‖t‖2)

)
(t)

∣∣∣∣
}
,

where ∂
∂ρ

denotes the derivative in the direction defined by t
‖t‖ , at each point t �= 0.
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For r > 0, put:

L(P,Q, r) := inf‖t‖≥r

P (t)2

Q(‖t‖2)
.

One can check by means of elementary computations that for each pair P,Q as above, one has

H(P,Q) < ∞, K(P,Q) < ∞.

With these notations, we introduce the following hypotheses on the systems P,Q, as m grows:

(H3)

Am = 1

m
·

m∑
i=1

H 2(Pi,Q
(i))

i
= o(1) as m → +∞, (13a)

Bm = 1

m
·

m∑
i=1

K2(Pi,Q
(i))

i
= o(1) as m → +∞. (13b)

(H4) There exist positive constants r0, � such that if r ≥ r0:

L
(
Pi,Q

(i), r
) ≥ � for all i = 1, . . . ,m.

Theorem 2. Under the hypotheses (H1), . . . , (H4), one has

E(NP+X) ≤ CθmE(NX), (14)

where C,θ are positive constants, 0 < θ < 1.

1.1. Remarks on the statement of Theorem 2

1. In fact, we will see in the proof of the theorem how one can get explicitly from the hy-
potheses first the value of θ and then m0 and the constant C in such a way that whenever
m ≥ m0, inequality (14) holds true.

A possible choice is as follows:

• Choose r0 from (H4),

θ1 = max

{
r0√

r2
0 + 1/2

, e−�/2
}
, θ = 1 + θ1

2
.

• Let us put Fi = Ei/Di (i = 1, . . . ,m) and F̄ = max{F1, . . . ,Fm}.
From the hypotheses, one has F̄ ≤ Ē/q . Let τ > 0 such that:

F̄

1 + τ 2r2
0

<
1

2

1

1 + r2
0

. (15)
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Choose m0 (using (H3)) so that if m ≥ m0 one has:

e[mAm/q+mBm/(hq)]/2θm
1

√
m ≤ θm,

(16)

π

(
τ 2r2

0

1 + τ 2r2
0

)(m−1)/2

<
e−2

√
m

.

Then, (14) is satisfied for m ≥ m0, with

C = 30 · h̄

h

√
1 + r2

0

r0
. (17)

2. It is obvious that our problem does not depend on the order in which the equations

Pi(t) + Xi(t) = 0 (i = 1, . . . ,m)

appear. However, conditions (13a) and (13b) in hypothesis (H3) do depend on the order.
One can state them by saying that there exists an order i = 1, . . . ,m on the equations, such
that (13a) and (13b) hold true.

3. Condition (H3) can be interpreted as a bound on the quotient signal over noise. In fact, it
concerns the gradient of this quotient. In (13b) the radial derivative appears, which happens
to decrease faster as ‖t‖ → ∞ than the other components of the gradient.

Clearly, if H(Pi,Q
(i)),K(Pi,Q

(i)) are bounded by fixed constants, (13a) and (13b) are
verified. Also, some of them may grow as m → +∞ provided (13a) and (13b) remain
satisfied.

4. Hypothesis (H4) goes – in some sense – in the opposite direction: For large values of ‖t‖
we need a lower bound of the relation signal over noise.

5. A result of the type of Theorem 2 can not be obtained without putting some restrictions on
the relation signal over noise. In fact, consider the system

Pi(t) + σXi(t) = 0 (i = 1, . . . ,m), (18)

where σ is a positive real parameter. For generic P , as σ ↓ 0 the expected value of the
number of roots of (18) tends to the number of roots of Pi(t) = 0 (i = 1, . . . ,m). In this
case, the relation signal over noise tends to infinity. On the other hand, if we let σ → +∞,
the relation signal over noise tends to zero and the expected number of roots will tend to
E(NX).

2. Some examples

2.1. Shub–Smale

In the Shub–Smale model for the noise, Q(i) is given by (7). Then,

qi(u) = di

1 + u
, hi(u) = h(u) = 1

1 + u
.
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We assume that the degrees di are uniformly bounded. So, (H1) and (H2) hold true. Of course,
conditions (H3) and (H4) also depend on the signal.

We are going to give two simple examples. Let

Pi(t) = ‖t‖di − rdi ,

where di is even and r is positive and remains bounded as m varies. One has:

∂

∂ρ

(
Pi√
Q(i)

)
(t) = di‖t‖di−1 + dir

di ‖t‖
(1 + ‖t‖2)di/2+1

≤ di(1 + rdi )

(1 + ‖t‖2)3/2
,

∇
(

Pi√
Q(i)

)
(t) = di‖t‖di−2 + dir

di

(1 + ‖t‖2)di/2+1
· t

which implies ∥∥∥∥∇
(

Pi√
Q(i)

)
(t)

∥∥∥∥ ≤ di(1 + rdi )

(1 + ‖t‖2)3/2
.

Again, since the degrees d1, . . . , dm are bounded by a constant that does not depend on m,
(H3) follows. (H4) also holds under the same hypothesis.

To illustrate a numerical example of the values of θ, C and m0, let us assume that the radius
r = 1. Then:

• We can choose r0 = 2. It turns out that � = 9/25 if D̄ ≤ 4 and � = (2D̄ − 1)2/5D̄ if D̄ ≥ 5.
• θ = (3 + 2

√
2)/6.

• C = 15
√

5 and m0 can be chosen so that if m ≥ m0, then

ec1mc1+1/2 ≤ κm, where c1 = 8D̄2, κ = 3

4
√

2
+ 1

2
> 1.

Notice that an interest in this choice of the Pi ’s lies in the fact that obviously the system
Pi(t) = 0 (i = 1, . . . ,m) has infinite roots (all points in the sphere of radius r centered at the
origin are solutions), but the expected number of roots of the perturbed system is geometrically
smaller than the Shub–Smale expectation, when m is large.

Our second example is the following: Let T be a polynomial of degree d in one variable that
has d distinct real roots. Define:

Pi(t1, . . . , tm) = T (ti) (i = 1, . . . ,m).

One can easily check that the system verifies our hypotheses, so that there exist C,θ positive
constants, 0 < θ < 1 such that

E(NP+X) ≤ Cθmdm/2,

where we have used the Shub–Smale formula when the degrees are all the same. On the other
hand, it is clear that NP = dm so that the diminishing effect of the noise on the number of roots
can be observed. A number of variations of these examples for P can be constructed, but we will
not pursue the subject here.
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2.2. Q(i) = Q, only real roots

Assume all the Q(i) are equal, Q(i) = Q and Q has only real roots. Since Q does not vanish on
u ≥ 0, all the roots should be strictly negative, say

−α1, . . . ,−αd,

where

0 < α1 ≤ α2 ≤ · · · ≤ αd.

With no loss of generality, we may assume that α1 ≥ 1. If this were not the case, we perform a
homothecy of the space R

m, centered at the origin and with factor equal to
√

α1. The number of
roots remains unchanged, and the new Q has α1 ≥ 1.

We will assume again that the degree d of Q is bounded by a fixed constant d (one should take
into account that Q may vary with m), as well as the roots

αk ≤ α (k = 1, . . . , d)

for some constant α. A direct computation gives:

qi(u) = q(u) =
d∑

k=1

1

u + αk

, hi(u) = h(u) = 1

q(u)

d∑
k=1

αk

(u + αk)2
.

One verifies (11), choosing Di = d , Ei = d(αd − 1). Similarly, a direct computation gives (12).
Again let us consider the particular example of signals:

Pi(t) = ‖t‖di − rdi ,

where di is even and for each i = 1, . . . ,m and r is positive and remains bounded as m varies.

∣∣∣∣ ∂

∂ρ

(
Pi√
Q(i)

)∣∣∣∣ ≤ di(α + rdi )
1

(1 + ‖t‖2)3/2

so that K(Pi,Q
(i)) is uniformly bounded. A similar computation shows that H(Pi,Q

(i)) is uni-
formly bounded. Finally, it is obvious that

L
(
Pi,Q

(i), r
) ≥

(
1

1 + α

)d

for i = 1, . . . ,m and any r ≥ 1. So the conclusion of Theorem 2 can be applied.
One can similarly check that the second polynomial system in the previous example also works

with respect to this noise.
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2.3. More general examples

Assume that the noise has covariance with the form

Q(i)(u, v,w) = [Q(u)]li (i = 1, . . . ,m),

where Q is a polynomial in one variable having degree ν with positive coefficients, Q(u) =∑ν
k=0 bku

k . Q may depend on m, as well as the exponents l1, . . . , lm. Notice that di = ν · li
(i = 1, . . . ,m).

The Shub–Smale case corresponds to the simple choice Q(u) = 1 + u, li = di (i = 1, . . . ,m).
One has:

qi(u) = li
Q′(u)

Q(u)
,

hi(u) = h(u) = 1 − u
Q′2(u) − Q(u)Q′′(u)

Q(u)Q′(u)

so that (H1) is satisfied.
We will require the coefficients b0, . . . , bν of the polynomial Q to verify the conditions

bk ≤ ν − k + 1

k
bk−1 (k = 1,2, . . . , ν).

Moreover, we assume that

l1, . . . , lm, ν

are bounded by a constant independent of m and there exist positive constant b, b such that

b ≤ b0, b1, . . . , bν ≤ b.

Under these conditions, one can check that (H2) holds true, with Di = di (i = 1, . . . ,m).
For the relation signal over noise, conditions are similar to the previous example.
Notice that already if ν = 2 and we choose for Q the fixed polynomial:

Q(u) = 1 + 2au + bu2

with 0 < a ≤ 1,
√

b > a ≥ b > 0, then the conditions in this example are satisfied, but the poly-
nomial Q (hence Qdi ) does not have real roots, so that it is not included in Example 2.2.

3. Proof of Theorem 2

Proof of Theorem 2. Let

Zj (t) = Pj (t) + Xj(t)√
Q(j)(‖t‖2)

(j = 1, . . . ,m)
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and

Z =
⎛
⎝ Z1

...

Zm

⎞
⎠ .

Clearly,

NP+X(V ) = NZ(V )

for any subset V of R
m.

Clearly, the Gaussian random fields {Zj (t) : t ∈ R
m} (j = 1, . . . ,m) are independent and

Var(Z2
j (t)) = E(Z̃2

j (t)) = 1 (19)

for all j = 1, . . . ,m and all t ∈ R
m, where Z̃j (t) = Zj (t) − E(Zj (t)).

Differentiating in (19) with respect to tα(α = 1, . . . ,m) we obtain that E( ∂
∂tα

Z̃j (t)Z̃j (t)) = 0,

(j = 1, . . . ,m). Since the joint distribution is Gaussian, this implies that ∇Z̃j (t) is independent
of Z̃j (t), that is, Z′(t) and Z(t) are independent.

We apply the Rice formula (see [2] for a complete proof) to compute E(NZ(V )), that is:

E(NZ(V )) =
∫

V

E
(|det(Z′(t))||Z(t) = 0

) · pZ(t)(0)dt,

where pξ (·) denotes the density of the probability distribution of the random vector ξ , whenever
it exists and f ′(t) : Rm → R

m the derivative of the function f : Rm → R
m at the point t . Be-

cause of the independence between Z′(t) and Z(t), we can erase the condition in the conditional
expectation, obtaining:

E(NZ(V )) =
∫

V

E(|det(Z′(t))|) · 1

(2π)m/2

(20)
× e[−(P1(t)

2/Q(1)(‖t‖2)+···+Pm(t)2/Q(m)(‖t‖2))/2] dt.

Our next problem is the evaluation of E(|det(Z′(t))|).
A direct computation of covariances gives:

Cov

(
∂Zi

∂tα
(t),

∂Zj

∂tβ
(t)

)
= δij

∂2

∂sα∂tβ
RZ̃i (s, t)|s=t

= δij [ri(‖t‖2)tαtβ + qi(‖t‖2)δαβ ]
for i, j,α,β = 1, . . . ,m, where the functions qi, ri have been defined in (8a) and (8b).

For each t �= 0, let Ut be an orthogonal transformation of R
m that takes the first element of the

canonical basis into the unit vector t
‖t‖ . Then

Var

(
Ut∇Zj (t)√

qj (‖t‖2)

)
= Diag

(
h(‖t‖2),1, . . . ,1

)
, (21)
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where we denote the gradient ∇Zj(t) as a column vector,

∇Zj (t) =

⎛
⎜⎜⎜⎜⎝

∂Zj

∂t1
(t)

...
∂Zj

∂tm
(t)

⎞
⎟⎟⎟⎟⎠ .

Diag(λ1, . . . , λm) denotes the m × m diagonal matrix with elements λ1, . . . , λm in the diagonal
and the function h has been defined in (8c). So we can write

Ut∇Zj (t)√
qj (‖t‖2)

= ζj + αj (j = 1, . . . ,m),

where ζj is a Gaussian centered random vector in R
m having covariance given by (21), ζ1, . . . , ζm

are independent and αj is the non-random vector

αj = Ut∇(Pj (t)/
√

Q(j)(‖t‖2))√
qj (‖t‖2)

=
⎛
⎝ α1j

...

αmj

⎞
⎠ (j = 1, . . . ,m). (22)

Denote T as the m × m random matrix having columns ηj = ζj + αj (j = 1, . . . ,m). We have

|det(Z′(t))| = |det(T )| ·
m∏

i=1

(qi(‖t‖2))1/2

so that

E(|det(Z′(t))|) = E(|det(T )|) ·
m∏

i=1

(qi(‖t‖2))1/2. (23)

The components ζij (i = 1, . . . ,m) of ζj are Gaussian centered independent and

Var(ζij ) = 1 for i = 2, . . . ,m; j = 1, . . . ,m

Var(ζ1j ) = h(‖t‖2) for j = 1, . . . ,m.

Put

α̃j =

⎛
⎜⎜⎝

α1j /
√

h(‖t‖2)

α2j

...

αmj

⎞
⎟⎟⎠

so that

|det(T )| =
√

h(‖t‖2) · |det(T̃ )|,
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where T̃ is the random matrix having columns η̃j = ψj + α̃j with ψ1, . . . ,ψm i.i.d. standard
normal in R

m.
|det(T̃ )| is the volume of the parallelotope generated by η̃1, . . . , η̃m, that is, the set of vectors

in R
m which can be expressed as

m∑
j=1

aj η̃j

with 0 ≤ ai ≤ 1 (i = 1, . . . ,m). Hence,

|det(T )| =
√

h(‖t‖2) · ‖η̃m‖ ·
m−1∏
j=1

d(η̃j , Sj ), (24)

where Sj (j = 1, . . . ,m − 1) stands for the subspace of R
m generated by η̃j+1, . . . , η̃m and d is

Euclidean distance. Notice that for j = 1, . . . ,m − 1, using invariance of the standard Gaussian
distribution under the orthogonal group,

E(d(η̃j , Sj ) | η̃j+1, . . . , η̃m) = E(‖ξj + ãj‖j ), (25)

where ‖ · ‖j denotes Euclidean norm in R
j (‖ · ‖ = ‖ · ‖m), ξj is standard normal in R

j and ãj is
the orthogonal projection of α̃j onto the orthogonal complement of Sj in R

m (which is identified
here with R

j ), so that ‖ãj‖j ≤ ‖α̃j‖. Introduce now the function

γj (c) = E(‖ξj + c‖j ),

where c ∈ R
j is non-random. It is clear that γj is a function only of ‖c‖j , which is in fact

increasing and

γj (c) ≤
(

1 + ‖c‖2
j

1

2j

)
γj (0).

(See the auxiliary Lemma 1 after this proof.) So, if we denote by cj a non-random vector in R
j

such that ‖cj‖j = ‖α̃j‖j , it follows from (24) and (25), by successive conditioning that

E(|detT |) ≤
√

h(‖t‖2) ·
m∏

j=1

E(‖ξj + cj‖j ) ≤
√

h(‖t‖2) ·
(

m∏
j=1

γj (0)

)(
m∏

j=1

(
1 + ‖c‖2

j

1

2j

))
.

Using (20) and (23) we get:

E(NZ) ≤ 1

(2π)m/2
Lm ·

∫
Rm

{√
h(‖t‖2) ·

(
m∏

i=1

qi(‖t‖2)

)1/2

(26)

× exp

[
−1

2

m∑
i=1

Pi(t)
2

Q(i)(‖t‖2)
+ 1

2

m∑
j=1

‖cj‖2
j

1

j

]}
dt,
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where

Lm =
m∏

j=1

E(‖ξj‖j ) = 1√
2π

2(m+1)/2�

(
m + 1

2

)
.

Our final task is to obtain an adequate bound for the integral in (26). For j = 1, . . . ,m (use (H2)):

|α̃1j | = 1√
h(‖t‖2)qj (‖t‖2)

·
∣∣∣∣ ∂

∂ρ

Pj (‖t‖2)√
Q(j)(‖t‖2)

∣∣∣∣ ≤ 1√
hq

K
(
Pj ,Q

(j)
)

and

‖αj‖ = ‖∇(Pj (t)/
√

Q(j)(‖t‖2))‖√
qj (‖t‖2)

≤ 1√
q

H
(
Pj ,Q

(j)
)
.

Then, if we bound ‖α̃j‖2 by:

‖α̃j‖2 ≤ |α̃1j |2 + ‖αj‖2

we obtain

‖α̃j‖2 ≤ 1

hq
K2(Pj ,Q

(j)
) + 1

q
H 2(Pj ,Q

(j)
)
,

which implies (using (H3))

m∑
j=1

‖cj‖2
j · 1

j
≤ 1

q
mAm + 1

hq
mBm.

Replacing in (26) we get the bound:

E(NZ) ≤ smHm, (27)

where

sm =
(

h

h

)1/2

· e(mAm/q+mBm/(hq))/2 (28)

and

Hm = 1√
2π(m+1)/2

�

(
m

2

)
(29)

×
∫

Rm

( m∏
i=1

qi(‖t‖2)

)1/2√
h(‖t‖2)E(‖ξm‖)e−(

∑m
i=1 Pi(t)

2/Q(i)(‖t‖2))/2 dt.

The integrand in (29) is the same as in formula (9) giving the expectation in the centered case,
except for the exponential, which will help for large values of ‖t‖.
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Let us write Hm as

Hm = H(1)
m (r) + H(2)

m (r),

where H
(1)
m (r) corresponds to integrating on ‖t‖ ≤ r and H

(2)
m (r) on ‖t‖ > r instead of the whole

R
m in formula (29). We first choose r = r0 so that, using H4:

H(2)
m (r0) ≤ e−� m/2E(NX). (30)

We now turn to H
(1)
m (r). We have, bounding the exponential in the integrand by 1 and using

hypothesis (H2):

H(1)
m (r) ≤ 1√

2π(m+1)/2
�

(
m

2

)
h

1/2
E(‖ξm‖)

(
m∏

i=1

D
1/2
i

)
σm−1

∫ r

0

ρm−1

(1 + ρ2)(m+1)/2
dρ, (31)

where σm−1 is the (m − 1)-dimensional area measure of Sm−1. The integral in the right-hand
side is bounded by

π

2

(
r2

1 + r2

)(m−1)/2

.

Again using (H2) and formula (9), we have the lower bound:

E(NX) ≥ �(m/2)√
2π(m+1)/2

h1/2E(‖ξm‖)
∫ +∞

0

[
m∏

i=1

(
Di

1 + ρ2
− Ei

(1 + ρ2)2

)1/2
]

ρm−1

(1 + ρ2)1/2
dρ

= �(m/2)√
2π(m+1)/2

h1/2E(‖ξm‖)
(

m∏
i=1

D
1/2
i

)
σm−1

×
∫ +∞

0

ρm−1

(1 + ρ2)(m+1)/2

m∏
i=1

(
1 − Fi

1 + ρ2

)1/2

dρ

≥ �(m/2)√
2π(m+1)/2

h1/2E(‖ξm‖)
(

m∏
i=1

D
1/2
i

)
σm−1

(
r2

0 + 1/2

r2
0 + 1

)m/2

×
∫ +∞

τr0

ρm−1

(1 + ρ2)(m+1)/2
dρ,

where τ has been chosen to satisfy (15).
To get a lower bound for the last integral, a direct integration by parts shows that:

∫ +∞

0

ρm−1

(1 + ρ2)(m+1)/2
dρ >

e−2

√
m

,
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which implies

∫ +∞

τr0

ρm−1

(1 + ρ2)(m+1)/2
dρ >

e−2

√
m

− π

2

(
τ 2r2

0

1 + τ 2r2
0

)(m−1)/2

.

Then, choosing m0 as required by condition (16), we get for m ≥ m0:

H(1)
m (r0) ≤ C1

√
m

(
r2

0

r2
0 + 1/2

)m/2

E(NX), (32)

where

C1 = πe2
(

h̄

h

)1/2
√

1 + r2
0

r0
.

For the remainder, we must put together (27), (28), (30) and (32). One easily checks now that
with the constants given by (17), the inequality of the statement holds true. �

3.1. Auxiliary lemma

Lemma 1. Let γ : Rk → R, k ≥ 1 be defined as

γ (c) = E(‖ξ + c‖),
where ξ is a standard normal random vector in R

k , and c ∈ R
k (‖ · ‖ is the Euclidean norm

in R
k). Then

(i) γ (0) = √
2�((k+1)/2)

�(k/2)
.

(ii) γ is a function of ‖c‖ and verifies:

γ (c) ≤ γ (0)

(
1 + 1

2k
‖c‖2

)
. (33)

Proof. (i) In polar coordinates γ (0) = σj−1

(2π)j/2

∫ +∞
0 ρj e−ρ2/2. Using the change of variable

u = ρ2, we obtain the result.
(ii) That γ is a function of ‖c‖ is a consequence of the invariance of the distribution of ξ under

the isometries of R
k . For k = 1, (33) follows from the exact computation

γ (c) = √
2/πe−c2/2 + c

∫ c

−c

1√
2π

e−x2/2

and a Taylor expansion at c = 0, which gives

γ (c) ≤ √
2/π

(
1 + 1

2
c2

)
.
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For k ≥ 2, we write

γ (c) = E
([(ξ1 + a)2 + ξ2

2 + · · · + ξ2
k ]1/2) = G(a),

where a = ‖c‖ and ξ1, . . . , ξk are independent standard normal variables. Differentiating under
the expectation sign, we get:

G′(a) = E

(
ξ1 + a

[(ξ1 + a)2 + ξ2
2 + · · · + ξ2

k ]1/2

)

so that G′(0) = 0 due to the symmetry of the distribution of ξ .
One can differentiate formally once more, obtaining:

G′′(a) = E

(
ξ2

2 + · · · + ξ2
k

[(ξ1 + a)2 + ξ2
2 + · · · + ξ2

k ]3/2

)
. (34)

For the validity of equality (34) for k ≥ 3 one can use that if d ≥ 2, 1
‖x‖ is integrable in R

d with
respect to the Gaussian standard measure. For k = 2 one must be more careful but it holds true.
The other ingredient of the proof is that one can verify that G′′ has a maximum at a = 0. Hence,
on applying Taylor’s formula, we get

G(a) ≤ G(0) + 1

2
a2G′′(0).

Check that G′′(0) =
√

2
k

�((k+1)/2)
�(k/2)

which, together with (i), gives:

G′′(0)

G(0)
= 1

k
,

which implies (ii). �
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