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We consider the model Zi = Xi + εi , for i.i.d. Xi ’s and εi ’s and independent sequences (Xi)i∈N and
(εi)i∈N. The density fε of ε1 is assumed to be known, whereas the one of X1, denoted by g, is unknown.
Our aim is to estimate linear functionals of g, 〈ψ,g〉 for a known function ψ . We propose a general estimator
of 〈ψ,g〉 and study the rate of convergence of its quadratic risk as a function of the smoothness of g, fε and
ψ . Different contexts with dependent data, such as stochastic volatility and AutoRegressive Conditionally
Heteroskedastic models, are also considered. An estimator which is adaptive to the smoothness of unknown
g is then proposed, following a method studied by Laurent et al. (Preprint (2006)) in the Gaussian white
noise model. We give upper bounds and asymptotic lower bounds of the quadratic risk of this estimator.
The results are applied to adaptive pointwise deconvolution, in which context losses in the adaptive rates
are shown to be optimal in the minimax sense. They are also applied in the context of the stochastic volatility
model.

Keywords: adaptive density estimation; ARCH models; deconvolution; linear functionals; model selection;
penalized contrast; stochastic volatility model

1. Introduction

We consider the convolution model

Zi = Xi + εi . (1)

The sequences (Xi)i∈N and (εi)i∈N are independent sequences of real valued random variables.
The Xi are i.i.d. with unknown density g, the εi are i.i.d. with known density fε . The Fourier
transform of a function u ∈ L

1(R) is denoted by u∗(x) = ∫
eixt u(t)dt . The smoothness of fε is

described by parameters γ, α, ρ in the following assumption:

There exist non-negative numbers κ0, κ ′
0, γ, α and ρ such that f ∗

ε satisfies
(2)

κ0(x
2 + 1)−γ /2 exp{−α|x|ρ} ≤ |f ∗

ε (x)| ≤ κ ′
0(x

2 + 1)−γ /2 exp{−α|x|ρ},
with γ > 1 when ρ = 0. If either α = 0 or ρ = 0, we set (α,ρ) = (0,0). Since fε is known, the
constants α,ρ, κ0, κ

′
0 and γ defined in (2) are known.

When ρ = 0 in (2), the errors are called ordinary smooth errors. When α > 0 and ρ > 0,
they are called supersmooth. The standard examples for supersmooth densities are Gaussian or
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Cauchy distributions (supersmooth of order γ = 0, ρ = 2 and γ = 0, ρ = 1, respectively). An
example of an ordinary smooth density is the Laplace distribution (ρ = 0 = α and γ = 2).

In this context, many papers have studied the deconvolution problem. Many different strategies
have been developed in order to estimate the distribution g of the unobserved Xi , when g is
assumed to belong to some smoothness class defined by

S(b, a, r,L) =
{
g such that

∫ +∞

−∞
|g∗(x)|2(x2 + 1)b exp{2a|x|r}dx ≤ 2πL

}
, (3)

where b, a, r,L are some unknown non-negative numbers, such that b > 1/2 when r = 0. If
either a = 0 or r = 0, we set (a, r) = (0,0) and we say that the density is ordinary smooth.
When both a, r > 0, we call the density supersmooth.

In this paper, we are interested in the problem of estimating θ(g) = 〈ψ,g〉 = E(ψ(X1)) in
model (1), where ψ is a known integrable function with respect to the probability measure asso-
ciated to g. To study the rates of convergence of our estimators, we have to take into account the
smoothness of the function ψ . Thus ψ is assumed to satisfy:

∀x ∈ R |ψ∗(x)|2 ≤ Cψ(x2 + 1)−B exp(−2A|x|R). (4)

The parameters A and R are non-negative real numbers, and B is non-negative or such that ψ∗g∗
is integrable. In particular, they can be zero if g∗ is integrable. We work under the convention
that if either A = 0 or R = 0, then we set (A,R) = (0,0).

We exhibit the whole range of the rates of convergence for estimators of the functional θ(g),
depending on the parameters in (2)–(4). To the best of our knowledge, this general rate descrip-
tion is new. We also extend the result to different dependency contexts, in view of applications to
particular hidden Markov models or AutoRegressive Conditionally Heteroskedastic-type models.

The upper bounds for the rates follow from a squared-bias/variance compromise. To obtain this
compromise, we have to choose a smoothing parameter which depends on unknown quantities.
Therefore, a data driven model selection type procedure is proposed. It is based on minimization
of a penalized estimated criterion, which is different from the one intensively studied for mean
integrated squared errors. The difficulty here lies in finding an adequate criterion for the setting
of a linear functional and mean squared error. The proposed procedure is inspired by Laurent et
al. [24]. We give upper bounds for this adaptive method, with particular interest in the cases
where a loss in the rate appeared with respect to the non-adaptive estimator.

In the particular case of pointwise estimation, adaptive estimation in the direct problem (i.e.,
when the Xi are observed without noise) has been widely studied in the context of the Gaussian
white noise and regression models, see, for example, Lepski [26], Tsybakov [28], Cai and
Low [8,7] (for more general linear functionals), Artiles and Levit [2], Laurent et al. [24] and,
in the context of density models, Lepski and Levit [25], Butucea [3] and Artiles [1]. For the
model of Gaussian sequences Golubev and Levit [21] and Golubev [20] considered adaptive es-
timation of linear functionals in both direct and inverse problems. In the Gaussian white noise
model Goldenshluger [18] and Goldenshluger and Pereverzev [19] considered pointwise esti-
mation for the inverse problem on classes of functions similar to S(b,0,0,L). Their adaptive
procedure is based on Lepski’s procedure. Note also that in some particular inverse problems the
pointwise adaptive estimation was solved by Klemelä and Tsybakov [22] for the Riesz transform
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and by Cavalier [10] for the tomography problem. To the best of our knowledge, we present
the first work on adaptive estimation of general functionals of the form

∫
ψg in the context of

indirect observation (1).
We do not study optimality in the very general case: this would be very technical. But we study

as a first application the particular case of pointwise density deconvolution. This case corresponds
to ψ∗(t) = eitx0 , which satisfies (4), meaning that we can choose ψ as the Dirac measure at x0.
This makes sense in our problem because the definition of our estimator involves only ψ∗. We
recover in this particular case the upper bound rates obtained by Fan [16], Cator [9], Butucea [4]
and Butucea and Tsybakov [6]. Moreover, we prove the optimality in the minimax sense of the
loss due to adaptation for Sobolev smooth and supersmooth densities in the presence of ordinary
smooth noise and for supersmooth densities in the presence of supersmooth noise with r ≥ ρ and
0 < ρ ≤ 1 (in the case r < ρ no loss occurs, while the case r ≥ ρ and 1 < ρ < 2 is still open). As
a by-product we also prove in the last case that the rate of our estimator is optimal in the minimax
sense, which was not yet known in the literature.

Our estimation method is also illustrated for the discrete stochastic volatility model, where
derivatives of the Laplace transform of the volatility are estimated with good rates.

The plan of the paper is as follows: In Section 2 we define the estimators and we compute
upper bounds for their mean squared error. In Section 3 the adaptive procedure is detailed. Both
independent and β-mixing contexts are studied. In Section 4, two applications of our general
results are detailed. Section 4.1 shows the application of the results to adaptive pointwise decon-
volution, upper bounds are deduced from Section 3 and the associated lower bounds are proven
when a loss occurs. Section 4.2 presents an application to the context of the stochastic volatility
model. Most proofs are gathered in Section 5.

2. Risk bound for the estimator

We denote by 〈·, ·〉 the L
2-scalar product (〈u,v〉 = ∫

u(x)v̄(x)dx), by 
 the convolution product
of functions (u
v(x) = ∫

u(t)v(t −x)dt ) and by u∗ the Fourier transform of u ∈ L
1(R): u∗(x) =∫

eitxu(t)dt .
Recall that we want to estimate θ(g) = 〈ψ,g〉 = E(ψ(X1)) where X1 follows model (1) and

is unobserved. Only the Zi , for i = 1, . . . , n are available. In what follows we assume that{
ψg, ψ and ψ∗g∗ belong to L1(R),

fε belongs to L2(R) and is such that ∀x ∈ Rf ∗
ε (x) �= 0.

(5)

Note that the square integrability of fε requires that γ > 1/2 when ρ = 0 in (2).
Moreover, we generalize these results to distributions having Fourier transform such that∫
ψ∗g∗ < ∞. For example, we estimate g(x0) for some fixed x0 when we take ψ = δx0 , the

Dirac measure at x0, having Fourier transform equal to ψ∗(t) = e−itx0 . For estimating the deriv-
atives g(k)(x0), when they exist, we consider ψ such that ψ∗(t) = (−it)ke−itx0 .
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2.1. The estimator

We write, using (5), 〈ψ,g〉 = (1/2π)〈ψ∗, g∗〉 = (1/2π)〈ψ∗, f ∗
Z/f ∗

ε 〉. Replacing f ∗
Z(t) by its em-

pirical version (1/n)
∑n

k=1 eitZk leads to the estimator

θ̂ = 1

2πn

n∑
k=1

∫
eitZk

ψ∗(−t)

f ∗
ε (t)

dt. (6)

This estimator is explicit and seems attractive. Unfortunately, the integral diverges for many
choices of f ∗

ε ; for instance, ε is a Gaussian noise. To overcome such issues, we suggest regular-
ization and take the following estimator of θ(g):

θ̂m = 1

2πn

n∑
k=1

∫
|t |≤πm

eitZk
ψ∗(−t)

f ∗
ε (t)

dt, (7)

where m is an integer.

Remark 2.1. Let ĝm denote the projection estimator of g defined in Comte et al. [14]. Then we
can prove that θ̂m = 〈ĝm,ψ〉.

2.2. Risk bounds and rates for i.i.d. variables Xi’s

If (5) holds and if, moreover, ψ∗(−·)/f ∗
ε is integrable, then m = +∞ can be chosen and the

estimator θ̂ = θ̂∞ is unbiased and has a parametric rate.
Otherwise, we have E(θ − θ̂m)2 = b2(θ̂m) + Var(θ̂m) with b(θ̂m) = θ − E(θ̂m). As E(θ̂m) =

(2π)−1
∫
|t |≤πm

g∗(t)ψ∗(−t)dt , we obtain

b(θ̂m) = 1

2π

(∫
g∗(t)ψ∗(−t)dt −

∫
|t |≤πm

g∗(t)ψ∗(−t)dt

)
(8)

= 1

2π

∫
|t |≥πm

g∗(t)ψ∗(−t)dt.

Under (5), b(θ̂m) tends to 0 when m grows to infinity.
For the variance term, write

Var(θ̂m) = 1

4π2n
Var

(∫ πm

−πm

eiuZ1
ψ∗(−u)

f ∗
ε (u)

du

)
.

First, the following bound holds:

Var(θ̂m) ≤ 1

4π2n
E

(∣∣∣∣∫ πm

−πm

eiuZ1
ψ∗(−u)

f ∗
ε (u)

du

∣∣∣∣2)
≤ 1

4π2n

(∫ πm

−πm

|ψ∗(−u)|
|f ∗

ε (u)| du

)2

.
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Next, the variance can also be bounded as follows:

Var(θ̂m) = 1

4π2n

∫ πm

−πm

∫ πm

−πm

(
f ∗

Z(u − v) − f ∗
Z(u)f ∗

Z(−v)
)ψ∗(−u)ψ∗(v)

f ∗
ε (u)f ∗

ε (−v)
dudv

≤ 1

4π2n

∫ πm

−πm

∫ πm

−πm

ψ∗(−u)ψ∗(−v)

f ∗
ε (u)f ∗

ε (−v)
f ∗

Z(u − v)dudv.

We use the Cauchy–Schwarz inequality and Fubini’s theorem:

Var(θ̂m) ≤ 1

4π2n

(∫ πm

−πm

∫ πm

−πm

∣∣∣∣ψ∗(−u)

f ∗
ε (u)

∣∣∣∣2

|f ∗
Z(u − v)|dudv

×
∫ πm

−πm

∫ πm

−πm

∣∣∣∣ ψ∗(v)

f ∗
ε (−v)

∣∣∣∣2

|f ∗
Z(u − v)|dudv

)1/2

≤ 1

4π2n

∫
|u|≤πm

|ψ∗(−u)|2
|f ∗

ε (u)|2 du

∫
|f ∗

Z(x)|dx.

Note that since ψ is a real valued function we have |ψ∗(−t)| = |ψ∗(t)|. As
∫ |f ∗

Z(x)|dx ≤∫ |f ∗
ε (x)|dx, we have the following result:

Proposition 2.1. Assume that Cε = ∫ |f ∗
ε (x)|dx < +∞, and let θ̂m be defined by (7). Then,

under (5),

E(θ − θ̂m)2 ≤
(

1

2π

∫
|t |≥πm

|g∗(t)ψ∗(t)|dt

)2

+ 1

4π2n
min

{
Cε

∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

.

Note that we also have
∫ |f ∗

Z(x)|dx ≤ ‖f ∗
ε ‖‖g∗‖ = 2π‖fε‖‖g‖, if fε and g are square inte-

grable.

Remark 2.2. If, in addition, ∫
|ψ∗(x)/f ∗

ε (x)|2dx < +∞, (9)

then the variance of θ̂m is of order 1/n and the estimator can reach the parametric rate, for m

large enough. Note that a condition like
∫ |ψ∗(x)/f ∗

ε (x)|dx < ∞ (which ensures that (6) is well
defined) is generally stronger than (9) as convergence problems lie only near infinity. Moreover,
such conditions are fulfilled if ψ∗ decreases faster than f ∗

ε near infinity, which corresponds
to the intuitive idea that ψ is a smoother function than fε . For example, this happens if ψ is
supersmooth and fε is ordinary smooth.

Thus we can study the rates that can be deduced from the upper bounds of Proposition 2.1,
as a function of the smoothness parameters of the three functions involved, g, ψ , fε . To do so,
let us assume that ψ satisfies (4), that g belongs to S(b, a, r,L) as defined by (3) and that f ∗

ε

fulfills (2). Then, use (8), (3) and (4) to get
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b2(θ̂m) ≤
∣∣∣∣∫|x|≥πm

|g∗(x)|(1 + x2)b/2 exp(a|x|r )(|ψ∗(x)|(1 + x2)−b/2 exp(−a|x|r ))dx

∣∣∣∣2

≤
∫

|x|≥πm

|g∗(x)|2(1 + x2)b exp(2a|x|r )dx

×
∫

|x|≥πm

|ψ∗(x)|2(1 + x2)−b exp(−2a|x|r )dx

≤ LC

∫
|x|≥πm

(1 + x2)−b−B exp(−2a|x|r − 2A|x|R)dx

≤ C1m
−2b−2B−max(r,R)+1 exp

(−2a(πm)r − 2A(πm)R
)
.

On the other hand, the noise plays an important role on the variance of the estimator:

• Case (I): If (ρ = R = 0, γ < B − 1/2) or (ρ = R > 0, α = A,γ < B − 1/2) or (ρ = R,

α < A) or (ρ < R), then Var(θ̂m) ≤ C′n−1;
• Case (II): If (ρ = R = 0, γ = B − 1/2) or (ρ = R > 0, α = A,γ = B − 1/2), then

Var(θ̂m) ≤ C′ ln(m)n−1;
• Case (III): If (ρ = R = 0, γ > B − 1/2) or (ρ = R > 0, α = A,γ > B − 1/2), then

Var(θ̂m) ≤ C′m2γ−2B+1n−1;
• Case (IV): If (ρ > R) or (ρ = R > 0, α > A), then

Var(θ̂m) ≤ C′n−1m2γ−2B+1−ρ+(1−ρ)+e2α(πm)ρ−2A(πm)R .

We summarize in Table 1 the scenarios that arise when one minimizes over m the sum of the
upper bounds on the bias and the variance. Let a ∨ b = max{a, b}. Note that in cases (8) and (9)
the rate is given by

vn = min
m

{
CBm−2b−2B+1−r∨Re−2a(πm)r−2A(πm)R

+ m2γ−2B+1−ρ+(1−ρ)+e2α(πm)ρ−2A(πm)R 1

n

}
. (10)

These rates are strictly faster than (ln(n))−λ1 , that is, vn = o((ln(n))−λ1)) for any λ1 > 0, and
generally slower than n−λ2 , λ2 > 0 (negative powers of n can be obtained). For precise (but
cumbersome) formulae in similar cases, we refer to Lacour [23]. We give in Section 5 the orders
of the m associated to the rates.

Remark 2.3. Different optimal choices of m depend on the unknown parameters related to g

(see Section 5.1), hence the interest in an automatic selection procedure for m.

2.3. Extension to mixing contexts

In view of applications, it is natural to study the robustness of our method when the variables Xi

are β-mixing. To be more precise, two dependence contexts are considered.
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Table 1. Upper bounds for the minimax rates of convergence, δ1 = (2γ − 2B + 1)/{r ∨R}, δ2 = (b +B −
1/2)/(b + γ ) and δ3 = (2(b + B) − 1)/ρ

Parameters Rates Adaptive rates

ρ < R (1) n−1

ρ = R, α < A (2) n−1

(ρ = R = 0)

or
(ρ = R > 0,

α = A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ < B − 1/2

γ = B − 1/2

{
r ∨ R > 0
r ∨ R = 0

γ > B − 1/2

{
r ∨ R > 0
r ∨ R = 0

(3) n−1

(4) (ln lnn)n−1

(5) (lnn)n−1

(6) (lnn)δ1n−1

(7) n−δ2

(ln lnn)2n−1

(lnn)2n−1

(ln ln(n) lnn)δ1n−1

(n/ ln(n))−δ2

(ρ = R > 0,

α > A)
(8) vn in (10) vn(ln(n))δ4 ,0 ≤ δ4 ≤ 1

ρ > R

{
r ∨ R > 0
r ∨ R = 0

(9) vn in (10)

(10) ln(n)−δ3 ,

vn(ln(n))δ4 ,0 ≤ δ4 ≤ 1
ln(n)−δ3

(D1) In Model (1), the sequences (Xi) and (εi) are independent and the εi are i.i.d. The
sequence (Xi) is strongly stationary and β-mixing, with β-mixing coefficients denoted by
(βk)k .

(D2) In Model (1), the εi are i.i.d. and, for any given i, Xi and εi are independent (but the
sequences (Xi) and (εi) are not independent). The sequence (Zi,Xi)i∈Z is strongly sta-
tionary and β-mixing, with β-mixing coefficients denoted by (βk)k .

Context (D1) encompasses the case of particular hidden Markov models, when the noise is
additive and (Xi) is a β-mixing Markov process. As many Markov chain models or other stan-
dard models can be proved to have such mixing properties (see Doukhan [15] for a large number
of examples and study of their mixing properties), this means that our results can be applied to
many classical models. In that case, we can prove the following result:

Proposition 2.2. Consider the model (1) under (D1) with moreover
∑

k≥0 βk < +∞. Assume

that Cε = ∫ |f ∗
ε (x)|dx < +∞. Let θ̂m be defined by (7). Then

E(θ − θ̂m)2 ≤
(

1

2π

∫
|t |≥πm

|g∗(t)ψ∗(t)|dt

)2

+ Cε

4π2n
min

{∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

(11)

+ 2(
∫
|t |≤πm

|ψ∗|(t)dt)2 ∑
k≥0 βk

n
.
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In particular, if Kψ := ∫ |ψ∗(t)|dt < +∞, then the last term in the right-hand side of (11) is
of order O(1/n). Moreover, in any case, we have in (11),(∫

|t |≤πm

|ψ∗(t)|dt

)2

≤ min

{
2π‖fε‖2

∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

,

so that the last term is always less than or equal to the variance term. It follows that the rates, in
the context of mixing Xk described by assumption (D1), remain the same as in the independent
setting.

Context (D2) is related to ARCH models. Indeed, general ARCH models can be formulated
as follows: Let (ηi) be an i.i.d. noise sequence.

Yi = σiηi with σi = F(ηi−1, ηi−2, . . .), (12)

for some measurable functions F , or

Yi = σiηi with σi = F(σi−1, ηi−1) and σ0 independent of (ηi)i≥0. (13)

Many examples can be found in the literature, and conditions can be given under which the
process (Yi, σi)i∈Z is geometrically β-mixing; we refer to Comte et al. [12] for a review of the
examples and the references therein. Clearly then, Zi = ln(Y 2

i ), Xi = ln(σ 2
i ) and εi = ln(η2

i )

follow model (1) and satisfy conditions given by (D2). We can prove the following result in this
context:

Proposition 2.3. Consider the model (1) under (D2) with moreover
∑

k≥0 βk < +∞. Assume

that Cε = ∫ |f ∗
ε (x)|dx < +∞. Let θ̂m be defined by (7). Then

E(θ − θ̂m)2 ≤
(

1

2π

∫
|t |≥πm

|g∗(t)ψ∗(t)|dt

)2

+ Cε

4π2n
min

{∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

(14)

+ 2
∑

k≥0 βk

n

(∫ πm

−πm

|ψ∗|
)(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)

.

Thus, the procedure attains the rates of the independent case as soon as, for some constant C,(∫ πm

−πm

|ψ∗|
)(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)

≤ C min

{∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

.

This does not hold in general, but in particular cases. For instance, if fε satisfies (2) and if ψ

satisfies (4) together with

|ψ∗(x)|2 ≥ C′
ψ(x2 + 1)−B exp(−2A|x|R), (15)
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with either γ > max(B,1) or (A > 0, ρ > 0), then, under the assumptions of Proposition 2.3,

E(θ − θ̂m)2 ≤
(

1

π

∫ +∞

πm

|g∗ψ∗|
)2

+ K

4π2n
min

{∫ πm

−πm

|ψ∗|2
|f ∗

ε |2 ,

(∫ πm

−πm

|ψ∗|
|f ∗

ε |
)2}

, (16)

where K is a constant.
It follows from (16) that the rates given in Table 1 are preserved in this β-mixing context

whenever the εi are supersmooth.
Taking ψ∗(t) = eitx0 for any x0 (as in Section 4.1 below) allows one to provide a pointwise

density estimator that retains the rate of the independent case if γ > 1. We recover the results
obtained by the kernel estimator of van Es et al. [29]. Our results are more general since van
Es et al. [29] only consider a multiplicative Gaussian noise (implying supersmooth εi , see Sec-
tion 4.2) and do not study adaptation (which is not useful in their particular case). Other func-
tionals 〈ψ,g〉 may be estimated with our procedure.

3. Adaptive estimation

Now, we provide a strategy leading to an automatic choice of m. Note that such model selection
has an interest only in the case

∫ |ψ∗/f ∗
ε | = +∞ and

∫ |ψ∗/f ∗
ε |2 = +∞ since otherwise the

variance is of order 1/n and the rate is parametric. As ψ and fε are assumed to be known, these
conditions can be explicitly checked.

Let us describe briefly the heuristics that follow Laurent et al. [24]. Let θm = E(θ̂m) =
(2π)−1

∫ πm

−πm
g∗(t)ψ∗(−t)dt . The approximation of the bias of (θ(g) − θm)2 is obtained by re-

placing it by (θj − θm)2 for j ≥ m, j great enough, and then by (θ̂j − θ̂m)2. This approximation
in turn introduces a bias which must be corrected (see H(j,m) below). The variance term is
replaced by a penalty function pen(·) from N into R

+. This gives the theoretical criterion

Crit(m) = sup
j≥m

(θj − θm)2 + pen(m),

where pen(m) has the order of the variance term (see Section 2.2) and its empirical version is

Ĉrit(m) = sup
j≥m,j∈M

[(θ̂m − θ̂j )
2 − H(j,m)] + pen(m),

where H(j,m) is an additional bias correction and M is a subset of N. Then, we can define

m̂ = inf

{
m ∈ M, Ĉrit(m) ≤ inf

j∈M
Ĉrit(j) + 1

n

}
(17)

as the model selection procedure. It remains to find pen(·) and H(j,m) that make the procedure
work and give good rates for θ̂m̂.

Recall that Cε = ∫ |f ∗
ε (x)|dx. Let xm, be some positive weights to be chosen, and let a > 0.

We define:

pen(m) = 4

(
1 + 1

a

)
(xmσ 2

m + x2
mc2

m), (18)
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where σ 2
m = σ 2

0,m, cm = c0,m, with σ 2
j,m and cj,m defined by

σ 2
j,m = 1

2πn
min

{
Cε

∫
π(j∧m)≤|x|≤π(j∨m)

∣∣∣∣ψ∗(x)

f ∗
ε (x)

∣∣∣∣2

dx,

(∫
π(j∧m)≤|x|≤π(j∨m)

|ψ∗(x)|
|f ∗

ε (x)| dx

)2}
and

cj,m = 1

2πn

∫
π(j∧m)≤|x|≤π(j∨m)

∣∣∣∣ψ∗(x)

f ∗
ε (x)

∣∣∣∣dx.

Let also

H(j,m) = 4

(
1 + 1

a

)
(xjσ

2
j,m + x2

j c2
j,m). (19)

We shall prove the following theorem:

Theorem 3.1. Consider model (1) where (Xi)1≤i≤n and (εi)1≤i≤n are independent sequences
of i.i.d. random variables and assume that (5) is fulfilled. Let θ̂m̂ be defined by (7) and (17)–(19)
when

∫ |ψ∗/f ∗
ε | = +∞ and

∫ |ψ∗/f ∗
ε |2 = +∞. Then there exists some positive constant C(a)

depending only on some a > 0, such that

E[(θ̂m̂ − θ)2] ≤ C(a) inf
m∈M

{(∫
|x|≥πm

|ψ∗(x)g∗(x)|dx

)2

+ pen(m)

}
+ C(a)

∑
m∈M

e−xmω2
m + C′

n
,

where ω2
m = σ 2

m ∨ cm + 2(σ 2
m ∨ cm)2 and C′ is a constant.

Theorem 3.1 states that θ̂m̂ leads to an automatic tradeoff between the squared bias term
(
∫
|x|≥πm

|ψ∗(−x)g∗(x)|dx)2 and pen(m), if xm are chosen so that
∑

m e−xmω2
m = O(1/n). How-

ever, as the main term in pen(m) is clearly xmσ 2
m, where σ 2

m is the variance of θ̂m, xm represents
a loss in the variance (not necessarily in the rate).

Now, let us discuss the possible choices for xm in order to see what loss occurs, if any, when us-
ing the adaptive procedure. We assume that b+B > 1, so that we can take M = {1,2, . . . , [√n]},
where [√n] is the greatest integer less than

√
n. The possible choices for xm are discussed with

respect to the upper bounds on the variance given in Section 2.2:

• Case (II): We take xm = 2 ln(m) and the rate becomes of order (ln ln(n))2/n instead of
ln ln(n)/n or of order ln2(n)/n instead of ln(n)/n.

• Case (III): We take xm = (2γ −2B+3) ln(n) and the rate becomes of order ln ln(n) lnδ(n)/n

instead of lnδ(n)/n and of order (n/ ln(n))−[(b+B)−1/2]/(b+γ ) instead of
n−[(b+B)−1/2]/(b+γ ).
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• Case (IV): We take xm = 4α(πm)ρ . There is no loss in case (10) if ρ > 0, r = R = 0. In
the two other cases, (8) and (9), a loss in the variance occurs. If the bias is dominating (if
r > ρ), there is no loss in the rate. Otherwise, as the optimal m is less than (ln(n)/C)1/ρ ,
for some C > 0, the loss in the rate is at most of order O(ln(n)). Note that the rate being
faster than logarithmic in this case, the loss remains negligible with respect to the rate.

The adaptive rates are given in the last column of Table 1. Let us emphasize that the rates pre-
sented in both the second and third columns of Table 1 are new in such a general setup.

Moreover, if we want to extend the adaptive result to the mixing case, we can use the Bernstein
inequality given in Doukhan [15] or in Butucea and Neumann [5] provided that the mixing is
geometrical. We can prove the following corollary of Theorem 3.1:

Corollary 3.1. Consider model (1) under (D1) or under (D2) with fε satisfying (2) and ψ sat-
isfying (4) and (15) with either γ > max(B,1) or A,ρ > 0, and assume in both cases that
βk ≤ e−ck for any k ∈ N. Then if (5) is fulfilled and if

∫ |ψ∗(t)|dt < +∞,
∫ |ψ∗/f ∗

ε | = +∞ and∫ |ψ∗/f ∗
ε |2 = +∞, the result of Theorem 3.1 for θ̂m̂ defined in the same way holds with cm, cj,m

replaced by 2cm ln(n)/c, 2cj,m ln(n)/c and σ 2
m, σ 2

j,m multiplied by 2.

Clearly, the constant c appearing in the cm, cm,j is unknown, but these terms have in general
negligible orders when compared to the σ 2

m, σ 2
j,m. In that case, these terms can be omitted in the

definition of the estimator and the procedure does not depend on the mixing coefficients (see the
example in Section 4.2).

4. Applications

4.1. Pointwise estimation

Pointwise estimation of g, also called pointwise deconvolution, is a particular case of our general
setting and the most studied example in the literature. In this section, we give a full description
of minimax and adaptive rates.

We check that our estimation procedure attains the minimax and adaptive rates (when known)
in this context and that it provides the rates for the other setups. Very few results are available on
the optimality of the rates in the adaptive setup and we prove here such results.

Let � = [b, b] × [a, a] × [r, r] × [L,L] ⊂ [0,∞) × [0,∞) × (0,2] × (0,∞) be a set of
parameters λ = (b, a, r,L). We shall denote by ϕn the minimax rate of convergence over the class
S(λ); see, for example, Butucea [4] for a definition. We shall say that an estimator is adaptive
minimax over the family of classes S(λ), λ ∈ �, if it attains the minimax rate ϕn uniformly in λ.

It is not always possible to attain the minimax rate uniformly over a set of parameters �. It
may happen that there is a loss in the rate due to adaptation, see Lepski [26]. We shall say that
an estimator is adaptive for the adaptive rate φn if it attains this rate uniformly in λ over � and
if, moreover, the lower bounds hold for this rate uniformly in λ over �. For a definition, see
Butucea [3].

For pointwise estimation of g, we can take ψ(x) = δ{x0}(x) for any given x0, where δ{x0} is the
Dirac measure at x0. This implies ψ∗(t) = eitx0 and |ψ∗(t)| = 1. Therefore, the rates correspond
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to the particular case B = A = R = 0 in (4) and in Table 1. They are summarized more simply in
Table 2. Our procedures attain the rates already found in pointwise deconvolution and cover all
other previously unknown setups.

When r > 0, ρ > 0, the value of mn is not explicitly given. It is obtained as the solution of the
equation

m
2b+2γ+(1−ρ)+
n exp{2α(πmn)

ρ + 2a(πmn)
r} = O(n). (20)

Consequently, the rate of ĝmn is not easy to give explicitly and depends on the ratio r/ρ. If r/ρ

or ρ/r belongs to ]k/(k + 1); (k + 1)/(k + 2)] with integer k, the rate of convergence can be
expressed as a function of k. For explicit formulae for the rates, see Lacour [23].

These rates are known to be optimal in the minimax sense as indicated in Table 2. The case
r = 0 is studied by Fan [16], the case r = 0, ρ > 0 by Cator [9] and the case r > 0, ρ = 0 by
Butucea [4]. The rate in the case r > 0, ρ > 0, γ = 0 is proven optimal in the minimax sense
in Butucea and Tsybakov [6] for r ≤ ρ. By using their construction and by following the same
proof, we get near optimality (within a log factor) in the case r > ρ.

Very few results on adaptive pointwise estimation are available. We use |ψ∗(x)| = 1 in the
procedure described in Section 3, with cm ≤ σ 2

m and x2
mc2

m ≤ Cxmσ 2
m for all the choices of xm

that will be found. Clearly, if fε is ordinary smooth, the choice xm = (2γ + 3) ln(m) suits and if
fε is supersmooth, we can choose xm = 4α(πm)ρ . These choices coincide with the general case
detailed above for B = 0. Then we have

∑
m∈M e−xmω2

m ≤ C/n. This implies that

E[(θ̂m̂ − θ)2] ≤ C inf
m∈M

((∫ +∞

πm

|g∗|
)2

+ xm

n
min

{∫ πm

−πm

|f ∗
ε |−2,

(∫ πm

−πm

|f ∗
ε |−1

)2})
+ C′

n
.

The rates still correspond to the particular case B = A = R = 0 in (4) which are summarized in
Table 2.

Let us mention that in the cases ρ > 0, α > 0 and r > 0, a > 0 (i.e., both fε and g are super-
smooth), then xm is of order mρ . There is no loss due to adaptation if r < ρ as noticed earlier
by Butucea and Tsybakov [6], but, surprisingly, we notice a loss of order [ln(n)]ρ/r if r > ρ

associated to a rate faster than any power of logarithm. If r = ρ, the loss is logarithmic and the
rate polynomial.

The previously defined estimator θ̂mn with mn defined in Table 2 is adaptive minimax in the
cases: (r = 0 and ρ > 0) and (r > 0, ρ > 0 and r < ρ). As we already noticed, estimators θ̂m̂,
which are free of parameters, may attain a slower rate of convergence φn, that is, it may happen
that ϕn = o(φn). Therefore, we check that the loss with respect to the minimax rate, when it
occurs, is unavoidable.

Theorem 4.1. The rates φn defined in Table 2 are adaptive rates and when either ρ = 0 or
(r ≥ ρ > 0 and ρ ≤ 1) the loss with respect to the minimax rate which appears (compare in
Table 2, ϕ2

n and φ2
n) is optimal, that is, it satisfies the following lower bounds:

inf
θn

sup
λ∈�

sup
g∈S(λ)

φ−2
n Eg[|θn − θ(g)|2] ≥ c
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Table 2. Choice of mn for pointwise deconvolution and corresponding rates under assumptions (2)
and (3). Adaptive rates for comparison. Bm is abbreviated for m−2b+1−r exp(−2a(πm)r ) and Vm for
m2γ+1−ρ+(1−ρ)+ exp(2α(πm)ρ)/n

ρ = 0 ρ > 0
ordinary smooth supersmooth

r = 0
Sob.(b)

πmn = n1/(2b+2γ )

ϕ2
n = O(n−(2b−1)/(2b+2γ ))

minimax rate (Fan [16])

πmn = [ln(n)/(2α + 1)]1/ρ

ϕ2
n = O((ln(n))−(2b−1)/ρ)

minimax rate (Fan [16])

φ2
n = O((n/ ln(n))−(2b−1)/(2b+2γ ))

adaptive rate (NEW)
φ2

n = O((ln(n))−(2b−1)/ρ)

adaptive minimax rate (no loss) (Cator [9])

r > 0
C∞

πmn = [
ln(n)/2b

]1/r

ϕ2
n = O(

ln(n)(2γ+1)/r

n )

minimax rate (Butucea [3])

mn solution of (20)

= ln(n) − (ln ln(n))2

ϕ2
n = O(Bmn) : minimax rate if r < ρ

↪→ (Butucea and Tsybakov [6])
ϕ2
n = O(Vmn) : minimax rate if r ≥ ρ,

ρ ≤ 1(NEW)

φ2
n = O(

ln ln(n) ln(n)(2γ+1)/r

n )

adaptive rate (NEW)

φ2
n = O(m

ρI (r≥ρ)
n ϕ2

n)

adaptive minimax rate if r < ρ (no loss)
↪→ (Butucea and Tsybakov [6])
adaptive rate if r ≥ ρ, ρ ≤ 1 (NEW)

for n large enough, where the infimum is taken over all possible estimators θn, under the addi-
tional hypothesis that the noise density is three-times continuously differentiable and

for polynomial noise |f ′
ε(u)| ≤ C

1

|u|γ+1
, as |u| → ∞ (21)

for exponential noise |f ′
ε(u)| ≤ C|u|ρ−1 exp(−α|u|ρ), as |u| → ∞. (22)

Moreover, when r > 0, r ≥ ρ and 0 < ρ ≤ 1 the rate ϕ2
n is the minimax rate of estimation.

Remark 4.1. Note that the adaptive property of θ̂m̂ in the case r ≥ ρ is proved only for ρ ≤ 1,
which is a technical restriction. Nevertheless, it is worth noticing that, still under the restriction
that ρ ≤ 1, we obtain as a by-product in Theorem 4.1 the minimaxity of the rate for r ≥ ρ. This
is a new result since the latest result on the subject was proving minimaxity in the case r < ρ

only (see Butucea and Tsybakov [6]).

4.2. Stochastic volatility model

In this section, we consider the discrete time stochastic volatility model. Let ηi be an i.i.d. cen-
tered noise process, E(η2

i ) = 1 and let Vi be a sequence of positive random variables. Assume
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that we observe U1, . . . ,Un, where

Ui = √
Viηi, i = 1, . . . , n. (23)

Then the conditional variance of Ui given Vi equals Vi which explains that Vi is called the
volatility process. In many contexts, this process is the process of interest. We assume moreover,
(Vi) and (ηi) are independent and (Vi) is a stationary β-mixing process with β-mixing coeffi-
cients denoted by (βk). When this model is obtained as the discretization of a set of continuous
time stochastic differential equations, Vi is indeed geometrically β-mixing, and ηi ∼ N (0,1);
see Comte and Genon-Catalot [13].

Model (23) is also considered in this form by van Es et al. [29] among others, under the
assumption ηi ∼ N (0,1). Setting

Zi = ln(U2
i ), Xi = ln(Vi) and εi = ln(η2

i )

allows us to write (23) in the form (1). Then, we note that if η1 ∼ N (0,1),

f ∗
ε (x) = 2ix

√
π

�(1 + ix) and |f ∗
ε (x)| ∼|x|→+∞

√
2/ee−π|x|/2, (24)

by using the Stirling formula �(z) ∼|z|→+∞
√

2πzz−1/2e−z. We recognize (2) with γ = 0, α =
π/2 and ρ = 1.

Applying the results of Section 4.1 in the mixing context (D1) (see Proposition 2.2 and Corol-
lary 3.1), we deduce that, if V is geometrically β-mixing, we have a pointwise estimator of g,

ĝm(x) = 1

2πn

∫
|t |≤πm

eit (x+Zk)

f ∗
ε (t)

dt

for which we can propose an automatic selection of m which reaches the adaptive or adaptive
minimax rate. The resulting rate is a negative power of ln(n) if g is in a Sobolev space but it is
much faster if g is supersmooth (a case which is easy to meet; see the examples in Comte and
Genon-Catalot [13]). Therefore, we recover as a particular case, and substantially improve the
result of van Es et al. [29], who propose a non-adaptive kernel estimator of g, assuming that g is
known to be twice continuously differentiable.

Now, extensions of the class of discrete time stochastic volatility models have been studied (see
Genon-Catalot and Kessler [17] or Chaleyat-Maurel and Genon-Catalot [11]) and, in particular,
it is natural to consider more general types of distributions for η. For instance, we suppose now
that η2 follows a Gamma distribution, that is, fη2

1
(x) = (e−xxp−1/�(p))Ix>0. In that case, we

find

f ∗
ε (x) = �(ix + p)

�(p)
and |f ∗

ε (x)| ∼|x|→+∞
√

2πe−p

�(p)
|x|p−1/2e−π|x|/2, (25)

that is, ε is supersmooth with γ = p − 1/2, α = π/2 and ρ = 1 in (2). The Gaussian case
corresponds to p = 1/2. Let us recall that the Laplace transform Lu of a real valued function
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u is defined by Lu(x) = ∫
e−xtu(t)dt as soon as it exists, and the Laplace transform of a non-

negative random value Y is defined by E(e−λY ). In this context, let π denote the density of V1,
and consider that we are interested in estimating the Laplace transform of V1. In fact, our general
method provides an estimator of h(λ) = −(Lπ)′(λ) = E(V1e−λV1), that is, minus the derivative
of the Laplace transform of π. In other words, we can estimate h(λ) = 〈ψλ,g〉 = E(V1e−λV1) =
E(eX1−λeX1

). Actually we have, for λ > 0,

h(λ) = 〈ψλ,g〉, with ψλ(x) = ex−λex

,

and

ψ∗
λ (x) = λ−1−ix�(1 + ix) ∼|x|→+∞

√
2π

eλ

√|x|e−π|x|/2, (26)

(i.e., B = 1/2, A = π/2 and R = 1 in (4)). Let us define

ĥm(λ) = 1

2πn

n∑
k=1

∫
|t |≤πm

eitZk
ψ∗

λ (t)

f ∗
ε (t)

dt (27)

with f ∗
ε and ψ∗

λ given by (25) and (26). Then, taking into account the orders of f ∗
ε and ψ∗

λ , we
obtain, by applying inequality (11) of Proposition 2.2 and if p �= 3/2:

E
[(

ĥm(λ) − h(λ)
)2] ≤ Kme−π2m + K ′m(3−2p)∨0

n
+ K ′′ ∑

k≥0 βk

n
,

where K , K ′ and K ′′ are positive constants, K ′′ = 2(
∫ |ψ∗|)2. If p = 3/2, the variance term has

order ln(m)/n. Then notice that (D1) is satisfied in our model. Therefore, we get

Proposition 4.1. Consider model (23) with (D1), (25) and (26). Assume that (Xk) = (ln(Vk)) is
β-mixing with

∑
k βk < +∞, then ĥm defined by (27) satisfies, for λ > 0,

E
[(

ĥm(λ) − h(λ)
)2]

≤ Kme−π2m + K ′(m(3−2p)∨0Ip �=3/2 + ln(m)Ip=3/2)

n
+ K ′′ ∑

k βk

n
,

where K , K ′ and K ′′ are positive constants.

In other words, using Table 1 we obtain a rate of order [ln(n)](3−2p)∨1/n (i.e., always less than
ln3(n)/n), whatever the smoothness of g is.

No adaptation is required if p > 3/2. If p ≤ 3/2, the risk of the adaptive estimator is obtained
by applying Corollary 3.1 and by choosing xm = 4 ln(m):

Proposition 4.2. Consider the stochastic volatility model (23) with (D1), (25) and (26). Assume
that (Xi) is geometrically β-mixing and consider ĥm defined by (27), with m̂ defined by (17). For
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any λ > 0, and p ≤ 3/2

E
[(

ĥm̂(λ) − h(λ)
)2]

≤ K inf
m∈M

[(∫
|u|≥πm

|g∗(u)ψ∗
λ (u)|du

)2

+ (m3−2pIp<3/2 + ln(m)Ip=3/2) ln(m)

n

]
+ K ′ ln(n)

n
.

This corresponds to the case where a loss of order ln(ln(n)) occurs with respect to the non-
adaptive rate.

Remark 4.2. The Gaussian case, for p = 1/2 is not especially studied here because another strat-
egy is available. Indeed for η ∼ N (0,1), E(ei

√
2λU1) = E[E(ei

√
2λV1η1 |V1)] = E(e−λV1). There-

fore the Laplace transform of π, Lπ(λ) can be directly estimated by an empirical mean of the
exp(i

√
2λUk), which is an unbiased estimator reaching the parametric rate 1/n. The rate would

be the same for estimating h, as by differentiating,

h(λ) = E(V1e−λV1) = (−i/
√

2λ)E(U1ei
√

2λU1).

The method above reaches for p = 1/2, the rate lnw(n) ln(ln(n))/n, where 1 ≤ w ≤ 2. Therefore,
it is not optimal for any p. But the last strategy here exploits an additional assumption (η is
Gaussian) which the general methods do not take into account.

5. Proofs

5.1. Selected m for Table 1

The squared bias variance compromise is performed via the following choices of m, denoted by
mn, in the cases enumerated in Table 1:

(1) (2) and (3) (a) Case r ∨ R = 0, mn = O(n1/(2b+2B−1)) as 2b − 1 > 0 when r = 0.
(b) Case r ∨ R > 0, πmn = (ln(n)/C)1/(r∨R) for some C ≥ A + a.

(4) Optimal mn is such that 2a(πmn)
r + 2A(πmn)

R = ln(n) − (2b + 2B − 1) ln(mn). Take,
e.g., πmn = (ln(n)/C)1/(r∨R) with sufficiently large C > 0.

(5) Take mn = O(n1/(2b+2B−1)).
(6) Optimal mn is such that 2a(πmn)

r + 2A(πmn)
R = ln(n) − (2b + 2γ ) ln(mn), which

gives πmn = (ln(n)/(2a)−A/a(ln(n)/(2a))R/r − (b+γ )/(ar) ln ln(n))1/r if r ≥ R and
exchange R and r in the last expression if R > r . For an easier choice, take, for example,
mn = (ln(n)/C)1/(r∨R) for C > 0 large enough.

(7) mn = O(n1/(2b+2γ )), b + γ > 0. (8) and (9) already discussed.
(10) The optimal mn is πmn = (ln(n)/(2α) − (b + γ )/(αρ) ln ln(n))1/ρ . For a simpler form

it is sufficient to take, for example, πmn = (ln(n)/(4α))1/ρ .
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The parameters a, b, r of the unknown function appear several times to select mn. As g is un-
known, and thus a, b, r are unknown, it is not possible to select mn in all the cases where the rate
is slower than the parametric rate n−1.

5.2. Proof of Theorem 3.1

We insert here general weights xj,m such that

H(j,m) = 4

(
1 + 1

a

)
(xj,mσ 2

j,m + x2
j,mc2

j,m).

We define

�(m) = [θm − θ(g)]2 + σ 2
m + sup

j≤m

xj,mσ 2
j,m

and

mopt = inf

{
m ∈ M,Crit(m) ≤ inf

l∈M
Crit(l) + 1

n

}
.

It is sufficient to prove the following theorem:

Theorem 5.1. There exists some positive constant C(a) depending only on a, such that

E[(θ̂m̂ − θ)2] ≤ C(a)
(
Crit(mopt) + �(mopt)

)
+ C(a)

( ∑
m∈M

e−xmω2
m +

∑
j≥mopt

e−xj,mopt ω2
j,m + 1

n

)
,

where ω2
m = σ 2

m ∨ cm + 2(σ 2
m ∨ cm)2 and ω2

j,m = σ 2
j,mopt

∨ cj,m + 2(σ 2
j,mopt

∨ cj,m)2.

First, note that Theorem 5.1 implies Theorem 3.1. Indeed, note that for j ≥ m, we have σ 2
m,j ≤

σ 2
j and cm,j ≤ cj . Therefore, choosing xm,j = xj implies that

∑
j≥mopt

e−xj,mopt ω2
j,m ≤

∑
m∈M

e−xmω2
m.

Moreover Crit(m) ≤ (
∫
|x|≥πm

|ψ∗(x)g∗(x)|dx)2 + pen(m) and �(m) ≤ (
∫
|x|≥πm

|ψ∗(x) ×
g∗(x)|dx)2 + 2pen(m). This implies Theorem 3.1.

Now we establish the following lemma:
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Lemma 5.1. For all m ∈ M := {1, . . . ,mn}, for all x > 0,

P

(
Ĉrit(m) > (1 + a)Crit(m) + 4

(
1 + 1

a

)(
x + x2

))
≤

∑
j≥m,j∈M

e−xj,me−x/(σ 2
j,m∨cj,m)

.

Proof. Recall that the Bernstein inequality for a sum Sn = ∑n
k=1 Yk of i.i.d. random variables

Yk having var(Y1) ≤ v2 and ‖Y1‖∞ ≤ 1/a states that

P

((
Sn − E(Sn)

)
/n ≥

√
2uv2/n + u

an

)
≤ exp(−u).

We put for j ≥ m

Yk = Yk(j,m) = 1

2π

∫
πm≤|t |≤πj

eitZk
ψ∗(t)
f ∗

ε (t)
dt. (28)

Then Sn/n = θ̂j − θ̂m and E(Sn/n) = E(θ̂j − θ̂m) = θj − θm. Moreover, we obtain that v2/n ≤
σ 2

j,m and 1/(an) = cj,m. It follows that

P
{[(θ̂j − θ̂m) − (θj − θm)]2 ≥ (

σj,m

√
2u + cj,mu

)2} ≤ 2e−u.

Now, from the simple fact that (x +y)2 ≤ (1+1/a)x2 + (1+ a)y2 for any real numbers x, y, we
deduce by setting u = y and v = x + y that (v − u)2 ≥ (1/(1 + 1/a))v2 − (1 + a)/(1 + 1/a)u2.
Use also the fact that (A + B)2 ≤ 2(A2 + B2) for any real numbers A, B , to obtain

P{(θ̂j − θ̂m)2 ≥ (1 + a)(θj − θm)2 + 2(1 + 1/a)(2σ 2
j,mu + c2

j,mu2)} ≤ 2e−u.

Now we set u = xj,m + x/(σ 2
j,m ∨ cj,m) and we find

P

{
(θ̂j − θ̂m)2 − H(j,m) ≥ (1 + a)(θj − θm)2 + 4

(
1 + 1

a

)
(x + x2)

}
≤ 2e−xj,me−x/(σ 2

j,m∨cj,m)
.

To conclude we write

P

(
Ĉrit(m) > (1 + a)Crit (m) + 4

(
1 + 1

a

)
(x + x2)

)
≤ P

{
∃j ≥ m,j ∈ M, (θ̂j − θ̂m)2 − H(j,m) ≥ (1 + a)(θj − θm)2 + 4

(
1 + 1

a

)
(x + x2)

}
≤ 2

∑
j≥m,j∈M

e−xj,me−x/(σ 2
j,m∨cj,m)

.

This ends the proof of Lemma 5.1. �
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Now we follow the steps of the proof of Laurent et al. [24].
• We first consider the case where m̂ ≤ mopt. Following the same lines of proof, we get

P

(
1

2
(θ̂m̂ − θ(g))2 > (1 + a)Crit(mopt) + 4

(
1 + 1

a

)
(x + x2)

+ sup
j≤mopt

H(mopt, j) + (
θ̂mopt − θ(g)

)2 + 1

n
∩ {m̂ ≤ mopt}

)
(29)

≤
∑

j≥mopt

e−xj,mopt e−x/(σ 2j,mopt∨cj,mopt ).

• Now we consider the case m̂ > mopt. We apply the Bernstein inequality to

Ỹk = Ỹk(m) = 1

2π

∫
|t |≤πm

eitZk
ψ∗(t)
f ∗

ε (t)
dt,

in the same way as in Lemma 5.1. We obtain, for all m ∈ M,

P

((
θ̂m − θ(g)

)2 ≥ (1 + a)
(
θm − θ(g)

)2 + 4

(
1 + 1

a

)
(x + x2) + pen(m)

)
≤ 2e−xme−x/(σ 2

m∨cm).

This implies that

P

((
θ̂m̂ − θ(g)

)2 ≥ (1 + a)
(
θ(gm̂) − θ(g)

)2 + 4

(
1 + 1

a

)
(x + x2) + pen(m̂)

)
≤

∑
m∈M

2e−xme−x/(σ 2
m∨cm).

As supj≥m[(θ̂m − θ̂j )
2 − H(j,m)] ≥ (θ̂m − θ̂m)2 − H(m,m) = 0, we have Ĉrit(m) ≥ pen(m).

Using the inequalities pen(m) ≤ Ĉrit(m̂) ≤ Ĉrit(mopt) + 1/n, we obtain

P

((
θ̂m̂ − θ(g)

)2 ≥ (1 + a)
(
θm̂ − θ(g)

)2 + 4

(
1 + 1

a

)
(x + x2) + Ĉrit(mopt) + 1

n

)
≤

∑
m∈M

2e−xme−x/(σ 2
m∨cm).

If m̂ > mopt, then (θ̂m −θ(g))2 ≤ supj≥mopt
(θj −θ(g))2 and we apply Lemma 5.1 with m = mopt.
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This yields

P

((
θ̂m̂ − θ(g)

)2 ≥ (1 + a)

(
sup

j≥mopt

(
θj − θ(g)

)2 + 8

(
1 + 1

a

)
(x + x2)

+ (1 + a)Crit(mopt) + 1

n
∩ {m̂ > mopt}

))
≤

∑
m∈M

2e−xme−x/(σ 2
m∨cm) +

∑
j≥mopt

2e−xj,mopt e
−x/(σ 2

j,mopt
∨cj,mopt ). (30)

Let

Cmopt = 3(1 + a)Crit(mopt) + 2 sup
j≤mopt

H(mopt, j) + (1 + a) sup
j≥mopt

(
θj − θ(g)

)2 + 3

n

and

X = (
θ̂m̂ − θ(g)

)2
, Y = 2

(
θ̂mopt − θ(g)

)2
.

It follows from (29) and (30) that, for all x > 0,

P

(
X − Y > Cmopt + 24

(
1 + 1

a

)
(x ∨ x2)

)
≤

∑
m∈M

2e−xme−x/(σ 2
m∨cm) +

∑
j≥mopt

2e−xj,mopt e
−x/(σ 2

j,mopt
∨cj,mopt ).

We write that E(X) = E(XIX≥Y+Cmopt
) + E(XIX≤Y+Cmopt

) ≤ E[(X − Y − Cmopt)+] +
E(Y + Cmopt).

Then, setting Ca = 24(1 + 1/a) and Z = X − Y − Cmopt

E[Z+] =
∫ +∞

0
P(Z > t)dt = Ca

(∫ 1

0
P(Z > Cau)du +

∫ ∞

1
P(Z > Cau)du

)
= Ca

(∫ 1

0
P
(
Z > Ca(u ∨ u2)

)
du + 2

∫ ∞

1
P
(
Z > Ca(v ∨ v2)

)
v dv

)
,

E[(X − Y − Cmopt)+] ≤ Ca

∑
m∈M

2e−xm
(
σ 2

m ∨ cm + 2(σ 2
m ∨ cm)2)

+ Ca

∑
j≥mopt

2e−xj,mopt
(
σ 2

j,mopt
∨ cj,mopt + 2(σ 2

j,mopt
∨ cj,mopt)

2)

= Ca

( ∑
m∈M

2e−xmω2
m +

∑
j≥mopt

2e−xj,mopt ω2
j,mopt

)
.

The end of the proof is the same as in Laurent et al. [24].
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5.3. Proof of Proposition 2.2

The same decomposition of the risk and upper bound for the bias hold, as in Section 2.2.
Only the variance has to be re-examined. The basic idea is that, for k �= �, cov(eitZk , eisZ�) =
f ∗

ε (t)f ∗
ε (−s)cov(eitXk , eisX�) by conditioning on (Xk,X�). The additional trick is the stan-

dard covariance inequality for β-mixing variables (see, e.g., Doukhan [15]), which implies that
|cov(eitXk , eisX�)| ≤ β|k−�|.

Var(θ̂m) = 1

4π2n2

n∑
k,�=1,k �=�

∫ πm

−πm

∫ πm

−πm

cov(eitXk , eisX�)ψ∗(t)ψ∗(−s)ds dt

(31)

+ 1

4π2n2

n∑
k=1

∫ πm

−πm

∫ πm

−πm

cov(eitZk , eisZk )
ψ∗(t)
f ∗

ε (t)

ψ∗(−s)

f ∗
ε (−s)

ds dt.

The last term is the standard variance term of the independent case. The first one is bounded in
modulus by

2

4π2n2

n∑
1≤k<�≤n

∫ πm

−πm

∫ πm

−πm

|cov(eitX1, eisX�−k )||ψ∗(t)ψ∗(−s)|ds dt

≤ 1

2πn

n∑
k=1

βk

(∫ πm

−πm

|ψ∗(t)|dt

)2

.

This gives the result.

5.4. Proof of Proposition 2.3

Under (D2), we only obtain that for k < �, cov(eitZk , eisZ�) = f ∗
ε (−s) cov(eitZk , eisX�) by condi-

tioning on (X�). The covariance inequality for β-mixing variables (see, e.g., Doukhan [15]) still
applies (but to the variables (Xk,Zk) and (X�,Z�) and implies that |cov(eitZk , eisX�)| ≤ β|k−�|.
Then (31) remains true but leads, for the bound of the modulus of the last term, to:

2

4π2n2

n∑
1≤k<�≤n

∫ πm

−πm

∫ πm

−πm

|cov(eitZ1, eisX�−k )|
∣∣∣∣ψ∗(t)
f ∗

ε (t)
ψ∗(−s)

∣∣∣∣ds dt

≤ 1

2πn

n∑
k=1

βk

(∫ πm

−πm

|ψ∗(t)|dt

)(∫ πm

−πm

∣∣∣∣ψ∗(t)
f ∗

ε (t)

∣∣∣∣dt

)
.

This gives inequality (14).
For the proof of (16), the result follows from the inequality(∫ πm

−πm

|ψ∗|(t)dt

)(∫ πm

−πm

|ψ∗/f ∗
ε |(t)dt

)
≤

(∫ πm

−πm

|ψ∗/f ∗
ε |(t)dt

)2
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and the fact that the new mixing term is always negligible with respect to the independent vari-
ance term if ε is supersmooth (case A,ρ > 0). If ε is ordinary smooth, then we only have to
study when m(−B+1)++γ−B+1 is less than m2γ−2B+1, which occurs as soon as γ > max(B,1).

5.5. Proof of Corollary 3.1

The main difference with respect to the proof of Theorem 3.1 lies in the Bernstein inequality
which must be written in the mixing context. For geometrically mixing variables (and q = qn =
2 ln(n)/c if βk ≤ e−ck), we get from Theorem 4, page 36 in Doukhan [15] that

P

(
Sn − E(Sn)

n
≥

√
2uṽ2

n
+ 2 ln(n)u

can

)
≤ e−u + 2

n2
,

with ‖Y1‖∞ ≤ 1/a and (1/q)Var
(∑q

k=1 Yk

) ≤ ṽ2.

In all cases, |M| ≤ n, so that summing up the residuals of order 1/n2 will give negligible
terms of order 1/n. Next, the variables are still given by (28) with cj,m and cm the same as
previously multiplied by 2 ln(n)/c. This gives c̃j,m = (2 ln(n)/2)cj,m and c̃m = (2 ln(n)/c)cm.
At last, it follows from the above computation of Var(θ̆m) that the new variance terms denoted
by σ̃ 2

j,m, σ̃ 2
m can be bounded under (D1) by

σ̃ 2
j,m ≤ σ 2

j,m + 1

πn

∑
k≥1

βk

(∫
π(m∧j)≤|t |≤π(m∨j)

|ψ∗(t)|dt

)2

,

and analogously for σ̃ 2
m. It follows from our set of assumptions that σ̃ 2

j,m ≤ σ 2
j,m + c/n ≤ 2σ 2

j,m

and σ̃ 2
m ≤ 2σ 2

m. The case (D2) is analogous under the given more restrictive assumptions. The
Corollary 3.1 follows.

5.6. Proof of Theorem 4.1

We describe first the general procedure for proving the theorem and postpone details of construc-
tions and proofs to Section 5.6. As the adaptation loss is different according to whether r = 0
or r �= 0, respectively ρ = 0 or ρ �= 0, explicit constructions are needed for each of the follow-
ing setups: (1) r = 0, ρ = 0; (2) b = 0, r > 0, ρ = 0; (3) b = 0, r > 0, 0 < ρ ≤ 1 and r ≥ ρ.
We take b = 0 without loss of generality, in order to simplify polynomial factors in our explicit
constructions.

Typically, we construct two probability densities g0 ∈ S(λ) and g1,n ∈ S(λ) where λ, λ ∈ �.
Moreover

g1,n(x) = g0(x) + G(x − x0,m) for m = mn → ∞ with n and
∫

G(·,m) = 0 ∀m.

Note that the likelihoods of the model become f Z
0 = g0 
 fε under g0 and

f Z
1,n(x) = [g1,n 
 fε](x) = f Z

0 (x) + [G(·,m) 
 fε](x − x0)
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under g1,n. Then

inf
θn

sup
λ∈�

sup
g∈S(λ)

φ−2
n,λEg[|θn − θ(g)|2]

≥ inf
θn

max
{
φ−2

n,λ
Eg0[|θn − θ(g0)|2], φ−2

n,λEg1,n
[|θn − θ(g1,n)|2]

}
≥ inf

Tn

max
{
q2
nEg0[T 2

n ],Eg1,n
[|Tn − G(0,m)/φn,λ|2]

}
,

where qn = φn,λ/φn,λ → ∞ when n → ∞, with a proper choice of λ, λ and Tn = (θn −
θ(g0))/φn,λ.

From now on we denote P0 = Pg0 , E0 = Eg0 and P1 = Pg1,n
, E1 = Eg1,n

. Following Theorem 6
in Tsybakov [28] we can deduce that, if |G(0,m)/φn,λ| ≥ c > 0 and if for some fixed 0 < ε < 1
and τ > 0

P1

(
dP0

dP1
≥ τ

)
≥ 1 − ε, (32)

then

inf
Tn

max
{
q2
nE0[T 2

n ],E1[|Tn − G(0,m)/φn,λ|2]
} ≥ τq2

nε2c4(1 − ε)2

τq2
nε2c2 + (1 − ε)2c2

. (33)

If we can choose τ = τn such that τnq
2
n → ∞ with n, then the bound from below in (33) tends

to c2(1 − ε)2 so it will be larger than c2(1 − ε)4 > 0 for n large enough. Note also that (33) may
provide the exact asymptotic constant in case c → 1 and P1(dP0/dP1 ≥ τn) → 1 as n → ∞.

In order to deal with (32), we proceed as follows:

P1

(
dP0

dP1
≥ τ

)
= P1

(
n∏

i=1

g0 
 fε

g1,n 
 fε

(Yi) ≥ τ

)
= P1

(
n∑

i=1

ln

(
1 − G(· − x0) 
 fε

g1,n 
 fε

(Yi)

)
≥ ln(τ )

)

= P1

(∑n
i=1 Zi,n − nE1(Z1,n)

(nVar1(Z1,n))1/2
≥ ln(τ ) − nE1(Z1,n)

(nVar1(Z1,n))1/2

)
,

where Zi,n = ln(1 − [G(· − x0) 
 fε](Yi)/g1,n 
 fε(Yi)) form a triangular array of independent
variables. Denote

Un :=
∑n

i=1 Zi,n − nE1(Z1,n)

(nVar1(Z1,n))1/2
.

We shall prove, for each setup, Lyapunov’s central limit theorem for Un. Moreover, we give a
lower bound E1(Z1,n) ≥ −ceκn and an upper bound for Var1(Z1,n) ≤ cvκn, where κn is such that

χ2(g0 
 fε, g1,n 
 fε) :=
∫

(g1,n 
 fε − g0 
 fε)
2

g1,n 
 fε

≤ κn
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as n → ∞. Choose then τn → 0 such that

un := ln(τn) + cenκn

(cvnκn)1/2
→ −∞

with n, giving that P1(Un ≥ un) ≥ 1 − ε for some 0 < ε < 1 and large enough n and thus con-
cluding the proof of the theorem.

Now, we study in more detail the different cases.

(1) Case r = 0, ρ = 0 and � = [b, b] × [L,L] ⊂ (1/2,∞) × (0,∞).
Let us choose g0 in the class S(b,L/2) such that g0 > 0 and g0(x) ≥ c|x|−2 as |x| → ∞. We

choose next the function G such that G(x,m) = m−b+1/2G(mx) and with G∗ at least three-times
continuously differentiable having the property

I (1/2 ≤ |u| ≤ 3/4)

c(1 + u2b)
≤ G∗(u) ≤ I (1/4 ≤ |u| ≤ 1)

c(1 + u2b)
.

Here, m = (c0 ln(n)/n)−1/(2b+2γ ). Note that G∗(0) = ∫
G = 0. First, g1,n is a positive func-

tion with an integral equal to 1 and it belongs to S(b,L). Indeed, for each fixed x we have
G(x,m) → 0 when n → ∞ and as G∗ is three times continuously differentiable that means
|G(x,m)| ≤ O(|x|−3) = o(g0(x)) as |x| → ∞, giving that g1,n ≥ 0 for n large enough. More-
over, (∫

|g∗
1,n(u)|2|u|2b du

)1/2

≤
(∫

|g∗
0(u)|2|u|2b du

)1/2

+ m−b−1/2
(∫

1/4≤|u|/m≤1
|G∗(u/m)|2|u|2b du

)1/2

≤
√

2πL/2 + C

c

(∫ 1

1/4

|u|2b

(1 + u2b)2
du

)1/2

≤ (2πL)1/2,

for c > 0 large enough. Second,∣∣∣∣G(0,m)

φn,b

∣∣∣∣ = (φn,b)
−1m−b+1/2 1

2π

∫
G∗(u)du ≥ c

−b+1/2
0

2π

∫ 3/4

1/2
du ≥ c1 · c−b+1/2

0 > 0.

We shall prove that (32) holds with τ = n−(2γ+1)/(2b+2γ ) and together with the fact that

τq2
n = τ

φ2
n,b

φ2
n,b

= τ

(
ln(n)

n

)−(2γ+1)(b−b)/((2b+2γ )(2b+2γ ))

= (ln(n))−(2γ+1)(b−b)/((2b+2γ )(2b+2γ ))n(2γ+1)/(2b+2γ )(b+γ )/(b+γ )

tends to infinity, with n, the proof of (33) and hence of the theorem is finished.
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We can prove that for each x0

sup
x

|[G(m(· − x0)) 
 fε](x)|
f Z

0 (x)
= o(1), as n → ∞, (34)

therefore f Z
1,n(x) = f Z

0 (x)(1 + o(1)), where o(1) → 0, n → ∞ uniformly in x. As we chose

g > 0 then f Z
0 > 0 and together with the previous statement it means that for any M > 0 we

can find a constant c2 > 0 such that f Z
1,n ≥ 1/c2 on [−M,M]. Moreover, for some M > 0 large

enough, see Butucea and Tsybakov [6], f Z
0 (x) = g0 
 fε(x) ≥ C2/x

2, as |x| ≥ M.

Therefore, for large enough M > 0, f Z
1,n(x) ≥ 1/(c3|x|2), for some constant c3 > 0 and for

|x| ≥ M . Finally, we deal with

χ2(f Z
0 , f Z

1,n) = m−2b+1
∫ [G(m(· − x0)) 
 fε]2(x)

f Z
1,n(x)

dx

≤ m−2b+1
(

c2

∫
|x|≤M

[
G

(
m(· − x0)

)

 fε

]2
(x)dx

+ c3

∫
|x|>M

|x|2[G(
m(· − x0)

)

 fε

]2
(x)dx

)
,

say T1 and T2, for some fixed, large M > 0. Then

T1 ≤ m−2b−1 c2

2π

∫ ∣∣∣∣G∗
(

u

m

)
f ∗

ε (u)

∣∣∣∣2

du

(35)

≤ c4m
−2b−1

∫ m

m/4

1

|u|2γ
du ≤ c5m

−2b−2γ ≤ c6
c0 ln(n)

n
.

For T2 we follow the similar proof in Butucea and Tsybakov [6] and use condition (21) to get

T2 ≤ m−2b+1 c3

2π

∫ ∣∣∣∣ ∂

∂u

(
1

m
G∗

(
u

m

)
f ∗

ε (u)

)∣∣∣∣2

du

(36)
≤ c6m

−2b−1m−2γ = o(T1), n → ∞.

Therefore, from (35) and (36) we have χ2(f Z
0 , f Z

1,n) ≤ κn, with κn = cχc0 ln(n)/n. We use
the fact that −u(1 + u) ≤ ln(1 − u) ≤ −u for all u ∈ [0,1/2] and that (34) implies that
|u| = |[G(m(· − x0)) 
 fε](x)|/f Z

1,n(x) ≤ 1/2 for n large enough to get

E1[Z1,n] =
∫

ln

(
1 − [G(·,m) 
 fε](x − x0)

f Z
1,n(x)

)
f Z

1,n(x)dx

≥ −
∫

[G(·,m) 
 fε](x − x0)dx −
∫ [G(·,m) 
 fε]2(x − x0)

f Z
1,n(x)

dx

≥ −χ2(f Z
0 , f Z

1,n) ≥ −κn,



94 C. Butucea and F. Comte

for n large enough. Indeed, note that
∫

G(·,m) = 0 and therefore
∫ [G(·,m)
fε](x −x0)dx = 0.

Moreover,

Var1(Z1,n) ≤ E1(Z
2
1,n) =

∫
ln2

(
1 − [G(·,m) 
 fε](x − x0)

f Z
1,n(x)

)
f Z

1,n(x)dx

≤
∫ [G(·,m) 
 fε]2(x − x0)

f Z
1,n(x)2

(
1 + [G(·,m) 
 fε]2(x − x0)

f Z
1,n(x)

)2

f Z
1,n(x)dx

≤ cvχ
2(f Z

0 , f Z
1,n) ≤ cvκn,

as by (34): supx |f Z
0 (x)/f Z

1,n(x)| is bounded from above by some constant depending only on g0
and fε . By similar calculations, we also check that

Var1(Z1,n) ≥ 1

2
E1(Z

2
1,n) = 1

2

∫
ln2

(
1 − [G(·,m) 
 fε](x − x0)

f Z
1,n(x)

)
f Z

1,n(x)dx

≥ 1

2

∫ [G(·,m) 
 fε]2(x − x0)

f Z
1,n(x)

dx

≥ 1

2‖f Z
1,n‖∞

∫
[G(·,m) 
 fε]2(x − x0)dx ≥ c′

vκn

and that

n∑
i=1

E1

∣∣∣∣Zi,n − E1(Zi,n)√
n · V1(Z1,n)

∣∣∣∣4

≤ nE1|Z1,n|4
(c′

v)
2n2κ2

n

≤ n
∫ [G(·,m) 
 fε]4(x − x0)dx(1 + o(1))

(c′
v)

2 ln2(n)

≤ nc
∫ |G∗(u,m)f ∗

ε (u)|2 du(
∫ |G∗(u,m)f ∗

ε (u)|du)2

(c′
v)

2 ln2(n)

≤ c
ln(n) · m−2b−2γ+1

ln2(n)
= o(1),

as n → ∞ and since b > 1/2. Next we apply Lyapunov’s central limit theorem for triangular
arrays, see Petrov [27], to get P1(Un ≥ un) ≥ 1 − ε, as, when n → +∞,

0 ≥ un = ln(τ ) + κn√
cvκn

= −(2γ + 1)/(2b + 2γ ) + cχc0√
cvcχc0

√
ln(n) → −∞.

(2) Case α, r > 0 and ρ = 0. Without loss of generality we consider b = 0.
In this case, take some a ∈ [a, a] and g0 belonging to S(a, r,L/2) such that g0 > 0 and

g0(x) ≥ c|x|−2 as |x| → ∞. Let us consider a function G as for the case 1 such that G∗ is
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three-times continuously differentiable having the property

I (π/2 ≤ |u| ≤ 3π/4)

c(1 + u4)
≤ G∗(u) ≤ I (π/4 ≤ |u| ≤ π)

c(1 + u4)
.

Next, g1,n(x) = g0(x) + √
c0 ln lnn/nmγ+1/2G(m(x − x0)), where m is such that

c0
ln lnn

n
m2γ+r−1 exp(2a(πm)r) ≤ 2πL/2. (37)

Note that this gives a first-order approximation of m = (logn/(2a))1/r . Then, similarly to the
case 1, g1,n is a proper density function as soon as n is large enough and for some M > 0 we
have f Z

1,n(x) = g1,n ∗ fε(x) ≥ C|x|−2 for all |x| ≥ M .

By using (37), we get that g1,n belongs to S(a, r,L) for any a ≥ a. Next, |g1,n(x0) −
g0(x0)|/φn,a,r = c0|G(0)| > 0 and we get, in the same way as for case 1,

χ2(f Z
0 , f Z

1,n) = c0
ln lnn

n
m2γ+1

∫ [G(m(· − x0)) 
 fε]2(x)

f Z
1,n(x)

dx

≤ c0
ln lnn

n
m2γ+1c1

∫ [
G

(
m(· − x0)

)

 fε

]2
(x)dx

(
1 + o(1)

)
≤ c0cχ

ln lnn

n
=: κn.

Let us choose c0 small such that c0cχ < (r − r)(2γ + 1)/(rr) and let ξ and τ be defined by

c0cχ < ξ <
r − r

rr
(2γ + 1) and τ = ln(n)−ξ .

On the one hand, this implies τq2
n → ∞ with n. On the other hand, after checking again that

Lyapunov’s central limit theorem holds in this case we get

P1(dP0/dP1 ≥ τ) ≥ P1(Un ≥ un) ≥ 1 − ε,

as un = (− ln(τ ) + nκn)(cvnκn)
−1/2 = (−ξ + c0cχ )(cvc0cχ )−1/2√ln ln(n) → −∞.

(3) Case r > 0, 0 < ρ ≤ 1 and r ∈ [r, r] such that r ≥ ρ. Without loss of generality we
consider b = 0.

As in the second case, take some a ∈ [a, a] and g0 belonging to S(a, r,L/2) such that g0 > 0
and g0(x) ≥ c|x|−2 as |x| → ∞. Let also G be a function such that G∗ is three-times continu-
ously differentiable with a bounded first derivative and having the property

I (π/2 ≤ |u| ≤ 3π/4) ≤ G∗(u) ≤ I (π/4 ≤ |u| ≤ π).

Next, define g1,n via its Fourier transform

g∗
1,n(u) = g∗

0(u) + c0
e−α(πm)ρ

√
n

mρ−1/2e2α|u|ρ G∗(|u|ρ − (πm)ρ
)
eiux0,
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where m is the solution of the equation

2a(πm)r + 2α(πm)ρ = logn − (log logn)2. (38)

We stress the fact that m is no longer a scaling parameter of the function G in this construction.
Again, as previously, we can check that g1,n is a proper probability density, as soon as n is

large enough, and that for some M > 0 we have f Z
1,n(x) ≥ C|x|−2 for all |x| ≥ M .

Let us check that g1,n belongs to S(a, r,L). It is enough to bound from above

(2πn)−1
∫

c2
0e−2α(πm)ρ m2ρ−1e4α|u|ρ ∣∣G∗(|u|ρ − (πm)ρ

)∣∣2e2a|u|r du

≤ (2πn)−1c2
0m

2ρ−1e−2α(πm)ρ
∫

π/4≤|u|ρ−(πm)ρ≤3π/4
e4α|u|ρ+2a|u|r du

≤ (2πn)−1c2
0c1m

2ρ−1e−2α(πm)ρ (πm)1−re4α(πm)ρ+2a(πm)r

≤ c2
0c2n

−1m2ρ−re2a(πm)r+2α(πm)ρ ,

which tends to 0 when m is defined by (38). Next,

|g1,n(x0) − g0(x0)| = (2π
√

n)−1
∣∣∣∣∫ c0e−α(πm)ρ mρ−1/2e2α|u|ρ G∗(|u|ρ − (πm)ρ

)
du

∣∣∣∣
≥ c0m

ρ−1/2 e−α(πm)ρ

2π
√

n

∫
π/2≤|u|ρ−(πm)ρ≤π

e2α|u|ρ du

≥ c0c3m
1/2 eα(πm)ρ

2π
√

n

and we can check similarly to Butucea and Tsybakov [6] that for m solution of (38) this sequence
is equivalent to φn,a,r when n → ∞. Finally

χ2(f Z
0 , f Z

1,n) = c2
0

∫
[(g1,n − g0) 
 fε]2(x)/f Z

1,n(x)dx

≤ c2
0

{∫
|x|≤M

[(g1,n − g0) 
 fε]2(x)dx +
∫

|x|>M

x2[(g1,n − g0) 
 fε]2(x)dx

}
,

say T1 + T2. Then

T1 ≤ c2
0c4n

−1e−2α(πm)ρ m2ρ−1
∫ ∣∣G∗(|u|ρ − (πm)ρ

)
f ∗

ε (u)
∣∣2 du

≤ c2
0c5n

−1e−2α(πm)ρ m2ρ−1
∫

π/4≤|u|ρ−(πm)ρ≤3π/4
e2α|u|ρ du = c2

0c6(πm)ρ/n.
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Moreover, under the additional assumption (22) that |∂f ∗
ε (u)/∂u| ≤ O(1)|u|ρ−1 exp(−α|u|ρ) as

|u| → ∞,

T2 ≤ c2
0c7n

−1e−2α(πm)ρ m2ρ−1
∫ ∣∣∣∣ ∂

∂u

[
G∗(|u|ρ − (πm)ρ

)
f ∗

ε (u)
]∣∣∣∣2

du

≤ c8n
−1e−2α(πm)ρ m2ρ−1

∫
π/4≤|u|ρ−(πm)ρ≤3π/4

|u|2(ρ−1)e2α|u|ρ du ≤ c9
(πm)3ρ−2

n
= o(T1),

for ρ ≤ 1 and n large enough. Thus χ2(f Z
0 , f Z

1,n) ≤ c2
0cχ (πm)ρ/n =: κn.

Let c0 be small such that c2
0cχ < 2α and let ξ and τ be defined by c2

0cχ < ξ < 2α and τ =
e−ξ(π ln(n)/(2a))ρ/r

. We have τφ2
n,a,r/φ

2
n,a,r ≥ (ln(n))A exp((−ξ + 2α)(ln(n)/(2a))ρ/r +

B(ln(n))C) tends to infinity for some real numbers A, B, C, as C < ρ/r and ξ < 2α. We check
that Lyapunov’s theorem holds and that

un = − ln(τ ) + nκn√
cvnκn

= −ξ(π ln(n)/(2a))ρ/r + c2
0cχ (πm)ρ

c0
√

cvcχ (πm)ρ/2
→ −∞

with n, as m defined by (38) is larger than (ln(n)/(2a))1/r .
The proof that ϕn is the minimax rate of estimation in this case repeats the proof of (3) with

modified choice of g1,n via its Fourier transform

g∗
1,n(u) = g∗

0(u) + c0
e−α(πm)ρ

√
n

m(ρ−1)/2e2α|u|ρ G∗(|u|ρ − (πm)ρ
)
eiux0,

where m is the solution of equation (38).
This gives the rate |g1,n(x0)−g0(x0)| ≥ c0c3m

−(ρ−1)/2eα(πm)r /
√

n, which is equivalent to Vm̆

for n large enough and nχ2(f Z
0 , f Z

1,n) ≤ c2
0c6 + c9m

2ρ−2 ≤ c2
0cχ . Thus, the rate ϕn is a minimax

rate of convergence for r ≥ ρ, ρ ≤ 1.
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