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We build a sequence of empirical measures on the space D(R, R9) of R¥-valued cadlag functions on R
in order to approximate the law of a stationary R9-valued Markov and Feller process (X;). We obtain some
general results on the convergence of this sequence. We then apply them to Brownian diffusions and solu-
tions to Lévy-driven SDE’s under some Lyapunov-type stability assumptions. As a numerical application of
this work, we show that this procedure provides an efficient means of option pricing in stochastic volatility
models.
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1. Introduction

1.1. Objectives and motivations

In this paper, we deal with an R?-valued Feller Markov process (X;) with semigroup (P;);>0 and
assume that (X;) admits an invariant distribution vy. The aim of this work is to propose a way to
approximate the whole stationary distribution P,,, of (X,). More precisely, we want to construct a

sequence of weighted occupation measures W"(w, da)),>1 on the Skorokhod space D(R, Rd)
n—-+00

such that V™ (w, F) "= [ F(a)P,,(da) a.s. for a class of functionals F:D(R, R?) which
includes bounded continuous functionals for the Skorokhod topology.

One of our motivations is to develop a new numerical method for option pricing in stationary
stochastic volatility models which are slight modifications of the classical stochastic volatility
models, where we suppose that the volatility evolves under its stationary regime.

1.2. Background and construction of the procedure

This work follows on from a series of recent papers due to Lamberton and Pages ([12,13]),
Lemaire ([14,15]) and Panloup ([18-20]), where the problem of the approximation of the in-
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variant distribution is investigated for Brownian diffusions and for Lévy-driven SDE’s.! In these
papers, the algorithm is based on an adapted Euler scheme with decreasing step (yx)r>1. To be
precise, let (I';,) be the sequence of discretization times: ' =0, I';, = ZZ:] yx foreveryn > 1,
and assume that I',, — +o00 when n — +o0. Let (X r,)n>0 be the Euler scheme obtained by
“freezing” the coefficients between the I',;’s and let (1,),>1 be a sequence of positive weights
such that H, := Y ;_, nx — +00 when k — +o00. Then, under some Lyapunov-type stability
assumptions adapted to the stochastic processes of interest, one shows that for a large class of
steps and weights (1, ¥u)n>1,

n——+00

1 < _
Vp(w, f) :=Fanf(er_1) — /f(X)VO(dX) as., (D
" k=1

(at least)? for every bounded continuous function f.

Since the problem of the approximation of the invariant distribution has been deeply studied
for a wide class of Markov processes (Brownian diffusions and Lévy-driven SDE’s) and since the
proof of (1) can be adapted to other classes of Markov processes under some specific Lyapunov
assumptions, we choose in this paper to consider a general Markov process and to assume the
existence of a time discretization scheme ()_( ;. )k>0 such that (1) holds for the class of bounded
continuous functions. The aim of this paper is then to investigate the convergence properties of a
functional version of the sequence (v, (@, do));>1.

Let (X;) be a Markov and Feller process and let (}_(t)tZO be a stepwise constant time dis-
cretization scheme of (X;) with non-increasing step sequence ();),>1 satisfying

n
. L n—+400
im oy =0, Tye= D n " oo, )
k=1
Letting I'g := 0 and )_(o =Xxq € R?, we assume that
X, =Xr,  Viellp Dol 3)

and that (X r,)n>0 can be simulated recursively.

We denote by (F;);>0 and (-}:t)zzo the usual augmentations of the natural filtrations
(0(Xs,0<s<1))>0 and (0(X;,0<s < 1)):>0, respectively.

For k > 0, we denote by (X ,(k)),zo the shifted process defined by

o -
x® = Xp .

INote that computing the invariant distribution is equivalent to computing the marginal laws of the stationary process
(X;) since vy Py = v for every ¢ > 0.

2The class of functions for which (1) holds depends on the stability of the dynamical system. In particular, in the Brown-
ian diffusion case, the convergence may hold for continuous functions with subexponential growth, whereas the class of
functions strongly depends on the moments of the Lévy process when the stochastic process is a Lévy-driven SDE.
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In particular, X ,(O) = X,. We define a sequence of random probabilities (v(”) (w,da))p>1 on
D(R, RY) by

1 n
(n) —_
v (w,da) = H, ,; Ml 60 () oy

where (nx)r>1 is a sequence of weights. For ¢ > 0, (v,(")(a), dx)),>1 will denote the sequence of
“marginal” empirical measures on R? defined by

n
) 1
v (@, dx) = H, Z el 36D () edry
k=1

1.3. Simulation of (v (@, F)),>1

For every functional F:D(R,,RY) — R, the following recurrence relation holds for every
n>1:
v (@, F) =v® (@, F) + 2L (F (X (@) =™ (o, F)). @)
Hn+1
Then, if T is a positive number and F:D(R, R?) — R is a functional depending only on the
trajectory between 0 and T, (v (w, F)),>1 can be simulated by the following procedure.
Step 0. (i) Simulate (X”);~¢ on [0, T], that is, simulate (X, )x=0 for k =0,..., N0, T),
where

N, T):=inflk >n, Ty — T, > T}

(5
=max{k>0,Ty—-T, <T}, n>0,T >0.

Note that n — N (n, t) is an increasing sequence since ();,) is non-increasing, and that
vty —Th =T <TUnw,1)+1 — .

(ii) Compute F((X,”)1=0) and v (o, F). Store the values of (Xr,) fork=1,..., N(0, T).

Step n (n > 1). (i) Since the values (X1, )k>0 are stored fork =n, ..., N(n — 1, T), simulate
(Xr k=0 fork=N(n —1,T)+1,..., N(n, T) in order to obtain a path of (X" on [0, T].

(i) Compute F(()_(,(n))tzo) and use (4) to compute v®+D () F). Store the values of ()_(rk) for
k=n+1,...,N@n,T).

Remark 1. As shown in the description of the procedure, one generally has to store the vector
(X Tpsvees Xr vyl at time n. Since (y;,) is a sequence with infinite sum that decreases to 0, it
follows that the size of this vector increases “slowly” to 4-o0. For instance, if y,, = Cn™° with
p € (0, 1), its size is of order n”. However, it is important to remark that even though the number
of values to be stored tends to 400, that is not always the case for the number of operations
at each step. Indeed, since X **1 is obtained by shifting X, it is usually possible to use, at
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step 1 + 1, the preceding computations and to simulate the sequence (F(X™)),~¢ in a “quasi-
recursive” way. For instance, such remark holds for Asian options because the associated pay-off
can be expressed as a function of an additive functional (see Section 5 for simulations).

Before outlining the sequel of the paper, we list some notation linked to the spaces D(R., RY)
and D([0, T], R4 ) of cadlag R9-valued functions on Ry and [0, T], respectively, endowed with
the Skorokhod topology. First, we denote by d; the Skorokhod distance on D([0, 1], Rd) defined

for every a, B € D([0, 1], RY) by
A1) — A(s)
log<7t p ) )},

where A denotes the set of increasing homeomorphisms of [0, 1]. Second, for T > 0,
o7 DR, R?) > D([0, 1], RY) is the function defined by (¢7())(s) = a(sT) for every s €
[0, 1]. We then denote by d the distance on D(R., R?) defined for every o, B € D(R,, RY) by

di(a, B) = inf {max( sup |a(t) — B(A(2))|, sup
rEA] ]

tel0,1 O<s<t<l

+00
d(e, p) = /0 e (1 A di (@), $,(B)) dr. ©)

We recall that (D(R,, R), d) is a Polish space and that the induced topology is the usual Sko-
rokhod topology on D(R., RY) (see, e.g., Pages [16]). For every T > 0, we set

Dr={)o@m,0<ux<s),

s>T

where g : DR, R?) — R4 is defined by s () = a(s). For a functional F:D(R., RY) > R,
Fr denotes the functional defined for every o € D(R,, RY) by

Fr@)=F@’)  witha’ t)=a(t AT) Vit >0. (7

Finally, we will say that a functional F :D(R., R4 ) = R is Sk-continuous if F is continuous for

the Skorokhod topology on D(R, R) and the notation “g;” will denote the weak convergence
on D(R,, RY).

In Section 2, we state our main results for a general R?-valued Feller Markov process. Then,
in Section 3, we apply them to Brownian diffusions and Lévy-driven SDE’s. Section 4 is devoted
to the proofs of the main general results. Finally, in Section 5, we complete this paper with an
application to option pricing in stationary stochastic volatility models.

2. General results

In this section, we state the results on convergence of the sequence (v (w, da))n>1 when (X;)
is a general Feller Markov process.
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2.1. Weak convergence to the stationary regime
As explained in the Introduction, since the a.s. convergence of (v(()n)(a), dx)),>1 to the invariant
distribution vy has already been deeply studied for a large class of Markov processes (Brown-
ian diffusions and Lévy driven SDE’s), our approach will be to derive the convergence of
(" (w, da)),>1 toward P,,, from that of (vé") (w,dx)),>1 to the invariant distribution vy. More
precisely, we will assume in Theorem 1 that

(Co.1): (X;) admits a unique invariant distribution vp and

Vén)(w, dx) 2o vo(dx) a.s.,

whereas in Theorem 2, we will only assume that

(Co2): W (@, dx)),>1 is a.s. tight on RY.

We also introduce three other assumptions, (Cy), (C2) and (Cj3 ), regarding the continuity in
probability of the flow x — (X;), the asymptotic convergence of the shifted time discretization
scheme to the true process (X;) and the steps and weights, respectively.

(Cy): For every xg € R ¢e>0and T > 0,

limsupIP’( sup |X; — X;°| > e) =0. (8)

X0—>X 0<t<T

(Cy): (X)) is a non-homogeneous Markov process and for every n > 0, it is possible to con-
struct a family of stochastic processes (Y, ,(n’x)) rerd such that
. DRy, R? - -
() L) "EEE L = x;
(i) for every compact set K of R?, for every T > 0,
n—+00

sup sup [, — x7|"Z5°0  in probability. )
xeK 0<t<T

(C3):Foreveryn>1,n, <Cy,HE.

Remark 2. Assumption (Cz) implies, in particular, that asymptotically and uniformly on com-
pact sets of R?, the law of the approximate process (X ™)), given its initial value, is close to that
of the true process.

If there exists a unique invariant distribution vy, the second part of (C3) can be relaxed to the
following, less stringent, assertion: for all € > 0, there exists a compact set A, C R4 such that
Vo(A¢) < € and such that
Yt(”’ x) n——+00

sup sup| -X| — 0 in probability. (10)

x€Ac 0<t<T

This weaker assumption can some times be needed in stochastic volatility models like the Heston
model (see Section 5 for details).
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The preceding assumptions are all that we require for the convergence of (v (w, da)),>1
to IP,, along the bounded Sk-continuous functionals, that is, for the a.s. weak convergence
on D(R,, R"). However, the integration of non-bounded continuous functionals F :ID([0, T],
R?) — R will need some additional assumptions, depending on the stability of the time dis-
cretization scheme and on the steps and weights sequences. We will suppose that F' is dominated
(in a sense to be specified later) by a function V : RY — R that satisfies the following assump-
tions for some s > 2 and ¢ < 1.

H(s, ¢): Forevery T > 0,

(i) supIE|: sup V‘Y(Yt(n’x))] <CrV’(x),

n>1 LO<t<T

(i) sup v(()”)(V) < +o00,

n>1

(iii) Z E[Vz(er D1 < +o0,
k>1

(i) ZAN(/C T) VA(] g)(Xr )]<+OO,
k>1

where T +— Cr is locally bounded on Ry and AN(k, T)=Nk,T)— Nk —1,T).
For every ¢ < 1, we then set

K(e) ={V e C(R?, R,), H(s, &) holds for some s > 2}.

Remark 3. Apart from assumption (i), which is a classical condition on the finite time horizon
control, the assumptions in H(s, ¢) strongly rely on the stability of the time discretization scheme
(and then, to that of the true process). More precisely, we will see when we apply our general re-
sults to SDE’s that these properties are some consequences of the Lyapunov assumptions needed
for the tightness of (v(()") (@, dx))p>1.

We can now state our first main result.

Theorem 1. Assume (Cop 1), (C1), (C2) and (C3) with ¢ € (—o0, 1). Then, a.s., for every
bounded Sk-continuous functional F :D(R,, RY) — R,

V) (@, F) " / F(a)Pyy (da), (11)

where P, denotes the stationary distribution of (X;) (with initial law vp).
Furthermore, for every T > 0, for every non-bounded Sk-continuous functional F:D(R,
R?) — R, (11) holds a.s. for Fr (defined by (7)) if there exists V € K(¢) and p € [0, 1) such that

|Fr(a)] <C sup VP(a;)  VaeDRy,RY). (12)
0<t<T

In the second result, the uniqueness of the invariant distribution is not required and the se-
quence (vé")(a), dx)),>1 is only supposed to be tight.
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Theorem 2. Assume (Co2), (C1), (C2) and (Cs.) with & € (=00, 1). Assume that (v;" (®,
dx))p>1 is a.s. tight on RY. We then have the following.

() The sequence (v (w, da))p>1 is a.s. tight on D(Ry, R?) and a.s., for every convergent
subsequence (nx(w))n>1, for every bounded Sk-continuous functional F :D(Ry, Rd) — R,

(nk(w))(w F) n—>+oo/F(a)}P>voo(dO{), (13)

where P, is the law of (X;) with initial law v being a weak limits for (v(")(a), dx))p>1-
Furthermore, for every T > 0, for every non-bounded Sk-continuous functional F:D(R,
]Rd) — R, (13) holds a.s. for Fr if (12) is satisfied with V € K(¢) and p € [0, 1).
@ii) If, moreover,

A
_Z | 77€| n—>+oo 0, (14)
l>k+1

then v is necessarily an invariant distribution for the Markov process (X;).

Remark 4. Condition (14) holds for a large class of steps and weights. For instance, if 7, =
Cin~ P! and y, = Con™ "2 with p; € [0, 1] and p; € (0, 1], then (14) is satisfied if p; = 0 or if
p1 € (max(0,2p; — 1), 1).

2.2. Extension to the non-stationary case

Even though the main interest of this algorithm is the weak approximation of the process when
stationary, we observe that when vy is known, the algorithm can be used to approximate P, if
o is a probability on R¢ that is absolutely continuous with respect to vg.

Indeed, assume that po(dx) = ¢ (x)vo(dx), where ¢:Rd — R is a continuous non-negative
function. For a functional F:D(R,,RY) — R, denote by F?¢ the functional defined on
DR+, RY) by F?(a) = F(a) (ax(0)).

Then, if v (w, da) (ilé) Py, (der) a.s., we also have the following convergence: a.s., for every
bounded Sk-continuous functional F :D(R,, RY) — R,

50, 7" [ @ e = [ PP @,

3. Application to Brownian diffusions and Lévy-driven SDE’s
Let (X;):>0 be a cadlag stochastic process solution to the SDE
dX, =b(X,-)dt + o (X,-)dW, + k(X;-)dZ;, (15)

where b:R? — R?, o : R - M, ¢ (set of d x € real matrices) and « : RY — My, are continuous
functions with sublinear growth, (W;);>¢ is an £-dimensional Brownian motion and (Z;);>¢ is
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an integrable purely discontinuous R-valued Lévy process independent of (W;);>o with Lévy
measure 7 and characteristic function given for every ¢ > 0 by

E[e!2)] = exp[t(/ e — 1 —iu, y)n(dy))i|.

Let ()n>1 be a non-increasing step sequence satisfying (2). Let (U,),>1 be a sequence of i.i.d.

random variables such that U; = £ N(0, I;) and let & := (&,),>1 be a sequence of independent
R¢-valued random variables, independent of (Uy),>1. We then denote by (X; )i>0 the stepwise
constant Euler scheme of (X;) for which (X I, )n>0 is recursively defined by Xo=x eR? and

Xy = X, + vt 1 DX, + /Vr10 (Xp Wit + (X, s (16)

We recall that the increments of (Z;) cannot be simulated in general. That is why we generally
need to construct the sequence (&,) with some approximations of the true increments. We will
come back to this construction in Section 3.2.

As in the general case, we denote by (X (k))kzo and (V" (w, da)),>1 the sequences of associ-
ated shifted Euler schemes and empirical measures, respectively.

Let us now introduce some Lyapunov assumptions for the SDE. Let £ Q(R¢) denote the set
of essentially quadratic C*-functions V :R? — R?% such that lim V (x) = +o0 as |x| — 400,

|[VV| < C/V and D?V is bounded. Let a € (0, 1] denote the mean reversion intensity. The
Lyapunov (or mean reversion) assumption is the following.
(Sa): There exists a function V € £ Q(R?) such that:

Q) [b2 < CVY Tr(oo™(x)) + k()] TE o(ve)):;
(i1) there exist 8 € R and p > 0 such that (VV,b) < g — pV<.

From now on, we separate the Brownian diffusions and Lévy-driven SDE cases.

3.1. Application to Brownian diffusions
In this part, we assume that « = 0. We recall a result by Lamberton and Pages [13].

Proposition 1. Let a € (0, 1] such that (Sa) holds. Assume that the sequence (1 /Vn)n>1 is non-
increasing.

(a) Let (Bn)n>1 be a sequence of positive numbers such that Zn>l Vi < +00 and that there
exists ng € N such that (0,)n>n, is non-increasing. Then, for every positive r,

> 0yaBIV" (Xr, )] < +00.
n>1
(b) Foreveryr >0,
sup v(()n)(a), V') < 400 a.s. a7

n>1
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Hence, the sequence (v(()") (w,dx))p>1 is a.s. tight.
(c) Moreover, every weak limit of this sequence is an invariant probability for the SDE (15).
In particular, if (X;)>0 admits a unique invariant probability vy, then for every continuous

function f such that f < CV" withr > 0, lim,_ vé") (w, ) =vo(f) a.s.

Remark 5. For instance, if V(x) = 1 + |x|2, then the preceding convergence holds for every
continuous function with polynomial growth. According to Theorem 3.2 in Lemaire [14], it is
possible to extend these results to continuous functions with exponential growth, but it then
strongly depends on o. Further the conditions on steps and weights can be less restrictive and
may contain the case n, = 1, for instance (see Remark 4 of Lamberton and Pages [13] and
Lemaire [14]).

We then derive the following result from the preceding proposition and from Theorems 1 and 2.

Theorem 3. Assume that b and o are locally Lipschitz functions and that k = 0. Let a € (0, 1]
such that (Sa) holds and assume that (n,/yn) is non-increasing.

(a) The sequence V" (w, da)),=1 is a.s. tight on C(R4, RH3 and every weak limit of
W (w, da)),>1 is the distribution of a stationary process solution to (15). In particular, when
uniqueness holds for the invariant distribution v, a.s., for every bounded continuous functional
F:C(Ry,RY) - R,

v (g, F) "2 / F(x)P,, (dx). (18)
(b) Furthermore, if there exists s € (2, +00) and no € N such that
ANk, T ANk, T
<(7S)) is non-increasing and Z # < 400, (19)
kak n>ng k>1 Hk

then, for every T > 0, for every non-bounded continuous functional F:C(Ry,R?) — R, (18)
holds for Fr if the following condition is satisfied.

Ir >0 suchthat |Fr(a)|<C sup V' (o) Vo € C(Ry, RY).
0<t<T

Remark 6. If n, = Cin~"! and y,, = Con™ 2 with 0 < pp < p; <1, then for s € (1, +00), (19)
is fulfilled if and only if s > 1/(1 — py). It follows that there exists s € (2, +00) such that (19)
holds as soon as p < 1.

Proof of Theorem 3. We want to apply Theorem 2. First, by Proposition 1, assumption (Cp 2)

is fulfilled and every weak limit of (v(()n)(a), dx)) is an invariant distribution. Second, it is well

3¢ R4, RR¥) denotes the space of continuous functions on R with values in R endowed with the topology of uniform
convergence on compact sets.
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known that (C1) and (Cy) are fulfilled when b and o are locally Lispchitz sublinear functions.
Then, since (C3 ) holds with ¢ = 0, (18) holds for every bounded continuous functional F.
Finally, one checks that H(s, 0) holds with V := V" (r > 0). It is classical that assumption (a)
is true when b and o are sublinear. Assumption (b) follows from Proposition 1(b). Let 6, 1 =
M/ Vn an) and 0, > = AN, T)/(y,H). Using (19) and the fact that (1, /y;) is non-increasing
yields that (6,,1) and (6, 2) satisfy the conditions of Proposition 1 (see (35) for details). Then,
(iii) and (iv) of H(s, 0) are consequences of Proposition 1(a). This completes the proof. [l

3.2. Application to Lévy-driven SDE’s

When we want to extend the results obtained for Brownian SDE’s to Lévy-driven SDE’s, one
of the main difficulties comes from the moments of the jump component (see Panloup [18] for
details). For simplification, we assume here that (Z;) has a moment of order 2p > 2, that is, that
its Lévy measure 7 satisfies the following assumption with p > 1:

(Hp): o 7 (dy)|y [P < +o0.
y|>1

We also introduce an assumption about the behavior of the moments of the Lévy measure at 0:

(HY): | 7 (dy)y* < +o0, g e€l[0,1].

yI=1

This assumption ensures that (Z;) has finite 2g-variations. Since fly\s 1 y|?7(dy) is finite, this
is always satisfied for g = 1.

Let us now specify the law of (§,) introduced in (16). When the increments of (Z;) can be
exactly simulated, we denote by (E) the Euler scheme and by (£, g) the associated sequence

Enr =227, V=l

When the increments of (Z;) cannot be simulated, we introduce some approximated Euler
schemes (P) and (W) built with some sequences (&, p) and (&, w) of approximations of the
true increment (see Panloup [19] for more detailed presentations of these schemes).

In scheme (P),

L
Sn,P = Zy,l,nv

where (Z. ,),>1 a sequence of compensated compound Poisson processes obtained by truncating
the small jumps of (Z;);>0:

Zini= Y AZ(az,>u) — 1 / yr(dy) V=0, (20)

O<s<t Iyl>un
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where (u,)n>1 is a sequence of positive numbers such that u, — 0. We recall that Z. , n2Ae Z
locally uniformly in L? (see, e.g., Protter [21]).

As shown in Panloup [19], the error induced by this approximation is very large when the local
behavior of the small jumps component is irregular. However, it is possible to refine this approx-
imation by a Wienerization of the small jumps, that is, by replacing the small jumps by a linear
transform of a Brownian motion instead of discarding them (see Asmussen and Rosinski [2]).
The corresponding scheme is denoted by (W) with &, w satisfying

L
En,WZEn,P'i'\/VnQnAn Vn>1,

where (A,),>1 is a sequence of i.i.d. random variables, independent of (&, p),>1 and (Up)p>1,

such that A £ N0, I;) and (Q,) is a sequence of £ x £ matrices such that

(00 =/ yiyjm(dy).

[y|<uk

We recall the following result obtained in Panloup [18] in our slightly simplified framework.

Proposition 2. Leta € (0, 1], p > 1 and q € [0, 1] such that (Hll,), (H(zl) and (S,) hold. Assume
that the sequence (1, /Vn)n>1 is non-increasing. Then, the following assertions hold for schemes

(E), (P) and (W).

(a) Let (6,) satisfy the conditions of Proposition 1. Then, )
+00.
(b) We have

Onyn E[VPH—1 (X, )] <

n>1

sup vé") (w, VPPl — 400 a.s. 1)
n>1
Hence, the sequence (v(()") (w,dx))p>1 is a.s. tight as soon as p/2+a—1> 0.
(c) Moreover, if Tr(oo*) + ||k ||24 < CV P24~ then every weak limit of this sequence is an
invariant probability for the SDE (15). In particular, if (X;):>0 admits a unique invariant prob-
ability vy, for every continuous function f such that f = o(VP/>%=1) lim,_, o v(()n)(a), )=

vo(f) a.s.

Remark 7. For schemes (E) and (P), the above proposition is a direct consequence of Theorem 2
and Proposition 2 of Panloup [18]. As concerns scheme (W), a straightforward adaptation of the
proof yields the result.

Our main functional result for Lévy-driven SDE’s is then the following.

Theorem 4. Leta € (0, 1]and p > 1 such that p/2+a— 1> 0and let q € [0, 1]. Assume (Hll,),

(Hfl) and (Sa). Assume that b, o and k are locally Lipschitz functions. If, moreover, (1, /Vn)n>1
is non-increasing, then the following result holds for schemes (E), (P) and (W).
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(a) The sequence (v (w, da))p>1 is a.s. tight on D(R 4, RY). Moreover, if

1 & A
Tr(oo®) + |k | < cvP/2ra=l o Z max |Ane| "2, (22)
H, k:llzk—H Ve—1

then every weak limit of (v (w, da))s>1 is the distribution of a stationary process solution
to (15).

(b) Assume that the invariant distribution is unique. Let ¢ <0 such that (C3 ¢) holds. Then,
a.s., for every T > 0, for every Sk-continuous functional F :D(R4, R%) — R, (18) holds for Fr
if there exist p € [0, 1) and s > 2, such that

|Fr(a)| <C sup VP@Ha=Disqy Vo e DRy, RY)

0<t<T
and if
AN(k, T ANk, T
<%> is non-increasing and Z % < 400. (23)
viHy, n=ng k>1 Hy,

Remark 8. In (22), both assumptions imply the invariance of every weak limit of (v(()")(a), dx)).
These two assumptions are very different. The first is needed in Proposition 2 for using the
Echeverria—Weiss invariance criteria (see Ethier and Kurtz [7], page 238, Lamberton and Pages
[12] and Lemaire [14]), whereas the second appears in Theorem 2, where our functional approach
shows that under some mild additional conditions on steps and weights, every weak limit is
always invariant.

For (23), we refer to Remark 6 for simple sufficient conditions when (y;,) and (n,) are some
polynomial steps and weights.

4. Proofs of Theorems 1 and 2

We begin the proof with some technical lemmas. In Lemma 1, we show that the a.s weak con-
vergence of the random measures W™ (w, da)) n>1 can be characterized by the convergence (11)
along the set of bounded Lipschitz functionals F for the distance d. Then, in Lemma 2, we
show with some martingale arguments that if the functional F' depends only on the restriction of
the trajectory to [0, T'], then the convergence of W (w, F ))n>1 1is equivalent to that of a more
regular sequence. This step is fundamental for the sequel of the proof.

Finally, Lemma 4 is needed for the proof of Theorem 2. We show that under some mild
conditions on the step and weight sequences, any Markovian weak limit of the sequence
W™ (w, da)),>1 is stationary.
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4.1. Preliminary lemmas

Lemma 1. Let (E, d) be a Polish space and let P(E) denote the set of probability measures on
the Borel o-field B(E), endowed with the weak convergence topology. Let (u(”)(w, da))n>1 be
a sequence of random probabilities defined on Q2 x B(E).

(a) Assume that there exists u(° € P(E) such that for every bounded Lipschitz function
F:E— R,

1w, )25 1 F)y  as. 4)

Then, a.s., (u(”)(w, da))n>1 converges weakly to ,u(oo) on P(E).

(b) Let U be a subset of P(E). Assume that for every sequence (Fi)i>1 of Lipschitz and
bounded functions, a.s., for every subsequence (™) (w,da)), there exists a subsequence
(;L(‘f’wc”pw("))(w, dw)) and a U-valued random probability u(oo) (w, da) such that for every k > 1,

n——+00

Vet (o, ) "7 1w, ) as. (25)
Then, (W™ (w, da))n>1 is a.s. tight with weak limits in U.

Proof. We do not give a detailed proof of the next lemma, which is essentially based on the fact
that in a separable metric space (E, d), one can build a sequence of bounded Lipschitz functions
(8k)k>1 such that for any sequence (i,),>1 of probability measures on B(E), (in)n>1 weakly
converges to a probability w if and only if the convergence holds along the functions gi, k > 1
(see Parthasarathy [22], Theorem 6.6, page 47 for a very similar result). ]

For every n > 0, for every T > 0, we introduce 7 (n, T') defined by
t(n,T):=min{k >0, Nk, T)>n}=min{k <n, '+ T >T,}. (26)
Note that for k € {0, ..., t(n, T) — 1}, {)_(,(k), 0<t<T}is }_'rn-measurable and

T—veun)-1 <Th —Teun <T.
Lemma 2. Assume (C3 ) with e < 1. Let F:D(Ry, R?) — R be a Sk-continuous functional.
Let (Gy) be a filtration such that Fr, C Gy for every k > 1. Then, for any T > 0:
(a) if Fr (defined by (7)) is bounded,

Hi S e (Fr(X*D) —E[Fr (X4 D)/Ga]) =570 ass @7
" k=1

(b) if Fr is not bounded, (27) holds if there exists V: RY — R, satisfying H(s, €) for some
s > 2, such that | Fr ()| < Csupg<, <1 V(ay) for every o € D(R, RY); furthermore,

supv™ (w, Fr) < 400 a.s. (28)

n>1



Approximation of the distribution of a stationary Markov process 159

Proof. We prove (a) and (b) simultaneously. Let T® be defined by Y® = Fr (X®). We have

1 n
S (XD BTG )
k=1

=5 (T [T g, ) 29)
" k=1
1 n
_ (k—1) _ (k—=1)
+ = 2 (B /G ] —E[r 0 /Gy ]). (30)

n k=1

We have to prove that the right-hand side of (29) and (30) tend to 0 a.s. when n — +-oc0.

We first focus on the right-hand side of (29). From the very definition of t(n, T'), we have
that {}_(,(k),O <t<T}is fpn—measurable for k € {0,...,7(n, T) — 1}. Hence, since Fr is
o (ms,0 < s < T)-measurable and .7:-1*” C Gy, it follows that T® is G,-measurable and that
T® =E[TY® /G,] for every k < t(n,T) — 1. Then, if Fr is bounded, we derive from (C3 ;)
that

I ¢ (k—1) k=1 2|1 Frllsup - C " .
— Y (YD —E[x*V /G = =2 Y m=— Y wHf
Hy = Hy H,
= =t(n,T)+1 k=t(n,T)+1
C
= Hnl_s (Fn - Ft(n,T))
Cc(T
< (1_) n_)—+>000 a.s.,
H,” ¢

where we used the fact that (H,),>1 and (y,),>1 are non-decreasing and non-increasing se-
quences, respectively.

Assume, now, that the assumptions of (b) are fulfilled with V satisfying H(s, ¢) for some s > 2
and ¢ < 1. By the Borel-Cantelli-like argument, it suffices to show that

1 - _ _
— Y w(r® P —E[r*V/G,])
nk=t(n,T)+1

>a|

n>1

}<+w. 31)

Let us prove (31). Let a; := n,(:_l)/s and by (w) = n,i/s(T(k_l) —E[Y%=D/G,1). The Holder
inequality applied with p =s/(s — 1) and g = s yields

n

> abi()

k=t(n,T)+1

( > ”)( » ""'T““”—E[T"“”/gn]f)

k=t(n,T)+1 k=t(n,T)+1
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Now, since F7(a) < supy<,<7 V(a), it follows from the Markov property and from H(s, €)(i)
that

E[|Fr (X®)|°/Fr,] < CIE[ sup V*(X) /f'rk] <CrV(Xr,).

0<t<T
S:|

Then, using the two preceding inequalities and (C3 ) yields

|

n

> (0 BTG

k=t(n,T)+1
n s—1 n
=C ( ) m«) ( > ﬁkE[Vs()_(Fkl)]>
k=1 (n,T)+1 k=1(n,T)+1
n N
=C Z Mk E[ sup V‘Y(?_(rkl)}
k=t(n,T)+1 k=t(n,T)+1
n s
=C Z viHj, ]E|: sup V(X f(nT))i|’
k=t (n,T)+1 t€[0,5(n,T)]

where S(n,T) =I'4—1 — I't(u,7y) and C does not depend n. By the definition of t(n,T),
S(n, T) <T. Then, again using H(s, ¢)(i) yields

el 5

n>1 n

S (r® D —E[r%D/g,])

k=t(n,T)

N
] =C) —i x(l FEDV (X))

n>l

Since n +— N(n, T) is an increasing function, n — t(n, T) is a non-decreasing function and
Card{n,t(n, T) =k} =AN*k~+1,T):=N(k+1,T)— N(k, T). Then, since n — H,, increases,
a change of variable yields

s:|

el

n>1 n

n

> m(rV=E[T*/G,])

k=t(n,T)+1

ANk, T -
C Z Cfl E))E[V‘Y(erfl)] < 400,

k>1

by H(s, €)(@iv).
Second, we prove that (30) tends to 0. For every n > 1, we let

_ ~ (k—1) (k=1
M,=Y —(E[T ] —E[T _iD. 32
k; Hk( [ /Gn] —E[ /Gk-1]) (32)

The process (My),>1 is a (G,)-martingale and we want to prove that this process is L?-bounded.
Set @& = E[Fr(X®)/G,1— E[Fr(X%®)/G1. Since Fr is o (g, 0 < s < T)-measurable, the
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random variable %" ig J{—ka,n -measurable. Then, for every i € {N(k, T), ..., n}, dkn) g
G;-measurable so that

B[00 p®kn] = E[o*DE[o1 /g,]] =

It follows that

Nk—1,T)An
E[M,%] _ Z ’lk E[(q>(k 1 n) +22 Z Ni E[q)(z 1) g k=1, n)] 33)
k>1 Hk k>1 i=k+1 Hi
Then,
N(k—1,T)
sup E[M2] < Z—supE[( k- 1") +ZZ Mk Z —SUPE o~ l’n)cb(k_l’n)]
nzl k=1 Tk nzl k=1 iz Hinzi
- C<Z sz -supE[(@¢~1")’] (34)
>1 n>1

H27€

N(k—=1,T)
+ Nk Z Vi supE[dD(’ 1 n)CI)(k 1, n)])
e ey S S R

where, in the second inequality, we used assumption (C3 ) and the decrease of i > 1/ Hil_*’.

Hence, if Fr is bounded, using the fact that ZN(;: Hl ) y; < T yields

® du
supE[M2]<C Y H2 _< C(anl_g +f 2_8) <+o00 (35)
1 n

n>1 k>1 , u

since ¢ < 1. Assume, now, that the assumptions of (b) hold and let F7 be dominated by a func-
tion V satisfying H(s, €). By the Markov property, the Jensen inequality and H(s, ¢)(i),

E[(e®")?] < CE[E[ sup vz(;‘(}"))/ﬁrkﬂ < CrEDV*(Xrl.
0<t<T

We then derive from the Cauchy—Schwarz inequality that for every n,k > 1, for every i €
{k, ..., N(k,T)},

[E[@Emokm]| < C\/]E[VZ(XF )]\/E[VZ(XFA)] <C sup E2(X)] < CED2 (X1,
1€[0,T]

where, in the last inequality, we once again used H(s, £)(i). It follows that

sup ]E[M,%] <C

n>1 >1

T EDVA(Xry )] < +oo,
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by H(s, ¢)(iii). Therefore, (34) is finite and (M,,) is bounded in L2, Finally, we derive from the
Kronecker lemma that

1 < _ _
A > o (B[Fr (X*7D)/Gy] = E[Fr(X*V) /G 1)) "ZE%0 as.
=1
As a consequence, sup,,» v (w, Fr) < 400 a.s. if and only if

supLZ]E[FT(}_((k*I))/fk_l] < +00 a.s.

n>1 t1n k=1
This last property is easily derived from H(s, £)(i) and (ii). This completes the proof. (]

Lemma 3. (a) Assume (Cq) and let xo € RY. We then have lim,_, x, E[d(X¥, X*)] = 0. In par-
ticular, for every bounded Lispchitz (w.rt. the distance d) functional F :D(Ry,R?) — R, the
function ®F defined by ®F (x) = E[F (X¥)] is a (bounded) continuous function on R?.

(b) Assume (Cy). For every compact set K C RY,

n——+00

sup E[d(Y"*, Xx*)]"=570. (36)

xek

Set <1>,1,F (x) = E[F(Y™)]. Then, for every bounded Lispchitz functional F:D(R,,R?) — R,

sup |oF (x) — dJ,f ()] "2 for every compact set K C RY. 37
xekK

Proof. (a) By the definition of d, for every «, f € D(R,, R?) and for every T > 0,

d(a, B) < <1 A sup |a(t) — ,3(t)|) +e T, (38)

0<r<T
It easily follows from assumption (Cj) and from the dominated convergence theorem that

limsup E[d (X", X0)] < e T for every T > 0.

X—>X0

Letting T — 400 implies that lim,_, ,, E[d(X*, X*)] =0.
(b) We deduce from (38) and from assumption (C) that for every compact set K C R4, for
every T > 0,

limsup sup E[d(Y"", X*)] <e .

n—+00 xekK

Letting T — 400 yields (36). ]

Lemma 4. Assume that (n,)n>1 and (yy,) satisfy (C3.¢) with ¢ <1 and (14). Then:
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(i) for every t > 0, for every bounded continuous function f:R¢ — R,

n—-+00

V,(n) (w, f) — Uén)(w, i — 0 a.s.:

(ii) if, moreover, a.s., every weak limit V() (w, da) of W™ (w, dor)),>1 is the distribution
of a Markov process with semigroup (Qf):>0, then, a.s., ) (w, da) is the distribution of a
Stationary process.

Proof. (i) Let f: R? — R be a bounded continuous function. Since X ,(k) =Xr Ny WE have

n n 1 _ _
Vt( )(“)’ = V(() )(a), h= H an(f(XFN(k—l.t)) - f(er—l))'
" k=1

From the very definition of N(n, T) and t(n, T), one checks that N(k — 1,7) <n — 1 if and
only if t(n, T) > k. Then,

7(n,t)

1 « _ .
= 2 mf(Xr) == 3 awvarom (X )
" k=1 " k=1

1 < _
0 D ok f X )L 1N (0..n).0) -
" k=1

It follows that

7(n,t)

vt(n)(w’ f) - v(gn)(wﬂ f) = F Z (nk - 77N(k71,t)+1)f(5(FN(k,l,,))
" k=1

1 & v
+F Z lef(Xl“Mk—l,r))

T rm,n+1

t(n,t)

n n
Z ML k—1¢N (0. ..n}.00) = Z Mk — Z N (k—1,0+1
k=1 k=1

k=1

T(n,t) n

= Z [k = nvge—10+1| + Z Nk

k=1 k=t(n,t)+1
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we deduce that

T(n,t)

. 1 1 z
v @, £) =g (@, f)\szufnoo( Z\nk—nmk o+ X Uk)-
n

k=t(n,t)+1

Hence, we have to show that the sequences of the right-hand side of the preceding inequality
tend to 0. On the one hand, we observe that

N(k—1,T)+1 Anl N(k—1,T)+1
¢
- _ < - < max .
Ik = nvg—1.041] < Z e —ne—1 = m X Z Ye
=k+1 =k
Using the fact that ZN(k LT+l ye < T + y; and condition (14) yields
| t(n,t)
n—>+oo 0.

F Z |77k_’7N(k 1z)+1|

On the other hand, by (C3 ), we have

1 " C CcT n——+00
= 2 = i ) W= 0 as
" k=t(n,T)+1 n k=t T)+1 n

which completes the proof of (i).

(ii) Let Q4 denote the set of non-negative rational numbers. Let (f¢)¢>1 be an everywhere
dense sequence in Cx (R?) endowed with the topology of uniform convergence on compact
sets. Since Q4 and (fy)¢>1 are countable, we derive from (i) that there exists Q C € such that
P(2) = 1 and such that for every w € 2, every 1 € Q. and every £ > 1,

(@, fo) =" (@, f0 =570
Let @ €  and let v(*® (w, da) denote a weak limit of (V™ (w, da)),>1. We have

v, f)=v(, f)  VieQiVex1

and we easily deduce that
v, fr=v (@, f)  VieRyVfeCkRY).

Hence, if v(> (w, da) is the distribution of a Markov process (Y;) with semigroup (Q{);>0, we
have, for all f € Cx (R?),

[ errwne = [ ronPe.a  vezo

uéoo) (w, dx) is then an invariant distribution for (Y¥;). This completes the proof. J
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4.2. Proof of Theorem 1

Thanks to Lemma 1(a) applied with E =D(R_, R¢) and d defined by (6),
v (w,do) P, (do)  as. =P (0, F) ’H+°°f F(x)P, (dx)  as.  (39)

for every bounded Lipschitz functional F:D(R,, R?) — R. Now, consider such a functional.
By the assumptions of Theorem 1, we know that a.s., (v(") (w, dx)),>1 converges weakly to vg.

Set ®F (x) :=E[F(X")], x € R, By Lemma 3(a), ®F is a bounded continuous function on R¥.
It then follows from (Cp 1) that

HiznkQF(Xék‘“)"i""/@F(x)vo(dx)=/F(x)PU0(dx) as.
" k=1

Hence, the right-hand side of (39) holds for F as soon as

—nan F(X*D) —oF (XFD)"25%0  as. (40)
k=1

Let us prove (40). First, let T > 0 and let F7 be defined by (7). By Lemma 2,
— Z e Fr (XD Z mE[Fr(X* D)/ Fr, ]"25°0  as. @)

With the notation of Lemma 3(b), we derive from assumption (Cz)(i) that
E[FT (X(k_l))/ﬁrkfl] = cI)IfT ()_((()k_l))'

Let N € N. On one hand, by Lemma 3(b),

—Zn o (X - d)FT()_((()k_l)))l{p—(ék_l)‘sN}"_>—+>°°O as. 42)

On the other hand, the tightness of (v(")(a), dx)),>1 on R yields

)Na+oo

¥ (@, N) :=sup(v{” (@, (B(O, N)°)) 0 as.

n>1

It follows that, a.s.,

1 < ke k-
sup(FchbkFT(Xg‘ D) —afr(x{ 1))|1{|)-((l<—l)|>N})
n>1 n— 0

o0

N—>+
2| Fllc¥ (@, N) —> 0.

(43)
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Hence, a combination of (42) and (43) yields
1 « -k (k1) 1>
a0 S (el (E) e (T N as
n

Finally, let (7¢)¢>1 be a sequence of positive numbers such that, 7, — +o0o when £ — +o0.
Combining (44) and (41), we obtain that, a.s., for every £ > 1,

I X(k 1) —_pF(x*-D
<1i X(k ]) —F X(k*l)
= ;zlilig E Uk T/z( ))‘
+ Tim sup| — an ®FTZ (X(k 1)) QF()—((()k—l)))‘.
n—+400

By the definition of d, |F — Fr,| < e Tt Then, a.s.,

<2e T Ve > 1.

limsup| — an X(k 1) CDF()_((()k*l)))

n—-+00

Letting £ — +o0 implies (40).
The generalization to non-bounded functionals in Theorem 1 is then derived from (28) and
from a uniform integrability argument.

4.3. Proof of Theorem 2

(1) We want to prove that the conditions of Lemma 1(b) are fulfilled. Since (v(") (w,dx))n>1
is supposed to be a.s. tight, one can check that for every bounded Lipschitz functional
F:DR,, R9) — R, (40) is still valid. Then, let (Fr)e>1 be a sequence of bounded Lipschitz
functionals. There exists  C Q with IP’(Q) = 1 such that for every w € Q, (v(()")(a), dx))y>1 is
tight and

—an Fr (X V(@) — o7 (XF V(@) "Z5°0  vex1. (45)
k=1

Let w € © and let ¢, : N +— N be an increasing function. As (v(()¢‘°("))(a), dx)),>1 is tight, there

exists a convergent subsequence (v(¢‘“°‘/"”(n)) (w, dx)),>1. We denote its weak limit by ve,. Since

®* is continuous for every £ > 1 (see Lemma 3(a)),

pfete ™ (@, Fey 252, (@F) = / Fy(@)P, (da) V> 1.
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We then derive from (45) that for every £ > 1
vV (o, Fp) "5 f Fe(@)Py, (de).
It follows that the conditions of Lemma 1(b) are fulfilled with U = {P,,, u € Z}, where
I= {,u e P(R?Y), 3w € € and an increasing function ¢ : N+ N, u = ngToo p @) (g, da)}.

Hence, by Lemma 1(b), we deduce that (v (@, da)), > is a.s. tight with Z/-valued limits.
Finally, Theorem 2(ii) is a consequence of condition (14) and Lemma 4(ii).

5. Path-dependent option pricing in stationary stochastic
volatility models

In this section, we propose a simple and efficient method to price options in stationary stochastic
volatility (SSV) models. In most stochastic volatility (SV) models, the volatility is a mean re-
verting process. These processes are generally ergodic with a unique invariant distribution (the
Heston model or the BNS model for instance (see below) but also the SABR model (see Hagan et
al. [8]), ...). However, they are usually considered in SV models under a non-stationary regime,
starting from a deterministic value (which usually turns out to be the mean of their invariant
distribution). However, the instantaneous volatility is not easy to observe on the market since
it is not a traded asset. Hence, it seems to be more natural to assume that it evolves under its
stationary regime than to give it a deterministic value at time 0.*

From a purely calibration viewpoint, considering an SV model in its SSV regime will not
modify the set of parameters used to generate the implied volatility surface, although it will
modify its shape, mainly for short maturities. This effect can in fact be an asset of the SSV
approach since it may correct some observed drawbacks of some models (see, e.g., the Heston
model below).

From a numerical point of view, considering SSV models is no longer an obstacle, especially
when considering multi-asset models (in the unidimensional case, the stationary distribution can
be made more or less explicit like in the Heston model; see below) since our algorithm is precisely
devised to compute by simulation some expectations of functionals of processes under their
stationary regime, even if this stationary regime cannot be directly simulated.

As a first illustration (and a benchmark) of the method, we will describe in detail the algorithm
for the pricing of Asian options in a Heston model. We will then show in our numerical results
to what extent it differs, in terms of smile and skew, from the usual SV Heston model for short

4When one has sufficiently close observations of the stock price, it is in fact possible to derive a rough idea of the
size of the volatility from the variations of the stock price (see, e.g., Jacod [10]). Then, using this information, a good
compromise between a deterministic initial value and the stationary case may be to assume that the distribution p( of
the volatility at time O is concentrated around the estimated value (see Section 2.2 for application of our algorithm in this
case).
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maturities. Finally, we will complete this section with a numerical test on Asian options in the
BNS model where the volatility is driven by a tempered stable subordinator. Let us also mention
that this method can be applied to other fields of finance like interest rates, and commodities and
energy derivatives where mean-reverting processes play an important role.

5.1. Option pricing in the Heston SSV model

We consider a Heston stochastic volatility model. The dynamic of the asset price process (S;):>0
is given by Sp = sp and

dS; = S;(rd ++/(1 = p2)v AW, + p/v; dW?),

dv; = k(6 — v,) dr + ¢ /v; AW?,

where r denotes the interest rate, (W‘, W2) is a standard two-dimensional Brownian motion,
p €[—1,1] and k, 6 and ¢ are some non-negative numbers. This model was introduced by
Heston in 1993 (see Heston [9]). The equation for (v;) has a unique (strong) pathwise continuous
solution living in R_.. If, moreover, 2k6 > ¢2, then (v;) is a positive process (see Lamberton and
Lapeyre [11]). In this case, (v;) has a unique invariant probability vg. Moreover, vo = y (a, b)
witha = (2k)/¢? and b = (2k6)/c2. In the following, we will assume that (v;) is in its stationary
regime, that is, that

L(vg) = vg.

5.1.1. Option price and stationary processes

Using our procedure to price options in this model naturally needs to express the option price as
the expectation of a functional of a stationary stochastic process.

Naive method. (may work) Since (v;);>0 is stationary, the first idea is to express the option
price as the expectation of a functional of (v;);>0: by Itd calculus, we have

' ' t
S,:soexp<<rt—%/ vsds)—}—p/ \/v_xdWS2+,/1—p2/ ﬂdWJ), (46)
0 0 0

Since
v, — v — kOt +k [ vy ds
" :

t
f oW = A (v) =
0
it follows by setting M; = fé VU5 dW! that
Sy =W (1, (vs), (My)), 47)

where W is given for every t > 0, u and w € C(R, R) by

¢
W(t,u, w) =soexp<<rt - %/ u(s) ds> + oAt u)+4/1— ,ozw(t)).
0
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Then, let F:C(R4+,R) — R be a non-negative measurable functional. Conditioning by .’F;V ?
yields

ELFr((S):20)] = ELFr ((v)i20)],

where, for every u € C(R4, R),

ol (s [ )]

For some particular options such as the European call or put (thanks to the Black—Scholes for-
mula), the functional F is explicit. In those cases, this method seems to be very efficient (see
Panloup [20] for numerical results). However, in the general case, the computation of F will
need some Monte Carlo methods at each step. This approach is then very time-consuming in
general — that is why we are going to introduce another representation of the option as a func-
tional of a stationary process.

General method. (always works) We express the option premium as the expectation of a func-
tional of a two-dimensional stationary stochastic process. This method is based on the following
idea. Even though (v;, M) is not stationary, (S;) can be expressed as a functional of a stationary
process (v;, yr). Indeed, consider the following SDE given by

dyr = —yrdr + /o dW/, (48)
dv, =k(0 — v,)dt + ¢ /v, dW2.

First, one checks that the SDE has a unique strong solution and that assumption (Sy) is ful-
filled with V(x1,x2) =1+ x% + x%. This ensures the existence of an invariant distribution ¥
for the SDE (see, e.g., Pages [17]). Then, since (v;) is positive and has a unique invariant distri-
bution, the uniqueness of the invariant distribution follows. Then, assume that L£(yg, vg) = Vo.
Since (v¢, My) = (vs, y: — yo + fot vs ds), we have, for every positive measurable functional
F:CR+,R)—> R,

E[Fr((S)i=0)] = E[Fr (¥ (¢, vi, M;))r=0)]

:E%[FT(@(r,Wt—y°+/0t”ds>)t>o>]’

where Py, is the stationary distribution of the process (v, y;). Every option price can then be
expressed as the expectation of an explicit functional of a stationary process. We will develop
this second general approach in the numerical tests below.

(49)

Remark 9. The idea of the second method holds for every stochastic volatility model for
which (S;) can be written as follows:

P t }
S,=d><r,v,,2/ hi(|vs|>dY;>, (50)
i=170
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where, for every i € {1,..., p}, hj :Ry — R is a positive function such that %;(x) = o(|x|)
as |x| »> +oo, (Y,i) is a square-integrable centered Lévy process and (v;) is a mean reverting
stochastic process solution to a Lévy driven SDE.

In some complex models, showing the uniqueness of the invariant distribution may be difficult.
In fact, it is important to note at this stage that the uniqueness of the invariant distribution for the
couple (v;, y;) is not required. Indeed, by construction, the local martingale (M;) does not depend
on the choice of yg. It follows that if £(yg, v9) = i, with fi constructed such that £(vg) = v,
(49) still holds. This implies that it is only necessary that uniqueness holds for the invariant
distribution of the stochastic volatility process.

5.1.2. Numerical tests on Asian options

We recall that (v;) is a Cox—Ingersoll-Ross process. For this type of processes, it is well known
that the genuine Euler scheme cannot be implemented since it does not preserve the non-
negativity of the (v;). That is why some specific discretization schemes have been studied by
several authors (Alfonsi [1], Deelstra and Delbaen [5] and Berkaoui et al. [4,6]). In this paper,
we consider the scheme studied by the last authors in a decreasing step framework. We denote it
by (v;). We set v9 =x > 0 and

Or,.y = |0, +kYat1(0 = r,) + 5y/or, (WE | — WE)

We also introduce the stepwise constant Euler scheme (y;) of (y;);>0 defined by
VL1 = Y0, = Va1 T, ++/ ﬂrn(WllnH — W), Jo=yeR

Denote by (ﬁl(k) ) and ()"zt(k)) the shifted processes defined by ﬁt(k) ‘= Vr, 4+ and y}") = Yry+:, and
let (W™ (w, da))s>1 be the sequence of empirical measures defined by

1 n
v (o, da) = A Z Mk L{@e-1 5¢-1)eday-
n k=1

The specificity of both the model and the Euler scheme implies that Theorems 1 and 2 cannot be
directly applied here. However, a specific study using the fact that (9) holds for every compact set
of Ri x R when 2k6/ g2 > 14 2\/6/ ¢ (see Theorem 2.2 of Berkaoui et al. [4] and Remark 9)
shows that
v (@, da) "2 Py (da)  as.

when 2k0/c2 > 1 +24/6/¢. Details are left to the reader.

Let us now state our numerical results obtained for the pricing of Asian options with this
discretization. We denote by C,s(vo, K, T) and P,(vo, K, T) the Asian call and put prices in
the SSV Heston model. We have

1 T
Cas(vo, K, T) = e—’TEvo[(?/ Seds = K) }
0 +
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1 T
Pus(vo, K, T)=e’TEvo[<K_ _/ S““) ]
T Jo N

With the notation of (49), approximating C,s(vo, K, T) and P,s(vo, K, T) by our procedure
needs to simulate the sequences (CJ,),>1 and (P].),>1 defined by

n —rT T
as Hn T 0

and

k=1 +
RS e’ (T (k=1) (k—1)
Pl=— m(K— / W(s, 0", MY w)

These sequences can be computed by the method developed in Section 1.3. Note that the
specific properties of the exponential function and the linearity of the integral imply that
( fOT W(r, 9™V, M®=D)ds) can be computed quasi-recursively.

Let us state our numerical results for the Asian call with parameters

so = 50, r=0.05, T=1, p=0.5,
(51
6 =0.01, ¢=0.1, k=2.

We also assume that K € {44, ..., 56} and choose the following steps and weights: y, = n, =

n~1/3_ In Table 1, we first state the reference value for the Asian call price obtained for N = 108
iterations. In the two following lines, we state our results for N = 5. 10* and N = 5.10° iterations.

Table 1. Approximation of the Asian call price

K 44 45 46 47 48 49 50

Asian call (ref.) 6.92 5.97 5.04 4.12 3.25 2.46 1.78
N=5-10* 6.89 6.07 5.07 4.13 3.18 2.49 1.77
N=5-10° 6.90 6.02 5.00 4.11 3.24 2.46 1.79
N =5 10* (CP parity) 6.92 5.96 5.04 4.13 3.26 2.46 1.78
N =5-103 (CP parity) 6.92 5.97 5.04 4.12 3.25 247 1.78
K 51 52 53 54 55 56

Asian call (ref.) 1.23 0.82 0.53 0.33 0.21 0.12
N=5-10* 1.21 0.81 0.51 0.34 0.22 0.11
N=5-10° 1.23 0.82 0.53 0.33 0.21 0.13
N =5-10* (CP parity) 1.23 0.82 0.53 0.31 0.21 0.12

N =5-10°(CP parity) 1.23 0.82 0.53 0.33 0.21 0.13
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Then, in the last lines, we present the numerical results obtained using the call-put parity
Cas (0. K. T) = Pas(v0. S0. K. T) = = (1 —&") = Ke ™" (52)
r

as a means of variance reduction. The computation times for N = 5.10* and N = 5.10° (using
MATLAB with a Xeon 2.4 GHz processor) are about 5 s and 51 s, respectively. In particular,
the complexity is quasi-linear and the additional computations needed when we use the call-put
parity are negligible.

5.2. Implied volatility surfaces of Heston SSV and SV models

Given a particular pricing model (with initial value so and interest rate r) and its associated
European call prices denoted by Ceyr(K, T), we recall that the implied volatility surface is the
graph of the function (K, T) > oimp(K, T'), where ojnp(K, T) is defined for every maturity
T > 0 and strike K as the unique solution of

CBS(SO’ Ka Tv r, O'imp(K’ T)) = Ceur(K’ T)a

where Cps(so, K, T,r,0) is the price of the European call in the Black—Scholes model with
parameters so, 7 and 0. When Cey (K, T') is known, the value of oimp(K, T') can be numerically
computed using the Newton method or by dichotomy if the first method is not convergent.

In this last part, we compare the implied volatility surfaces induced by the SSV and SV Heston
models where we suppose that the initial value of (v;) in the SV Heston model is the mean of the
invariant distribution, that is, we suppose that vy = 0.> We also assume that the parameters are
those of (51), except the correlation coefficient p.

In Figures 1 and 2, the volatility curves obtained when 7' = 1 are depicted, whereas in Figures
3 and 4, we set the strike K at K = 50 and let the time vary. These representations show that
when the maturity is long, the differences between the SSV and SV Heston models vanish. This
is a consequence of the convergence of the stochastic volatility to its stationary regime when
T — 4o0.

The main differences between these models then appear for short maturities. That is why we
complete this part by a representation of the volatility curve when 7 = 0.1 for p =0 and p = 0.5
in Figures 5 and 6, respectively. We observe that for short maturities, the volatility smile is more
curved and the skew is steeper. These phenomena seem interesting for calibration since one well-
known drawback of the standard Heston model is that it can have overly flat volatility curves for
short maturities.

5.3. Numerical tests on Asian options in the BNS SSV model

The BNS model introduced in Barndorff-Nielsen and Shephard [3] is a stochastic volatility model
where the volatility process is a Lévy-driven positive Ornstein—Uhlenbeck process. The dynamic

SThis choice is the most usual in practice.
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Figure 1. p =0, K > ojqp (K, 1).

of the asset price (S;) is given by S; = Sp exp(X;),

dth(r—%v,)dt-l—\/EdW,—deZt, ,OSO,
dv, = —pv, dt +dZ;, n>0,

where (Z;) is a subordinator without drift term and Lévy measure 7. In the following, we assume

0.115

0.105
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0.095
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Figure 2. p=0.5, K > ojmp(K, 1).
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Figure 3. p =0, T > 0jyp(50, T).

that (Z;) is a tempered stable subordinator, that is, that

m(dy) = 1jy>0)

cexp(—hy)

maturity

dy,

c>0,A>0,ae(,1).

As in the Heston model, we want to use our algorithm as a way of option pricing when the
stochastic volatility evolves under its stationary regime and test it on Asian options using the
method described in detail in Section 5.1. This model does not require a specific discretization
and the approximate Euler scheme (P) (see Section 3.2) relative to (v;) can be implemented using

0.0975
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0.0965

0.0955

0.095

0.0945
[}

Yoo
o V,8

Figure 4. p =0.5, T > 0jnp(50, T).
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imp

strike

Figure 5. p =0, T  ojyp(50, 7).

the rejection method. In Table 2, we present our numerical results obtained for the following
choices of parameters, steps and weights:

p=-1, A=u=1, c=0.01, a:%, y,,:nnzn_l/3.

The computation times for N = 5.10* and N = 5.10° are about 8.5 s and 93 s, respectively. Note
that for this model, the convergence seems to be slower because of the approximation of the jump
component.

0.16

imp
o
s

011F

[AR

0.09¢— -

0.08

strike

Figure 6. p =0.5, T = 0jyp(50, T).
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Table 2. Approximation of the Asian call price in the BNS model

K 44 45 46 47 48 49 50

Asian call (ref.) 6.75 5.83 4.93 4.05 3.18 2.35 1.57
N=5-10% 6.83 591 5.01 4.10 322 2.35 1.51
N=5-10° 6.78 5.86 4.96 4.06 3.19 2.34 1.52
N =5 10* (CP parity) 6.76 5.85 4.94 4.07 3.20 2.29 1.51
N=5-10° (CP parity) 6.75 5.83 493 4.04 3.17 2.32 1.54
K 51 52 53 54 55 56

Asian call (ref.) 0.91 0.55 0.39 0.29 0.23 0.18
N=5-10* 0.77 0.46 0.33 0.27 0.22 0.19
N=5-10° 0.79 0.48 0.34 0.27 0.21 0.17
N =5 10* (CP parity) 0.79 0.47 0.37 0.27 0.23 0.19
N=5. 105(CP parity) 0.83 0.50 0.36 0.28 0.22 0.17
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