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We suppose that a Lévy process is observed at discrete time points. A rather general construction of
minimum-distance estimators is shown to give consistent estimators of the Lévy–Khinchine characteris-
tics as the number of observations tends to infinity, keeping the observation distance fixed. For a specific
C2-criterion this estimator is rate-optimal. The connection with deconvolution and inverse problems is ex-
plained. A key step in the proof is a uniform control on the deviations of the empirical characteristic function
on the whole real line.
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1. Introduction

Lévy processes form the fundamental building block for stochastic continuous-time models with
jumps. There is an important trend using Lévy models in finance, see Cont and Tankov (2004),
but also many recent models in physics or biology rely on Lévy processes. We consider here the
problem of estimating the Lévy–Khinchine characteristics from time-discrete observations of a
Lévy process. Since these characteristics involve the Lévy measure (or jump measure) and we
do not want to impose a parametric model, we face a nonparametric estimation problem.

When the Lévy process (Xt )t≥0 is observed at high frequency, at times (ti)i=0,...,n with
maxi (ti − ti−1) small, then a large increment Xti − Xti−1 indicates that a jump occurred be-
tween time ti−1 and ti . Based on this insight and the continuous-time observation analogue,
nonparametric inference for Lévy processes from high-frequency data has been considered by
Basawa and Brockwell (1982), Figueroa-López and Houdré (2006) and Nishiyama (2008). For
low-frequency observations, however, we cannot be sure to what extent the increment Xti −Xti−1

is due to one or several jumps or just to the Brownian motion part of the Lévy process. The only
way to draw inference is to use that the increments form independent realizations of infinitely
divisible probability distributions. We shall assume that we dispose of equidistant observations at
ti = i�, i = 0, . . . , n, and consider the asymptotic behaviour of estimators for n → ∞ and � > 0
fixed. This can be cast into the classical framework of i.i.d. observations (Xi� −X(i−1)�)i=1,...,n

from an infinitely divisible distribution. A natural question in this framework is to estimate the
underlying Lévy–Khinchine characteristics. In this general setting we are only aware of the work
by Watteel and Kulperger (2003) who propose and implement an approach for estimating the
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jump distribution by a fixed spectral cut-off procedure, which is related to the pilot estimator in
Section 5 below. In the special case of compound Poisson processes the problem of estimating
the jump density is known as decompounding, see van Es, Gugushvili and Spreij (2007) and
Gugushvili (2007) and the references therein. For parametric inference under the assumption of
a stable law see, for example, Feuerverger and McDunnough (1981b). A related low-frequency
problem for the canonical function in Lévy–Ornstein–Uhlenbeck processes has been considered
by Jongbloed, van der Meulen and van der Vaart (2005), where a consistent estimator has been
constructed.

In Section 2 we recall basic facts about Lévy processes and prepare the idea of minimum-
distance estimators based on the empirical characteristic function. Under very general conditions
we then show in Section 3 consistency of these estimators for the Lévy–Khinchine characteris-
tics. The only way to achieve this is to merge the diffusion coefficient σ 2 and the Lévy measure
ν to a single quantity νσ , which is a finite Borel measure, and to consider weak convergence of
estimators of νσ . In Section 4 we construct a rate-optimal estimator using a minimum-distance
fit, based on a C2-criterion for the empirical characteristic function. A fundamental tool is Theo-
rem 4.1, which gives a uniform control on the deviations of the empirical characteristic function
on the whole real line and may be of independent interest. The optimal rates of convergence de-
pend on the decay of the characteristic function as in deconvolution problems. Interestingly, our
estimator attains the optimal rates without knowing this decay behaviour and without any further
regularization parameter. In Section 5 we briefly discuss the implementation of the estimator,
using a two-step procedure, and show a typical numerical example. Most proofs are postponed
to Section 6.

2. Basic notions, assumptions and a few simple facts

We assume that we observe a one-dimensional Lévy process (Xt )t≥0 at equidistant time points
0 = t0 < t1 < · · · < tn. Such a process is characterized by its characteristic function

ϕ(u, t; b̄, σ, ν) := E[exp(iuXt)] = exp(t�(u; b̄, σ, ν)), u ∈ R,

where

�(u) = �(u; b̄, σ, ν) = iub̄ − σ 2

2
u2 +

∫
R

(
eiux − 1 − iux

1 + x2

)
ν(dx).

The triplet (b̄, σ, ν) is called Lévy–Khinchine characteristic or characteristic triplet with drift-
like part b̄ ∈ R, volatility σ ≥ 0 and jump measure ν, which is a non-negative σ -finite measure

on (R, B) with
∫

x2

1+x2 ν(dx) < ∞. The function � is called characteristic exponent or cumulant
function.

For reasons explained below, we introduce a measure ν̄σ by

ν̄σ (dx) = σ 2δ0(dx) + x2

1 + x2
ν(dx),
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where δ0 denotes the point measure in zero. This gives another representation of � in terms of
b̄ ∈ R and the finite Borel measure ν̄σ as

�(u) = �(u; b̄, ν̄σ ) = iub̄ +
∫

R

(eiux − 1)(1 + x2) − iux

x2
ν̄σ (dx).

Here we have used the continuous extension of the integrand at x = 0, which evaluates to
−u2/2. Let Pb̄,ν̄σ

denote the probability distribution with characteristic function ϕ(•, t; b̄, ν̄σ ) =
exp(t�(•; b̄, ν̄σ )) for some fixed t > 0. Writing μn �⇒ μ for weak convergence of the finite
Borel measures μn to the finite Borel measure μ on (R, B), the following well-known result will
be essential in the sequel (Theorem VII.2.9 and Remark VII.2.10 in Jacod and Shiryaev (2002)
or Theorem 19.1 in Gnedenko and Kolmogorov (1968)).

Proposition 2.1. The convergence Pb̄n,ν̄σ,n
�⇒ Pb̄,ν̄σ

takes place if and only if b̄n → b̄ and
ν̄σ,n �⇒ ν̄σ .

By the scaling properties of Lévy processes there is no loss in generality when we suppose
tk = k, k = 0, . . . , n. We write ϕ(u; b̄, ν̄σ ) short for ϕ(u,1; b̄, ν̄σ ). Let us introduce the empirical
characteristic function of the increments

ϕ̂n(u) := 1

n

n∑
t=1

eiu(Xt−Xt−1), u ∈ R.

Since these increments are independent and identically distributed it follows from the Glivenko–
Cantelli theorem that

Pb̄,ν̄σ

(
ϕ̂n(u) −→

n→∞ϕ(u; b̄, ν̄σ ) ∀u ∈ R
) = 1. (2.1)

We will consider minimum distance fits, that is, we intend to choose ̂̄bn and ̂̄νσ,n such that, for
an appropriate metric d ,

d(ϕ̂n, ϕ(•;̂̄bn,̂̄νσ,n)) = inf
b̃∈R,ν̃σ ∈M(R)

d(ϕ̂n, ϕ(•; b̃, ν̃σ )). (2.2)

Here M(R) denotes the space of all finite Borel measures on (R, B). Our basic motivation for
this estimation procedure arises from the fact that an exact maximum likelihood estimator is not
feasible since there is in general no closed form expression for the probability density of the ob-
servations available. Moreover, it is well-known that methods based on the empirical character-
istic function can be asymptotically efficient; see Feuerverger and McDunnough (1981a, 1981b).
Since we are not sure that the infimum in (2.2) is always obtained, we take a sequence of positive
reals (δn)n∈N with δn → 0 as n → ∞ and choose ̂̄bn and ̂̄νσ,n such that

d(ϕ̂n, ϕ(•;̂̄bn,̂̄νσ,n)) ≤ inf
b̃∈R,ν̃σ ∈M(R)

d(ϕ̂n, ϕ(•; b̃, ν̃σ )) + δn. (2.3)



226 M.H. Neumann and M. Reiß

For the metric d , we assume that

lim
n→∞d(ϕ̂n, ϕ(•; b̄, ν̄σ )) = 0 Pb̄,ν̄σ

-almost surely (2.4)

and that the following implication holds:⎧⎪⎨
⎪⎩

lim
n→∞d(ϕ(•; b̄n, ν̄σ,n), ϕ(•; b̄, ν̄σ )) = 0

�⇒
lim

n→∞

∫ t

s

ϕ(u; b̄n, ν̄σ,n)du =
∫ t

s

ϕ(u; b̄, ν̄σ )du ∀s, t ∈ R.
(2.5)

A simple example of such a distance is given by the weighted Lp-norms,

d(ϕ1, ϕ2) =
(∫ ∞

−∞
|ϕ1(u) − ϕ2(u)|pw(u)du

)1/p

,

where p ≥ 1 and w : R → (0,∞) is a continuous weight function with
∫ ∞
−∞ w(u)du < ∞. Then

assumption (2.4) follows by dominated convergence from the convergence result (2.1), while
assumption (2.5) is immediate.

3. Consistency

We derive from the triangle inequality the definition of the minimum-distance estimator and
assumption (2.4) that

d(ϕ(•;̂̄bn,̂̄νσ,n), ϕ(•; b̄, ν̄σ )) ≤ d(ϕ(•;̂̄bn,̂̄νσ,n), ϕ̂n) + d(ϕ̂n, ϕ(•; b̄, ν̄σ ))

≤ 2d(ϕ̂n, ϕ(•; b̄, ν̄σ )) + δn (3.1)

−→ 0 Pb̄,ν̄σ
-a.s.

By assumption (2.5) this implies for the integrated characteristic function that

Pb̄,ν̄σ

(∫ t

s

ϕ(u;̂̄bn,̂̄νσ,n)du −→
n→∞

∫ t

s

ϕ(u; b̄, ν̄σ )du ∀s, t ∈ R

)
= 1. (3.2)

By Theorem 6.3.3 in Chung (1974), page 163, we obtain from (3.2) that

P ̂̄bn,̂ν̄σ,n
−→v Pb̄,ν̄σ

Pb̄,ν̄σ
-a.s.,

where ‘−→v’ denotes vague convergence to a possibly defective (i.e., with a mass less than 1)
measure. However, since this vague limit is a probability measure, it turns out that the mode of
convergence is actually the weak one, that is,

P ̂̄bn,̂ν̄σ,n
�⇒ Pb̄,ν̄σ

Pb̄,ν̄σ
-a.s. (3.3)

As an immediate consequence of equation (3.3) and Proposition 2.1 above we obtain the fol-
lowing consistency result for the parameters of the Lévy process:
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Theorem 3.1. If the distance d satisfies properties (2.4) and (2.5), then the minimum distance

fit (̂b̄n,̂̄νσ,n) is a strongly consistent estimator, that is, with probability one we have for n → ∞
̂̄bn → b̄ and ̂̄νσ,n �⇒ ν̄σ .

Remark 3.2. Without further assumptions we cannot estimate the diffusion parameter σ in a
uniformly consistent way. We have for example that the stable law with characteristic function
ϕα(u) = e−|u|α/2 converges for α ↑ 2 to the standard normal law (α = 2) in total variation norm:
by Scheffé’s lemma it suffices to show pointwise convergence of the density functions, which
follows from the L1-convergence of the characteristic functions. Hence, for n observations no
test can separate the hypotheses H0 :α = 2 and H1 :α < 2. Since we have σ = 1 for α = 2 and
σ = 0 for α < 2, this implies for the estimation problem uniform inconsistency in the following
sense:

lim sup
n→∞

inf
σ̂n

sup
b̄,ν̄σ

Pb̄,ν̄σ
(|̂σn − σ | ≥ 1/2) > 0,

where the infimum is taken over all estimators based on n observations. Thus, from a statistical
perspective the estimation of the volatility σ makes no sense, unless we restrict the class of Lévy
processes under consideration, for example, to the finite intensity case as in Belomestny and Reiß
(2006).

The practical implementation of the minimum distance method raises naturally the question of
computational feasibility. It is certainly not possible to compute ̂̄νσ,n by an optimization over the
full set M(R). In our simulations, for example, we approximate the measure ν̄σ by measures with
step-wise constant densities. To assess the effect of such an approximation, consider a sequence
of subsets M(n) ⊆ M(R) with the density property that there exist measures ν̃(n) ∈ M(n) with
ν̃(n) �⇒ ν̄σ , as n → ∞. The definition from (2.3) is now replaced by

d(ϕ̂n, ϕ(•;̂̄bn,̂̄νσ,n)) ≤ inf
b̃∈R,ν̃σ ∈M(n)

d(ϕ̂n, ϕ(•; b̃, ν̃σ )) + δn.

We obtain instead of (3.1) that

d(ϕ(•;̂̄bn,̂̄νσ,n), ϕ(•; b̄, ν̄σ )) ≤ 2d(ϕ̂n, ϕ(•; b̄, ν̄σ )) + δn + d
(
ϕ(•; b̄, ν̄σ ), ϕ

(•; b̄, ν̃(n)
))

−→ 0 Pb̄,ν̄σ
-a.s.

Hence, we obtain in complete analogy to Theorem 3.1 that with probability one for n → ∞
̂̄bn → b̄ and ̂̄νσ,n �⇒ ν̄σ .

Given the existence of certain moments for Pb̄,ν̄σ
, we could also search our minimum-distance

estimator in the class of those parameter values that fit the empirical moments. Using a similar
error decomposition and the consistency of the empirical moments, this approach will also yield
consistent estimators under mild conditions on the distance d .
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4. A rate-optimal estimator

4.1. The construction

In this section we intend to devise estimators which attain optimal rates of convergence. We
henceforth restrict the class of Lévy processes to those with finite second moments. This is
equivalent to requiring that the Lévy measure satisfies

∫
x2ν(dx) < ∞. In this case the following

reparametrization of the characteristic exponent is much more convenient:

�(u;b,σ, ν) = iub − σ 2

2
u2 +

∫
R

(eiux − 1 − iux)ν(dx),

where the parameter b = b̄ + ∫
R
(x − x

1+x2 )ν(dx) denotes now indeed the mean trend because
of E[X1] = −iϕ′(0) = b. Let us mention that this is the original Kolmogorov canonical repre-
sentation of a Lévy process (Kolmogorov (1932)), the historical background of which is nicely
exposed by Mainardi and Rogosin (2006). Instead of ν̄σ , we consider the finite measure νσ de-
fined by

νσ (dx) = σ 2δ0(dx) + x2ν(dx),

which allows the nice identity Var(X1) = −ϕ′′(0) + ϕ′(0)2 = νσ (R). From now on, we shall
express the characteristic exponent in terms of (b, νσ ):

�(u) = �(u;b, νσ ) = iub +
∫

R

eiux − 1 − iux

x2
νσ (dx).

While b can be easily estimated by 1
n

∑n
t=1(Xt − Xt−1) = Xn/n, the construction of an op-

timal nonparametric estimator of νσ requires more work. Before we start with our search for
optimal rates of convergence for estimators of νσ , we have to decide about an appropriate metric
to measure the deviation of any potential estimator ν̃σ,n from its target νσ .

The parameter νσ lies in the space of finite Borel measures, which is naturally equipped with
the total variation norm. As we have seen above in the consistent estimation problem for σ , this
topology is too strong here. Moreover, we are usually not interested in the problem of estimat-
ing νσ itself, but rather in estimating integrals

∫
f dνσ for certain integrands f . In mathemati-

cal finance for example, the so-called � in the quadratic hedging approach requires calculating∫
C(t,S(1+z))−C(t,S)

Sz
νσ (dz), where C(t, S) denotes the option price at time t and S the corre-

sponding stock price, see Proposition 10.5 in Cont and Tankov (2004). This is why we choose to
measure the performance of our estimator by metrizing weak convergence with certain classes F

of continuous test functions f :

l(̃νσ,n, νσ ) = sup

{∣∣∣∣
∫

f d̃νσ,n −
∫

f dνσ

∣∣∣∣ :f ∈ F

}
.

Note that for any class F of uniformly bounded, equicontinuous functions consistency with re-
spect to weak convergence implies l(̃νσ,n, νσ ) → 0 (Dudley (1989), Corollary 11.3.4). For in-
stance, the bounded Lipschitz metric is generated by the test functions of Lipschitz norm less
than one.
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Let us introduce the Fourier transform for functions f ∈ L1(R) or measures μ ∈ M(R) by

F f (u) =
∫

f (x)eiux dx, F μ(u) =
∫

eiuxμ(dx), u ∈ R.

Note that we have by Parseval’s equality∫
f dνσ = 1

2π

∫ ∞

−∞
F f (u)F νσ (u)du,

provided F f ∈ L1(R) (Katznelson (1976), Theorem VI.2.2). Estimation of νσ turns out to be
particularly transparent when we employ the fact that

� ′′(u) = d2

du2

∫
eiux − 1 − iux

x2
νσ (dx) = −F νσ (u),

and consequently

F νσ (u) = − d2

du2
log(ϕ(u)) = ϕ′(u)

2

ϕ(u)2
− ϕ′′(u)

ϕ(u)
. (4.1)

Recall that
∫

x2ν(dx) < ∞ implies E[X2
t ] < ∞ and hence ϕ ∈ C2. Moreover, in order to re-

cover � from ϕ we use the distinguished logarithm of the complex-valued function u 
→ ϕ(u),
which is required to ensure log(ϕ(0)) = 0 and continuity of u 
→ log(ϕ(u)), see Cont and Tankov
(2004). This formula indicates that estimating νσ is strongly related to estimating ϕ in a C2-sense.
Before we study rates of convergence, we need to investigate uniform rates of convergence of the
empirical characteristic function ϕ̂n and its derivatives.

4.2. Estimating the characteristic function

For i.i.d. random variables (Zt )t∈N, denote by

Cn(u) := n−1/2
n∑

t=1

(eiuZt − E[eiuZ1])

the normalized characteristic function process. Furthermore, denote by C
(k)
n its kth derivative

which exists if E|Z1|k < ∞. For an appropriate weight function w : R −→ [0,∞), we consider

E
∥∥C(k)

n

∥∥
L∞(w)

:= E sup
u∈R

{∣∣C(k)
n (u)

∣∣w(u)
}
.

For every k ≥ 0 we have the following general result.

Theorem 4.1. Suppose that (Zt )t∈N are i.i.d. random variables with E|Z1|2k+γ < ∞ for some
γ > 0 and let the weight function be defined as w(u) = (log(e + |u|))−1/2−δ for some δ > 0.
Then

sup
n≥1

E
∥∥C(k)

n

∥∥
L∞(w)

< ∞.
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Its proof is given in Section 6.1. Let us mention that the logarithmic decay of the weight
function w is in accordance with the well-known result that ϕ̂n → ϕ a.s. holds uniformly on
intervals [−Tn,Tn] whenever log(Tn)/n → 0, see Csörgő and Totik (1983).

4.3. Upper risk bounds

In view of (4.1) and Theorem 4.1, we define our estimators of b and νσ by a minimum distance
fit based on a weighted C2-norm. Defining

d(2)(ϕ1, ϕ2) :=
2∑

k=0

∥∥ϕ
(k)
1 − ϕ

(k)
2

∥∥
L∞(w)

,

we choose the estimators b̂n ∈ R and ν̂σ,n ∈ M(R) such that

d(2)(ϕ(•; b̂n, ν̂σ,n), ϕ̂n) ≤ inf
b̃∈R,ν̃σ ∈M(R)

d(2)(ϕ(•; b̃, ν̃σ ), ϕ̂n) + δn, (4.2)

where δn → 0 as n → ∞. We verify by Theorem 4.1 that d(2) satisfies assumptions (2.4)
and (2.5), hence Theorem 3.1 gives immediately a consistency result. Moreover, with the choice
δn = O(n−1/2) these estimators will turn out to be rate-optimal.

While b can always be estimated at rate n−1/2, rates of convergence of
∫

f d̂νσ,n as an estima-
tor of

∫
f dνσ depend both on the smoothness of f and on the decay of |ϕ(u)| as |u| → ∞. For

the function f , we will assume that it belongs to the class

Fs :=
{
f :

∫
(1 + |u|)s |F f (u)|du ≤ 1

}
,

for some s ≥ 0. Note that
∫ |F f (u)|du ≤ 1 implies by the Riemann–Lebesgue lemma that f is

continuous with ‖f ‖∞ ≤ 1. By the Fourier theory the condition f ∈ Fs is slightly stronger than
requiring f ∈ Cs with ‖f ‖Cs ≤ 1 for a suitable norming of Cs . We therefore introduce a loss
function for an estimator μ̂ of the finite measure μ by


s(μ̂,μ) := sup
f ∈Fs

∣∣∣∣
∫

f dμ̂ −
∫

f dμ

∣∣∣∣.
Note that by duality the loss 
s can be interpreted as a negative smoothness norm of order −s.

The faster |ϕ(u)| decays, the more difficult it will be to estimate νσ . We consider in particular
the following three cases:

(a) Gaussian part. If σ 2 > 0, then the characteristic function ϕ has Gaussian tails, that is,

log |ϕ(u)| = Re(logϕ(u)) = −σ 2u2/2
(
1 + o(u)

)
as |u| → ∞.

(To see this, note that F(x,u) := (eiux − 1 − iux)/(ux)2 is uniformly bounded with
lim|u|→∞ F(x,u) = 0 for x �= 0 such that by dominated convergence lim|u|→∞

∫
R

F(x,

u)x2ν(dx) = 0 and thus logϕ(u) = −σ 2u2/2 + o(u2).)
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(b) Exponential decay. Here the characteristic function ϕ decays at most exponentially, that
is, for some α > 0, C > 0,

|ϕ(u)| ≥ Ce−α|u| for all u ∈ R.

Examples of distributions with this property include normal inverse Gaussian (Cont
and Tankov (2004), page 117) and generalized tempered stable distributions (Cont and
Tankov (2004), page 122).

(c) Polynomial decay. In this case the characteristic function satisfies, for some β ≥ 0,
C > 0,

|ϕ(u)| ≥ C(1 + |u|)−β for all u ∈ R.

Typical examples for this are the compound Poisson distribution, the gamma distribution,
the variance gamma distribution and the generalized hyperbolic distribution (Cont and
Tankov (2004), pages 75, 116, 117, 127).

The proof of the following main theorem is postponed to Section 6.2.

Theorem 4.2. Suppose that Eb,νσ |X1|4+γ < ∞ for some γ > 0. We choose the weight func-
tion w as w(u) = (log(e + |u|))−1/2−δ , where δ is any positive number. The estimators b̂n and
ν̂σ,n of b and νσ , respectively, are chosen according to (4.2) with δn = O(n−1/2). Then

Eb,νσ |̂bn − b| = O(n−1/2)

and for any s > 0


s (̂νσ,n, νσ ) = OPb,νσ

(
n−1/2 • sup

u∈[0,Un]

{
(1 + u)2−s

w(u)|ϕ(u;b, νσ )|
})

,

where

Un := inf

{
u > 0 :

(1 + u)2n−1/2

w(u)|ϕ(u;b, νσ )| ≥ 1

}
.

The constants in the risk bounds depend continuously on |b| and νσ (R). In the specific cases we
obtain the following rates of convergence for 
s (̂νσ,n, νσ ) in Pb,νσ -probability:

(a) Gaussian part: (logn)−s/2,
(b) Exponential decay: (logn)−s ,
(c) Polynomial decay of order β ≥ 0: [(logn)1/2+2δn−1/2]s/β ∨ n−1/2.

Remark 4.3. The results are presented for convergence in probability, but the proof immediately
yields convergence of moments of order 1/2 of the loss in cases (a) and (b), see equation (6.4).
Higher moments are achieved whenever the order of the moment bound in Theorem 4.1 can be
increased.
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4.4. Lower risk bounds

We prove that the rates of convergence obtained in Theorem 4.2 for cases (a)–(c) are optimal,
at least up to a logarithmic factor in the latter case. The proof in Section 6.3 can be naturally
generalized to cover further decay scenarios of the characteristic function.

Theorem 4.4. For C, C̄ > 0 large enough and for any α > 0, β ≥ 0 introduce the following
nonparametric classes of νσ :

A(C,σ ) := {νσ ∈ M(R)|νσ (R) ≤ C} (σ > 0),

B(C,α) := {
νσ ∈ M(R)|νσ (R) ≤ C, |ϕ(u)| ≥ C̄e−α|u|} (σ = 0),

C(C, C̄,β) := {νσ ∈ M(R)|νσ (R) ≤ C, |ϕ(u)| ≥ C̄−1(1 + |u|)−β} (σ = 0).

Then we obtain for some fixed b ∈ R and for any s > 0 the following minimax lower bounds,
where ν̃σ,n denotes any estimator of νσ based on n observations:

(a) ∃ε > 0 : lim inf
n→∞ inf

ν̃σ,n

sup
νσ ∈A(C,σ )

Pb,νσ

(
(logn)s/2
s (̃νσ,n, νσ ) > ε

)
> 0,

(b) ∃ε > 0 : lim inf
n→∞ inf

ν̃σ,n

sup
νσ ∈B(C,α)

Pb,νσ

(
(logn)s
s (̃νσ,n, νσ ) > ε

)
> 0,

(c) ∃ε > 0 : lim inf
n→∞ inf

ν̃σ,n

sup
νσ ∈C(C,C̄,β)

Pb,νσ

(
n(s/2β)∧(1/2)
s (̃νσ,n, νσ ) > ε

)
> 0.

4.5. Discussion

The convergence rates for ν̂σ,n can be understood in analogy with a deconvolution problem where
the Fourier transform of the error density decays like the characteristic function ϕ in our case,
see, for example, Fan (1991). The interesting point here is that this decay property is not assumed
to be known and depends on the parameters to be estimated. At first sight, it is rather surprising
that our minimum distance estimator adapts automatically to the decay of ϕ, even for the whole
range of loss functions 
s , s > 0. This is due to the fact that the noise level in the empirical
characteristic function ϕ̂n is of the same size for different frequencies and this is where we fit
our estimator. In contrast, when fitting the characteristic exponent � , which is more attractive
from a computational point of view and for example advocated in Jongbloed, van der Meulen
and van der Vaart (2005), we face a highly heteroskedastic noise level in log(ϕ̂n(u)) governed by
|ϕ(u)|−1 because of log(ϕ̂n(u)) − �(u) ≈ (ϕ̂n(u) − ϕ(u))/ϕ(u).

Another point of view on our estimation problem is that we want to estimate the lin-
ear functional

∫
f dνσ based on an inverse problem setting for estimating νσ . In an abstract

Hilbert scale context, adaptive estimation for this has been considered by Goldenshluger and
Pereverzev (2003) and their rate for the polynomially ill-posed case reads in our notation
(n/ log(n))−(r+s)/(2r+2β) ∨ n−1/2, with r the regularity of νσ , s the regularity of f and β the
degree of ill-posedness. In our case, we measure the regularity s of f in the Fourier domain by an
L1-criterion such that a dual L∞-criterion for the regularity of νσ yields r = 0 because ‖F νσ ‖∞
is finite. Hence, the rate (n/ log(n))−s/2β ∨ n−1/2, up to the logarithmic factor of power δ, ob-
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tained in case (c) of Theorem 4.2, confirms this analogy. We suspect that the gap by a logarithmic
factor in the polynomial case between our upper and lower bound is mainly due to a suboptimal
lower bound, because 
s can be expressed in the Fourier domain via


s(μ̂,μ) = sup
f ∈Fs

∣∣∣∣
∫

F f (u)F (μ̂ − μ)(u)du

∣∣∣∣ = sup
u∈R

(1 + |u|)−s |F (μ̂ − μ)(u)|,

giving a supremum-type norm.
It is certainly remarkable that no regularization parameter is involved in our estimation proce-

dure, which becomes more intuitive by noticing that the results of Section 3 imply consistency
already for s = 0. On the other hand, better rates of convergence can be obtained when we restrict
the model to measures νσ which have a regular Lebesgue density gσ . A natural plug-in approach
yields the kernel-type estimator ĝσ,n,h(x) := Kh ∗ ν̂σ,n(x), convolving the minimum-distance es-
timator with a smooth kernel Kh of bandwidth h > 0. Noting that

∫
f ĝσ,n,h = ∫

(f ∗ Kh) d̂νσ,n,
we infer that the bound on the stochastic error∣∣∣∣

∫
f (ĝσ,n,h − Kh ∗ gσ )

∣∣∣∣ =
∣∣∣∣
∫

(f ∗ Kh)d(̂νσ,n − νσ )

∣∣∣∣
is controlled by the regularity of f ∗ Kh. To be more specific, consider a function f with
|F f (u)| � (1 + |u|)−s−1 (e.g., f (x) = e−|x| with s = 1), suppose supu(1 + |u|)r |F gσ (u)| < ∞
for r > 0 and assume polynomial decay of order β ≥ s of the characteristic function. Then∫
(1 + |u|)β |F f (u)F Kh(u)|du � hs−β holds such that ch−s+βf ∗ Kh lies in Fβ , c > 0 some

small constant, and Theorem 4.2 implies that∣∣∣∣
∫

f (ĝσ,n,h − Kh ∗ gσ )

∣∣∣∣ = OP (hs−βn−1/2(logn)1/2+2δ).

Together with an easy bias estimate of order hs+r this yields for the estimation error
| ∫ f (ĝσ,n,h − gσ )| up to logarithmic factors the rate n−(r+s)/(2r+2β), provided the bandwidth
is chosen in an optimal way. We conclude that our results also allow us to obtain risk bounds
under smoothness restrictions, which are coherent with the abstract results in Goldenshluger and
Pereverzev (2003). The rates should also be compared with the case of continuous-time observa-
tions on [0, T ], where Figueroa-López and Houdré (2006) obtained the classical nonparametric
rate T −r/(2r+1) for estimating gσ on a bounded interval.

5. Implementation

Although the main focus of our work is theoretical, we point out how the minimum distance
estimator can be implemented and show a numerical example. The main computational problem
is that the procedure requires that we minimize a nonlinear functional over the space of all finite
measures. One possibility is to use a global optimization procedure, for example, based on sim-
ulated annealing, see Hall and Yao (2003) for an application to minimum-distance fits based on
characteristic functions. Here we shall look for a good preliminary estimator and minimize the
d(2)-criterion locally around this pilot estimator, which turns out to be more stable in simulations
than global optimization routines.
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We use the identification formula (4.1) to build a first-stage plug-in estimator (̃bn, ν̃σ,n). While
the mean b will be easily estimated by

b̃n := 1

n

n∑
t=1

(Xt − Xt−1) = Xn/n,

we have to be more careful with an estimator of νσ . Since F νσ (u) = −ϕ′′(u)/ϕ(u) +
(ϕ′(u)/ϕ(u))2 one might be tempted to estimate its Fourier transform just by plugging in the em-
pirical characteristic function ϕ̂n for ϕ. It turns out, however, that the occurrence of ϕ̂n(u) in the
denominator might have unfavorable effects, particularly if |ϕ(u)| is small. To get some intuition
for a possible remedy, consider the problem of estimating 1/ϕ(u). 1/ϕ̂n(u) is certainly a good
estimator as long as |ϕ̂n(u)| is not too small. On the other hand, since the noise level of ϕ̂n(u) is
O(n−1/2) we should no longer rely on 1/ϕ̂n(u) if ϕ̂n(u) = O(n−1/2). To take this into account,
one can use 1{|ϕ̂n(u)|≥κn−1/2}/ϕ̂n(u) as an estimator for 1/ϕ(u) which can be proven to satisfy

Eb,νσ

∣∣∣∣1{|ϕ̂n(u)|≥κn−1/2}
ϕ̂n(u)

− 1

ϕ(u)

∣∣∣∣p = O

((
n−1/2

|ϕ(u)|2 ∧ 1

|ϕ(u)|
)p)

,

for any positive threshold value κ and all p ∈ N. This is what we can at best expect from an
estimator of 1/ϕ(u). Using this idea we define our preliminary estimator of F νσ (u) by

F ν̃σ,n(u) := −
(

ϕ̂′′
n(u)

ϕ̂n(u)
−

(
ϕ̂′

n(u)

ϕ̂n(u)

)2)
1{|ϕ̂n(u)|≥κn−1/2}, (5.1)

where κ is a positive constant. In Section 6.4 below we shall prove the following result.

Proposition 5.1. We have Eb,νσ (b̃n − b)2 = O(n−1) and for u ∈ R

Eb,νσ |F ν̃σ,n(u) − F νσ (u)| = O

((
n−1/2

|ϕ(u)| ∧ 1

)(
1 + |� ′(u)|2)).

This will give pointwise rates of convergence in a similar fashion as before and serves well
as a starting point of a local optimization routine. Note that this pilot estimator is very easy and
fast to implement. Yet it has certain drawbacks, most important F ν̃σ,n is usually not positive
semidefinite so that ν̃σ,n is not necessarily a non-negative measure.

In practice, our two-stage procedure works reasonably well. For a numerical example we sim-
ulate a Lévy process (Xt )t≥0 with σ = 1, b = 1 and ν(dx) = x−1e−x1{x>0} dx. The process X is
a superposition of an infinite-intensity gamma process and a standard Brownian motion. The law
of its increments Xt − Xt−1 is the convolution of an N(0,1)- and an Exp(1)-distribution. We
have n = 1000 observations, see Figure 1 (left) for a histogram of the increments. The sample is
rather disperse with some increments close to 10 and a sample mean of b̃n = 0.936 (true b = 1).
The true characteristic function has Gaussian decay and its absolute value is shown together with
that of the empirical characteristic function in Figure 1 (right).

We discretize the pilot estimate ν̃σ,n of the jump measure by using a Haar wavelet basis on the
interval [−10,10] with 15 basis functions. Moreover, we allow for a point measure in zero to have
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Figure 1. Left: Histogram of the data. Right: modulus of the empirical (solid) and true (dashed) character-
istic function.

a better resolution there. Its pilot mass is set to zero. Using the FindMinimum local optimization
procedure in Mathematica, we minimize the d(2)-criterion locally around the discretized pilot
estimator, constraining to non-negative Lévy measures. In Figure 2 (left) we display for the
given data the imaginary part of the empirical characteristic function together with the imaginary
parts of the other characteristic functions of interest (true, pilot, final estimator). The errors in
fitting the real part are less pronounced because there are fewer oscillations around zero (note
(Reϕ)′(0) = 0). Typically, the pilot estimator gives already a reasonably good fit and the final
estimator has a characteristic function which is closer to the empirical characteristic function
than the true one.

Figure 2 (right) finally shows the densities of the rescaled Lévy measures νσ , but suppresses
the point masses in zero. Note that the original Lévy density and also its plug-in estimators have
a singularity at zero because of ν(dx) = x−2νσ (dx) for x �= 0. The parameters are estimated as
b̂n = 0.922 (true b = 1) and ν̂σ,n({0})1/2 = 1.092 (true σ = 1). The pilot estimator has no point
mass in zero and its density is therefore large around zero. It is seen that the final estimator im-
proves upon the pilot estimator, in particular by excluding negative values and catching the point
mass in zero. Given 1000 observations and a Gaussian deconvolution problem, the estimation
problem is quite hard. The rough, step-wise form of the final estimator is not so pleasant for the
human eye, but we only want to use this estimator as an integrator of smooth functions and, as
discussed above, we could apply a kernel to obtain a smooth density function. As an example for
a functional to be estimated, we calculated

∫ ∞
1 x−2ν̂σ (dx) which estimates ν([1,∞)), the prob-

ability of jumps larger than one. In this sample, the true value 0.22 was estimated by 0.16. Let us
remark that the high-frequency estimator, using the relative frequency of increments Xt − Xt−1

that are larger than one, yields the estimate 0.46. The large error of the latter confirms a strong
violation of the underlying high-frequency assumption that between two observations very rarely
more than one larger jump occurs and that the diffusion part is negligible. Hence, the frequency
of the observations must indeed be considered as low for the construction of the estimator.
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Figure 2. Left: Imaginary part of the empirical (dot-dashed), true (dashed), pilot (dotted) and final esti-
mated (solid) characteristic function. Right: pilot (dotted), final (solid) estimator and true (dashed) density
of νσ ; the pilot estimator does not have a point mass in zero.

6. Proofs

6.1. Proof of Theorem 4.1

We begin the proof with a few definitions. Given two functions l, u : R −→ R the bracket [l, u]
denotes the set of functions f with l ≤ f ≤ u. For a set G of functions the L2-bracketing num-
ber N[·](ε,G) is the minimum number of brackets [li , ui], satisfying E[(ui(Z1)− li (Z1))

2] ≤ ε2,
that are needed to cover G. The associated bracketing integral is defined as

J[·](δ,G) =
∫ δ

0

√
log

(
N[·](ε,G)

)
dε.

Furthermore, a function f is called an envelope function for G if |f | ≤ f holds for all f ∈ G.
To apply Corollary 19.35 from van der Vaart (1998), we decompose Cn in its real and imagi-

nary parts,

Re(Cn(u)) = n−1/2
n∑

t=1

(
cos(uZt ) − E cos(uZ1)

)
,

Im(Cn(u)) = n−1/2
n∑

t=1

(
sin(uZt ) − E sin(uZ1)

)
.

Accordingly, we consider the following class of functions:

Gk =
{
z 
→ w(u)

∂k

∂uk
cos(uz)

∣∣∣u ∈ R

}
∪

{
z 
→ w(u)

∂k

∂uk
sin(uz)

∣∣∣u ∈ R

}
.
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An envelope function f k for Gk is given by f k = |x|k . Now we obtain from Corollary 19.35 in
van der Vaart (1998) that

E
∥∥C(k)

n

∥∥
L∞(w)

≤ C
{
E(f k(Z1))

2 + J[·]
(√

EZ2k
1 ,Gk

)}
. (6.1)

Since EZ2k
1 < ∞ it remains to bound the bracketing integral on the right-hand side of (6.1).

Inspired by Yukich (1985), we proceed by setting, for every ε > 0,

M := M(ε, k) := inf
{
m > 0 | E

[
Z2k

1 1{|Z1|>m}
] ≤ ε2}.

Furthermore, we set, for grid points uj ∈ R to be specified below,

g±
j (z) =

(
w(uj )

∂k

∂uk
cos(uj z) ± ε|z|k

)
1[−M,M](z) ± ‖w‖∞|z|k1[−M,M]c (z),

h±
j (z) =

(
w(uj )

∂k

∂uk
sin(uj z) ± ε|z|k

)
1[−M,M](z) ± ‖w‖∞|z|k1[−M,M]c (z).

We obtain for the width of the brackets that

E
[(

g+
j (Z1) − g−

j (Z1)
)2] ≤ E

[
4ε2Z2k

1 1[−M,M](Z1) + 4‖w‖2∞Z2k
1 1[−M,M]c (Z1)

]
≤ 4ε2(EZ2k

1 + ‖w‖2∞),

and, analogously,

E
[(

h+
j (Z1) − h−

j (Z1)
)2] ≤ 4ε2(EZ2k

1 + ‖w‖2∞).

It remains to choose the grid points uj in such a way that the brackets cover the set Gk . We
consider an arbitrary u ∈ R and any grid point uj . Then with the Lipschitz constant Lip(w) of
the weight function w∣∣∣∣w(u)

∂k

∂uk
cos(uz) − w(uj )

∂k

∂uk
cos(uj z)

∣∣∣∣
≤ |z|k min

{|u − uj |
(
Lip(w) + ‖w‖∞|z|),w(u) + w(uj )

}
.

Therefore, the function z 
→ w(u) ∂k

∂uk cos(uz) is contained in the bracket [g−
j , g+

j ] if

min
{|u − uj |

(
Lip(w) + ‖w‖∞M

)
,w(u) + w(uj )

} ≤ ε.

Consequently, we choose the grid points as

uj = jε/
(
Lip(w) + ‖w‖∞M(ε, k)

)
,

for |j | ≤ J (ε), where J (ε) is the smallest integer such that uJ(ε) is greater than or equal to

U(ε) = inf

{
u > 0

∣∣∣ sup
v : |v|≥u

w(v) ≤ ε/2

}
.
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This yields the estimate N[·](ε,Gk) ≤ 2(2J (ε) + 1). It follows from the generalized Markov
inequality that

M(ε, k) ≤ (E[|Z1|2k+γ ]/ε2)1/γ .

Now we obtain from the inequality

J (ε) ≤ 2U(ε)
(
Lip(w) + ‖w‖∞M(ε, k)

)
/ε + 1

that log(N[·](ε,Gk)) = O(log(J (ε))) = O(ε−(δ+1/2)−1 + log(ε−1−2/γ )) = O(ε−κ) for κ = (δ +
1/2)−1 < 2. This implies ∫ δ

0

√
log

(
N[·](ε,Gk)

)
dε < ∞,

as required.

6.2. Proof of Theorem 4.2

To simplify the notation, we use the abbreviations �n(u) = �(u; b̂n, ν̂σ,n) and ϕn(u) =
exp(�n(u)).

First of all, we obtain from the triangle inequality that

d(2)(ϕn,ϕ) ≤ d(2)(ϕ̂n, ϕ) + d(2)(ϕ̂n, ϕn) ≤ 2d(2)(ϕ̂n, ϕ) + δn. (6.2)

Proof for ̂bn. We have that ϕ′(0) = ib and ϕ′
n(0) = îbn. Therefore, we obtain from (6.2) and

Theorem 4.1 that

Eb,νσ |̂bn − b| = Eb,νσ |ϕ′
n(0) − ϕ′(0)| ≤ Eb,νσ d(2)(ϕn,ϕ)

≤ 2Eb,νσ d(2)(ϕ̂n, ϕ) + δn = O(n−1/2).

Proof for ν̂σ,n. We consider the following set of “unfavorable” events:

An := {̂νσ,n(R) > νσ (R) + 1} ∪ {|̂bn| > |b| + 1}.
From ϕ′(0)2 − ϕ′′(0) = νσ (R) and the analogous formula for ϕn it follows that

|̂νσ,n(R) − νσ (R)| = ∣∣(ϕ′(0)2 − ϕ′
n(0)2) − (

ϕ′′(0) − ϕ′′
n(0)

)∣∣
(6.3)

≤ (
2|ϕ′(0)| + d(2)(ϕ,ϕn) + 1

)
d(2)(ϕ,ϕn).

Consequently, the (generalized) Markov inequality yields

Pb,νσ (An) ≤ Eb,νσ [|̂νσ,n(R) − νσ (R)| ∧ 1] + Eb,νσ [|̂bn − b|]
≤ Eb,νσ

[((
2|b| + d(2)(ϕ,ϕn) + 1

)
d(2)(ϕ,ϕn)

) ∧ 1
] + Eb,νσ

[
d(2)(ϕ,ϕn)

]
≤ Eb,νσ

[
(4|b| + 2)d(2)(ϕ,ϕn)

] + Eb,νσ

[
d(2)(ϕ,ϕn)

]
≤ (4|b| + 3)

(
Eb,νσ

[
d(2)(ϕ̂n, ϕ)

] + δn

) = O(n−1/2),
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which implies that

1An • sup
f ∈Fs

∣∣∣∣
∫

f d̂νσ,n −
∫

f dνσ

∣∣∣∣
≤ 1An • sup

f ∈Fs

‖f ‖∞ • (̂
νσ,n(R) + νσ (R)

)
(6.4)

≤ 2νσ (R)1An + (
2|ϕ′(0)| + d(2)(ϕ,ϕn) + 1

)
d(2)(ϕ,ϕn)

= OPb,νσ
(n−1/2).

It remains to analyze the loss under Ac
n. It follows from Parseval’s identity that∣∣∣∣

∫
f d̂νσ,n −

∫
f dνσ

∣∣∣∣
= 1

2π

∫ ∞

−∞
F f (u)

(
F ν̂σ,n(u) − F νσ (u)

)
du (6.5)

= 1

2π

∫ ∞

−∞
F f (u)

{((
ϕ′

n(u)

ϕn(u)

)2

−
(

ϕ′(u)

ϕ(u)

)2)
−

(
ϕ

′′
n(u)

ϕn(u)
− ϕ

′′
(u)

ϕ(u)

)}
du.

The differences occurring in the integrand on the right-hand side of (6.5) can be estimated using
ϕ′/ϕ = � ′, ϕ′

n/ϕn = � ′
n:

∣∣∣∣
(

ϕ′
n(u)

ϕn(u)

)2

−
(

ϕ′(u)

ϕ(u)

)2∣∣∣∣
=

∣∣∣∣ϕ′
n(u)

ϕn(u)
− ϕ′(u)

ϕ(u)

∣∣∣∣|� ′
n(u) + � ′(u)| (6.6)

≤
{∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣|� ′
n(u)| +

∣∣∣∣ϕ′
n(u) − ϕ′(u)

ϕ(u)

∣∣∣∣
}
|� ′

n(u) + � ′(u)|

and ∣∣∣∣ϕ′′
n(u)

ϕn(u)
− ϕ′′(u)

ϕ(u)

∣∣∣∣ ≤
∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣
∣∣∣∣ϕ′′

n(u)

ϕn(u)

∣∣∣∣ +
∣∣∣∣ϕ′′

n(u) − ϕ′′(u)

ϕ(u)

∣∣∣∣
(6.7)

=
∣∣∣∣ϕn(u) − ϕ(u)

ϕ(u)

∣∣∣∣|� ′′
n(u) + (� ′

n(u))2| +
∣∣∣∣ϕ′′

n(u) − ϕ′′(u)

ϕ(u)

∣∣∣∣.
Note that the following estimates hold true under Ac

n:

|� ′
n(u)| ≤ |̂bn| + |u|̂νσ,n(R) ≤ |b| + 1 + |u|(νσ (R) + 1

)
, (6.8)

|� ′′
n(u)| ≤ |F ν̂σ,n(u)| ≤ ν̂σ,n(R) ≤ νσ (R) + 1. (6.9)
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Hence, we obtain from (6.5) to (6.9) and the trivial estimate |F ν̂σ,n(u) − F νσ (u)| ≤ ν̂σ,n(R) +
νσ (R) that under Ac

n, with some constant C > 0,∣∣∣∣
∫

f d̂νσ,n −
∫

f dνσ

∣∣∣∣
≤ C

∫ ∞

−∞
|F f (u)|

( |ϕn(u) − ϕ(u)| + |ϕ′
n(u) − ϕ′(u)| + |ϕ′′

n(u) − ϕ′′(u)|
|ϕ(u)| (1 + |u|)2 ∧ 1

)
du

≤ C

∫ ∞

−∞
(1 + |u|)s |F f (u)|du • sup

u∈R

{
(1 + |u|)−s

(
(1 + |u|)2d(2)(ϕn,ϕ)

w(u)|ϕ(u)| ∧ 1

)}

≤ C sup
u≥0

{
(1 + u)−s

(
(1 + u)2n−1/2

w(u)|ϕ(u)| ∧ 1

)}(
n1/2d(2)(ϕn,ϕ) + 1

)
.

By monotonicity of (1 + u)−s we can replace the supremum over [0,∞) by the supremum over
[0,Un] and we arrive at

Eb,νσ

[
1Ac

n
• sup

f ∈Fs

∣∣∣∣
∫

f d̂νσ,n −
∫

f dνσ

∣∣∣∣
]

(6.10)

= O

(
sup

u∈[0,Un]

{
(1 + u)−s

(
(1 + u)2n−1/2

w(u)|ϕ(u)| ∧ 1

)})
.

Together with the bound (6.4) on the set An this yields the asserted general estimate. Tracing
back the constants, we see that they depend continuously on |b| and νσ (R).

Proof of the rate results (a), (b).

(a) Under the condition log |ϕ(u)| = −σ 2u2/2(1+o(u)) we have Un � √
logn and we obtain

the rate U−s
n = (logn)−s/2.

(b) If |ϕ(u)| ≥ Ce−αu, then we have Un � logn and we obtain the rate U−s
n = (logn)−s .

Proof of the rate result (c). The same reasoning as for cases (a) and (b) would only yield the
rate ((logn)1/2+δn1/2)−s/(β+2) for s ∈ (0, β + 2] and the parametric rate for s > β + 2. In the
polynomial case (c), though, better estimates for |� ′

n(u)| hold, that is, we can improve upon (6.8).
First, we formulate and prove a lemma for |� ′(u)|.

Lemma 6.1. If a Lévy process with a finite first moment has a characteristic function (at
time t = 1) satisfying |ϕ(u)| ≥ C(1 + |u|)−β for some β ≥ 0, C > 0 and all u ∈ R, then∫
[−1,+1] |x|αν(dx) is finite for all α > 0 and the derivative of its characteristic exponent is uni-

formly bounded:

sup
u∈R

|� ′(u)| < ∞.

Proof. Since we have necessarily σ 2 = 0 in the Lévy–Khinchine characteristic as well as∫
[−1,1]c |x|ν(dx) < ∞ from the first moment condition, the additional property

∫
[−1,+1] |x| ×
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ν(dx) < ∞ implies

sup
u∈R

|� ′(u)| = sup
u∈R

∣∣∣∣ib +
∫

(eiux − 1)ixν(dx)

∣∣∣∣ ≤ |b| + 2
∫

|x|ν(dx) < ∞.

It therefore remains to prove the first result for any α > 0. We obtain with c := minu∈[1,2](1 −
cos(u)) > 0:∫

[−1,+1]
|x|αν(dx) ≤

∞∑
n=1

∫
{x:2−n≤|x|≤2−n+1}

|x|αν(dx)

≤
∞∑

n=1

2−α(n−1)

∫
{x:2−n≤|x|≤2−n+1}

c−1(1 − cos(2nx)
)
ν(dx)

≤ c−1
∞∑

n=1

2−α(n−1) Re(−�(2n))

≤ c−1
∞∑

n=1

2−α(n−1)
(
log(C−1) + β log(1 + 2n)

)
.

This latter series is obviously finite. �

Resuming the proof for case (c), we remark that |ϕ(u)| ≥ C(1 + |u|)−β implies for any
U > 0

Pb,νσ

(
∃u ∈ [−U,U ] : |ϕn(u)| < C

2
(1 + |u|)−β

)

≤ Pb,νσ

(
sup

|u|≤U

|ϕn(u) − ϕ(u)|(1 + |u|)β ≥ C/2

)

≤ 2

C
E[‖ϕn − ϕ‖L∞(w)]w(U)−1(1 + U)β = O

(
n−1/2w(U)−1(1 + U)β

)
.

Consequently, for Un → ∞ with w(Un)
−1U

β
n = o(n1/2) we have

lim
n→∞Pb,νσ

(
∀u ∈ [−Un,Un] : |ϕn(u)| ≥ C

2
(1 + |u|)−β

)
= 1; (6.11)

in the sequel we shall work with Un = n1/(2β)(logn)−(1/2+2δ)/β . Theorem 4.1, Lemma 6.1 and
equation (6.11) then yield

sup
|u|≤Un

|� ′
n(u) − � ′(u)| ≤ sup

|u|≤Un

{ |ϕ′
n(u) − ϕ′(u)|

|ϕn(u)| + |� ′(u)| |ϕ(u) − ϕn(u)|
|ϕn(u)|

}
(6.12)

= OP (n−1/2)w(Un)
−1 2

C
(1 + |Un|)β .
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Together with estimate (6.12) and again Lemma 6.1 we have thus established for n → ∞
sup

|u|≤Un

|� ′
n(u)| = OP

(
1 + n−1/2w(Un)

−1|Un|β
)

(6.13)
= OP (1).

We therefore get instead of (6.10) the estimate

sup
f ∈Fs

∣∣∣∣
∫

f d̂νσ,n −
∫

f dνσ

∣∣∣∣
= sup

u∈R

{
(1 + |u|)−s

(
(OP (1) + u21{|u|≥Un})n−1/2

w(u)|ϕ(u)| ∧ 1

)}
OP

(
n1/2d(2)(ϕn,ϕ) + 1

)

= sup
u∈R

{
(1 + |u|)−s

(
(OP (1) + u21{|u|≥Un})n−1/2

(log(e + |u|))−1/2−δ(1 + |u|)−β
∧ 1

)}
OP (1).

For s ≤ β the right-hand side is of order OP (U−s
n ) and we obtain

sup
f ∈Fs

∣∣∣∣
∫

f d̂νσ,n −
∫

f dνσ

∣∣∣∣ = OP

(
n−s/2β(logn)s(1/2+2δ)/β

)
,

while for s > β the parametric rate OP (n−1/2) follows.

6.3. Proof of Theorem 4.4

The lower bound will be established by looking at a decision problem between two local alter-
natives, see, for example, Korostelev and Tsybakov (1993) for the general idea. For γ > 0 and
β > 0 consider the bilateral Gamma distribution which is obtained as the law of X − Y where
X and Y are independent and both �(γ,β/2)-distributed. This bilateral Gamma distribution is
infinitely divisible with the following characteristic function and Lévy triplet:

ϕ�(u) := (1 + γ −2u2)−β/2, b� = 0, σ� = 0, ν�(dx) := β|x|−1e−γ |x| dx.

Its density f� satisfies f�(x) ≥ ce−γ |x| for some c > 0 (Küchler and Tappe (2008)). For σ ≥ 0
consider the infinitely divisible distribution with characteristic function

ϕ0(u) := ϕ�(u)eiub−σ 2u2/2, (6.14)

which has a density f0 that is a convolution of f� with a normal density and therefore still
satisfies f0(x) ≥ ce−γ |x| with some c > 0. The corresponding Lévy density satisfies ν0 = ν� .

Let us further introduce for K > 0 and ρ > 0

μK(x) := e−x2/(2ρ2) sin(Kx).
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For any β > 0 and γ > 0 we can choose ρ sufficiently small such that ν0(x) + μK(x) ≥ 0
holds for all K > 0. In this case the following characteristic function also generates an infinitely
divisible distribution:

ϕK(u) := ϕ0(u) exp

(∫
R

(eiux − 1)μK(dx)

)
= ϕ0(u) exp(F μK(u)).

Using the fact that sin(Kx) sin(ux) = (cos((K −u)x)− cos((K +u)x))/2 we obtain the follow-
ing explicit calculation of the Fourier transform of μK :

F μK(u) = i
∫ ∞

−∞
e−x2/(2ρ2) sin(Kx) sin(ux)dx

= i
∫ ∞

0
e−x2/(2ρ2) cos

(
(K − u)x

)
dx − i

∫ ∞

0
e−x2/(2ρ2) cos

(
(K + u)x

)
dx

= iρ
√

π/2
(
e−ρ2(K−u)2/2 − e−ρ2(K+u)2/2).

Note that ϕK has the same decay behaviour as ϕ0 due to lim|u|→∞ F μK(u) = 0. Therefore ν0,σ

and νK,σ lie in the class A(C,σ ) (σ > 0) or C(C, C̄, β) (σ = 0), respectively, provided C, C̄ are
large enough.

Let us now estimate the χ2-distance between the distributions with characteristic functions ϕK

and ϕ0:

χ2(fK,f0) :=
∫ ∞

−∞
(fK(x) − f0(x))2

f0(x)
dx

≤ c−1
∫ ∞

−∞
(
eγ |x|/2fK(x) − eγ |x|/2f0(x)

)2 dx

(6.15)

≤ c−1
{∫ ∞

−∞
(
eγ x/2fK(x) − eγ x/2f0(x)

)2 dx

+
∫ ∞

−∞
(
e−γ x/2fK(x) − e−γ x/2f0(x)

)2 dx

}
.

For functions g whose Fourier transform can be extended holomorphically to complex values z

with | Im(z)| < γ we have:

F (e±γ x/2g(x))(u) =
∫

g(x)e(iu±γ /2)x dx = F g
(
u ± (−i)γ /2

)
.

Using this identity in Plancherel’s formula and then the estimate |ez − 1| ≤ |z|e|Re(z)|, z ∈ C,
together with |F μK(u)| ≤ ‖μK‖L1 , we continue from (6.15):

χ2(fK,f0)

≤ c−1

2π

∫ ∞

−∞
(|ϕK(u − iγ /2) − ϕ0(u − iγ /2)|2 + |ϕK(u + iγ /2) − ϕ0(u + iγ /2)|2)du



244 M.H. Neumann and M. Reiß

= c−1

2π

∫ ∞

−∞
e−σ 2u2

∣∣∣∣3

4
+ u2

γ 2
+ iu

γ

∣∣∣∣−β(∣∣eF μK(u−iγ /2) − 1
∣∣2 + ∣∣eF μK(u+iγ /2) − 1

∣∣2)du

≤ e2‖μK‖
L1

2cπ

∫ ∞

−∞
e−σ 2u2

(
3

4
+ u2

γ 2

)−β(|F μK(u − iγ /2)|2 + |F μK(u + iγ /2)|2)du

= e2‖μK‖
L1 ρ2

4cπ

∫ ∞

−∞
e−σ 2u2

(
3

4
+ u2

γ 2

)−β(
e−ρ2(u−K)2/2 − e−ρ2(u+K)2/2)2 du.

The last line is for K → ∞ of order
∫ ∞
−∞ e−σ 2u2

(1 +u2)−β(e−ρ2(u−K)2 + e−ρ2(u+K)2
)du. In the

case σ = 0 (polynomial decay) this gives the order K−2β , whereas for σ > 0 (Gaussian part) the
order is e−σ 2K2(1+o(1)).

For n observations the distributions do not separate provided K−2β � n−1 (σ = 0) and
e−σ 2K2(1+o(1)) � n−1 (σ > 0), respectively. Consequently, when choosing Kn � n1/2β (σ = 0),
respectively Kn = c

√
log(n) with c > 0 sufficiently large (σ > 0), this closeness of the distribu-

tions implies (Korostelev and Tsybakov (1993)) that for any sequence of estimators (̂νσ,n)n we
have

lim inf
n→∞

{
P0

(

s (̂νσ,n, ν0,σ ) ≥ 
s(νKn,σ , ν0,n)/2

) + PKn

(

s (̂νσ,n, ν0,σ ) ≥ 
s(νKn,σ , ν0,n)/2

)}
> 0.

It remains to consider the loss 
s between the alternatives. Using the formula F (x2 ×
e−x2/(2ρ2))(u) = ρ3(1 − ρ2u2)e−ρ2u2/2, we calculate:


s(νK,σ , ν0,σ ) = sup
f ∈Fs

∣∣∣∣
∫ ∞

−∞
f (x)x2e−x2/2ρ2

sin(Kx)dx

∣∣∣∣
= 1

2π
sup
f ∈Fs

∣∣Im((
F f ∗ F (x2e−x2/2ρ2

)
)
(K)

)∣∣
= 1

2π
sup
f ∈Fs

∣∣∣∣
∫ ∞

−∞
Im(F f (x))ρ3(1 − ρ2(K − u)2)e−ρ2(K−u)2/2 du

∣∣∣∣
= 1

2π
ρ3 sup

u∈R

{
(1 + |u|)−s |1 − ρ2(K − u)2|e−ρ2(K−u)2/2}

� K−s .

Setting ε := lim infn→∞ Ks
n
s(νK,σ , ν0,σ )/2 > 0, we have thus shown

lim inf
n→∞ sup

νσ

Pb,νσ

(
Ks

n
s (̂νσ,n, νσ ) ≥ ε
)
> 0.

For σ = 0 (polynomial decay) this gives the desired lower bound K−s
n = n−s/(2β) for any β > 0

and for s ≤ β . For s > β a standard parametric argument shows that the minimax rate is never
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faster than n−1/2. For σ > 0 (Gaussian part) we obtain the lower bound K−s
n = (logn)−s/2,

which matches exactly the upper bound.
In the case (b), that is, where |ϕ(u)| ≥ Ce−α|u|, we consider instead of (6.14)

ϕ0(u) = ϕ�(u)ϕα(u),

where ϕα is an infinitely divisible characteristic function with |ϕ(u)| � e−α|u| such that the cor-
responding density function fα has faster exponential decay than f0. For example, a tempered
stable law (Cont and Tankov (2004), Proposition 4.2) with ν(dx) = α|x|−2e−|λ|x dx and λ > 0
sufficiently large meets these requirements. The remaining steps of the proof are exactly the
same, just replace e−σ 2u2/2 by e−α|u|.

6.4. Proof of Proposition 5.1

Note first that Eb,νσ |̃bn − b|2 = O(n−1) follows directly from EX2
1 < ∞.

To prove the result for the jump measure, we distinguish between two cases. We set �̂ ′
n(u) =

ϕ̂′
n(u)/ϕ̂n(u) and �̂ ′′

n(u) = ϕ̂′′
n(u)/ϕ̂n(u) − (ϕ̂′

n(u)/ϕ̂n(u))2.
Case 1: |ϕ(u)| ≥ 2κn−1/2

It follows from (6.6) and (6.7) that

|F ν̃σ,n(u) − F νσ (u)|

≤
{∣∣∣∣ ϕ̂n(u) − ϕ(u)

ϕ(u)

∣∣∣∣|�̂ ′
n(u)| +

∣∣∣∣ ϕ̂′
n(u) − ϕ′(u)

ϕ(u)

∣∣∣∣|�̂ ′
n(u) + � ′(u)|

}
1{|ϕ̂n(u)|≥κn−1/2}

+
{∣∣∣∣ ϕ̂n(u) − ϕ(u)

ϕ(u)

∣∣∣∣|�̂ ′′
n(u) + (�̂ ′

n(u))2| +
∣∣∣∣ ϕ̂′′

n(u) − ϕ′′(u)

ϕ(u)

∣∣∣∣
}
1{|ϕ̂n(u)|≥κn−1/2} (6.16)

+ |F νσ (u)|1{|ϕ̂n(u)|<κn−1/2}
= Tn,1 + Tn,2 + Tn,3,

say.
We obtain from the inequality

1{|ϕ̂n(u)|≥κn−1/2}
ϕ̂n(u)

≤ 1

|ϕ(u)| + |ϕ̂n(u) − ϕ(u)|
κn−1/2|ϕ(u)|

that

E
[|ϕ̂n(u)|−p1{|ϕ̂n(u)|≥κn−1/2}

] = O(|ϕ(u)|−p) (6.17)

holds for all p ∈ N. This implies, by �̂ ′
n(u) = (ϕ̂′

n(u) − ϕ′(u))/ϕ̂n(u) + � ′(u)ϕ(u)/ϕ̂n(u), that

E
[|�̂ ′

n(u)|p1{|ϕ̂n(u)|≥κn−1/2}
] = O

((
1 + |� ′(u)|)p)

. (6.18)
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Therefore, we obtain that

ETn,1 = O

(
n−1/2

|ϕ(u)|
(
1 + |� ′(u)|)2

)
. (6.19)

Since

�̂ ′′
n(u) = ϕ̂′′

n(u)

ϕ̂n(u)
− (�̂ ′

n(u))2

= ϕ̂′′
n(u) − ϕ′′(u)

ϕ̂n(u)
+ (

� ′′(u) + (� ′(u))2) ϕ(u)

ϕ̂n(u)
− (�̂ ′

n(u))2,

we obtain, in conjunction with (6.17) and (6.18), that

E
[|�̂ ′′

n(u)|21{|ϕ̂n(u)|≥κn−1/2}
] = O

((
1 + |� ′(u)|)2)

.

We conclude that

ETn,2 = O

(
n−1/2

|ϕ(u)|
(
1 + |� ′(u)|)2

)
. (6.20)

Finally, it follows from Hoeffding’s inequality for bounded random variables that

P
(|ϕ̂n(u)| < κn−1/2) ≤ P

(|ϕ̂n(u) − ϕ(u)| > |ϕ(u)| − κn−1/2)
≤ P

(|ϕ̂n(u) − ϕ(u)| > |ϕ(u)|/2
)

≤ exp(−cn|ϕ(u)|2),

for some c > 0. This yields that P(|ϕ̂n(u)| < κn−1/2) = O(n−1/2|ϕ(u)|−1), and therefore

ETn,3 = O

(
n−1/2

|ϕ(u)|
)

. (6.21)

Equations (6.16), (6.19), (6.20) and (6.21) yield the desired bound in the case |ϕ(u)| ≥ 2κn−1/2.
Case 2: |ϕ(u)| < 2κn−1/2

In contrast to Case 1, this time we use the following decomposition:

|F ν̃σ,n(u) − F νσ (u)|

≤
{∣∣∣∣ ϕ̂n(u) − ϕ(u)

ϕ̂n(u)

∣∣∣∣|� ′(u)| +
∣∣∣∣ ϕ̂′

n(u) − ϕ′(u)

ϕ̂n(u)

∣∣∣∣|� ′(u) + �̂ ′
n(u)|

}
1{|ϕ̂n(u)|≥κn−1/2}

(6.22)

+
{∣∣∣∣ ϕ̂n(u) − ϕ(u)

ϕ̂n(u)

∣∣∣∣|� ′′(u) + (� ′(u))2| +
∣∣∣∣ ϕ̂′′

n(u) − ϕ′′(u)

ϕ̂n(u)

∣∣∣∣
}
1{|ϕ̂n(u)|≥κn−1/2}

+ |F νσ (u)|1{|ϕ̂n(u)|<κn−1/2}.
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Taking into account that � ′′ is bounded and using again (6.18) as well as the trivial estimate
|F νσ (u)| ≤ νσ (R) < ∞ we obtain that

E|F ν̃σ,n(u) − F νσ (u)| = O
((

1 + |� ′(u)|)2)
,

as required.

Acknowledgements

We thank Peter Tankov for the idea of how to prove Lemma 6.1 and Shota Gugushvili for useful
discussions and hints.

References

Basawa, I.V. and Brockwell, P.J. (1982). Non-parametric estimation for non-decreasing Lévy processes.
J. Roy. Statist. Soc. Ser. B 44 262–269. MR0676217

Belomestny, D. and Reiß, M. (2006). Spectral calibration of exponential Lévy models. Finance Stoch. 10
449–474. MR2276314

Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Boca Raton: Chapman and Hall.
MR2042661

Chung, K.L. (1974). A Course in Probability Theory, 2nd ed. San Diego: Academic Press. MR1796326
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