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We investigate the problem of estimating the best binary decision tree approximation to the baseline

hazard function in the Cox proportional hazards model. Our motivation is to find an effective way of

condensing key functional information in the baseline hazard into a small number of estimable

parameters. The parameters consist of a threshold and two hazard levels, one to the left of the

threshold and one to the right, defined in terms of the best L2 approximation to the nonparametric

baseline hazard function. Estimators of these parameters are introduced and shown to converge at

cube-root rate to a non-normal limit distribution. Two alternate ways of constructing confidence

intervals for the threshold are compared. Results from a simulation study and an example concerning

a threshold for the age of onset of schizophrenia in a large cohort study are discussed.
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1. Introduction

Many people become informed about studies of disease risk through their mainstream

media. For effective communication of public health information of this type, it is crucial to

report the key statistical conclusions in ways that are understandable to non-scientists

(Brownson and Remington 2002). The Cox proportional hazards model is often suitable in

this regard because it provides an estimate of instantaneous relative risk r for an exposed

individual compared with an unexposed individual (holding all other risk factors constant)

that only involves a single regression parameter, and r does not depend on time.

Information about the baseline hazard rate º(t), however, is not as easily reported because it

depends on time, often in a complicated fashion, and it can be difficult to interpret plots of

the Breslow estimator of the cumulative baseline hazard (e.g. Figure 1) and kernel estimates

of º(t) itself. Yet all the information about how disease risk evolves temporally is contained

in the baseline, so it would be helpful to find an effective way of condensing that

information into a form that can be communicated easily. In the present paper we

investigate how this can be done in terms of the best-fitting binary decision tree
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approximation to º(t). Binary decision trees are step-functions with a single jump and have

just three parameters, all immediately interpretable, so they provide an excellent means of

condensing the information in the instantaneous risk into a tractable form.

We take the point of view that to effectively extract information about º(t), as t varies

over a specified follow-up period, it is important to use a global approximation with only a

few parameters. As such, a binary decision tree provides a compelling working model for

º(t), and a suitable compromise between interpretability and predictive power. We are

interested in the parameters of the best-fitting working model, that is, the parameter values

that minimize the L2 distance between the binary decision tree and the true º(t). The binary

decision tree is defined in terms of a threshold and two hazard levels, one to the left of the

threshold and one to the right. This threshold is similar to the split point used in

classification and regression trees (CART). In recent work, Banerjee and McKeague (2006)

studied split point estimation in the setting of nonparametric regression, and applied the

approach to the estimation of a pollution threshold; see also Bühlmann and Yu (2002). The

present paper is the first attempt to develop split point methods in a semiparametric setting

for the purpose of condensing information in the nonparametric part of the model.

It is well known that binary decision trees have poor predictive power in comparison with

Figure 1. Breslow estimator of the cumulative baseline hazard function for the onset age of

schizophrenia in the Jerusalem perinatal cohort.
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other learning methods, but are more attractive in terms of interpretability (see Hastie et al.

2001: 313). In the present context, however, interpretability and condensation of information

override the need for local predictive power. To appreciate this point, note that a local

abrupt change in º(t) would not necessarily coincide closely with the threshold in the best

binary decision tree approximation unless that is its main global feature. Moreover, the

binary decision tree threshold parameter exists even when no abrupt changes are present in

º(t) (see the simulation example in Section 3). Indeed, our approach does not make any

assumptions about the presence of abrupt changes in º(t), and is complimentary to change-

point analysis in which the aim is to estimate the locations of assumed jump discontinuities

in an otherwise smooth curve.

Change-point methods are well developed in the nonparametric regression and survival

analysis literature; see Chang et al. (1994), M€uuller and Wang (1994), Gijbels et al. (1999),

Antoniadis et al. (2000), Antoniadis and Gijbels (2002), Dempfle and Stute (2002), and Wu

et al. (2003). Change-point models of proportional hazards type have been studied by Luo

et al. (1997), Pons (2002, 2003) and Dupuy (2006). In change-point analysis, however, no

distinction is made between the working model that has the jump point and the model that

is assumed to generate the data. In contrast, in the present setting we need to develop a

model-robust approach that applies under misspecification of the discontinuous working

model by a smooth curve. Under a misspecified Cox model, Breslow’s estimator and the

maximum partial likelihood estimator for the regression parameters are known to converge

at
ffiffiffi
n

p
rate (Lin and Wei 1989); in that case, however, the working model is the Cox model

itself and the misspecification is general.

The main result of this paper shows that the estimators of the three parameters in the

working binary decision tree model converge at cube-root rate to a non-normal continuous

limit distribution (a scaled Chernoff distribution). We examine two alternate ways of

constructing confidence intervals for the threshold, one based on the usual Wald approach

and the other by inverting a deviance statistic. The cube-root rate is in marked contrast to

change-point estimators which converge at rate n under the optimistic assumption that the

change-point model is correctly specified.

The paper is organized as follows. The main results are presented in Section 2. In

Section 3 we describe results from a simulation study and an application to estimating a

threshold for the onset age for schizophrenia based on data from a large cohort study. In

Section 4 we discuss the broader implications of our results and prospects for future work

on misspecified threshold models in other survival analysis settings. Proofs are contained in

Section 5.

2. Threshold estimation under proportional hazards

The Cox proportional hazards model assumes that the conditional hazard function for the

failure time T of an individual with a p-vector of covariates Z can be written as

º(tjZ) ¼ º(t) expf�TZg,
where � ¼ (�1, . . . , � p)

T is a p-vector of unknown regression coefficients and º(t) is an
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unspecified baseline hazard function. Here � is restricted to a compact neighborhood B of the

true value �0, and the covariates are assumed to be bounded. Let X ¼ minfT , Cg be a

possibly right-censored failure time, where T and the censoring time C are assumed to be

conditionally independent given Z. Let � ¼ 1fT < Cg denote the indicator that the failure

time is observed.

To effectively condense the information in the baseline hazard function we need to

consider an approximating family of parametrically specified functions with the parameters

having an appealing interpretation. We propose to use a binary tree approximation identified

by a 3-vector of parameters (º l, ºu, d), where d is the threshold (or jump point), º l is the

value to the left of the jump, and ºu is the value to the right of the jump. The subscripts in

º l and ºu stand for ‘lower’ and ‘upper’ approximations, respectively. Best projected values

of these parameters in the L2 sense are defined by

(º0l , º
0
u, d

0) ¼ argmin
º l ,ºu,d

ð�
0

º(t)� º(t; º l, ºu, d)
� �2

dt, (2:1)

where

º(t; º l, ºu, d) ¼ º l 1(t < d)þ ºu 1(t . d)

is the binary tree approximation to º(t) and � . 0 is a given terminal time. The optimal

threshold d0 is the main parameter of interest; it most accurately splits the time interval into

two subintervals with the risk changing abruptly at the boundary.

Suppose we have n independent and identically distributed observations (X i, �i, Zi) of

(X , �, Z). It is natural to estimate (º0l , º
0
u, d

0) by expressing the integral in (2.1) in terms of

the cumulative baseline hazard function ¸(t) ¼
Ð t
0
º(u) du and plugging in its Breslow

estimator

^̧̧
n(t) ¼ Pn

�1fX < tg
S(0)( �̂�, X )

" #
:

Here Pn is the empirical distribution of the observations, �̂� the maximum partial likelihood

estimator of �0, S(0)(�, t) ¼ Pn[Y (t)e
�T Z], and Y (t) ¼ 1fX > tg is the at-risk indicator. In

the case of no covariates, the Breslow estimator reduces to the Nelson–Aalen estimator.

We need to apply various results of Andersen and Gill (1982) on the asymptotic

distribution of �̂� and ^̧̧
n(t), for which it suffices to assume that the matrix � (in the

notation of their Theorem 4.1) is positive definite, º(t) is bounded on [0, �], and

P(X . �) . 0. Note that, under these conditions, s(0)(�, t) ¼ E[Y (t)e �T Z] is bounded away

from zero as a function of (�, t) 2 B3 [0, �]. In addition, we need the following two

conditions to establish our main results:

Conditions

(A1) There is a unique vector (º0l , º
0
u, d

0) with º0l 6¼ º0u and 0 , d0 , � that minimizes

the integral on the right-hand side of (2.1).
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(A2) º is continuously differentiable in a neighbourhood of d0, and º9(d0) 6¼ 0.

Under the above conditions we find the following set of normal equations:

º0l ¼
¸(d0)

d0
, º0u ¼

¸(�)�¸(d0)

�� d0
, º(d0) ¼ º0l þ º0u

2
,

obtained by setting the partial derivatives of the integral on the right-hand side of (2.1) with

respect to (º l, ºu, d) to zero. The parameters º0l and º0u are seen to have the attractive

interpretation as the mean hazard levels in the regions separated by the threshold d0.

Expanding the integral in (2.1) and discarding the terms not involving (º l, ºu, d) shows

that

(º0l , º
0
u, d

0) ¼ argmin
º l ,ºu,d

M(º l, ºu, d),

where the criterion function is

M(º l, ºu, d) � (º2l � º2u) d þ º2u �þ 2 (ºu � º l)¸(d)� 2ºu ¸(�) :

Natural estimates of (º0l , º
0
u, d

0) are obtained by replacing the unknown ¸(t) in the above

expression by the Breslow estimator and then minimizing the resulting quantity with respect

to (º l, ºu, d):

(º̂º l, º̂ºu, d̂d n) ¼ argmin
º l ,ºu,d

Mn(º l, ºu, d),

where

Mn(º l, ºu, d) ¼ (º2l � º2u)d þ º2u�þ 2(ºu � º l) ^̧̧ n(d)� 2ºu ^̧̧ n(�):

Here and in the following, whenever we refer to a minimizer, we mean some choice of

minimizer rather than the set of all minimizers (similarly for maximizers), and we include the

possibility of replacing Mn by its left-continuous version in d, in order to guarantee the

existence of a minimizer. Note that

º̂º l ¼
^̧̧

n(d̂d n)

d̂d n

, º̂ºu ¼
^̧̧

n(�)� ^̧̧ (d̂d n)

�� d̂d n

, (2:2)

corresponding to the first two normal equations.

Our first result gives the joint asymptotic distribution of these estimators.

Theorem 2.1. If (A1) and (A2) hold, then

n1=3 º̂º l � º0l , º̂ºu � º0u, d̂d n � d0
� �

!d (c1, c2, 1) argmax
t

Q(t),

where

Q(t) ¼ aW (t)� bt2,

W is a standard two-sided Brownian motion process on the real line, a2 ¼ º(d0)=s(0)(�0, d0),
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b ¼ b0 �
1

8
jº0l � º0uj

1

d0
þ 1

�� d0

� �
. 0,

with b0 ¼ jº9(d0)j=2, and

c1 ¼
º0u � º0l
2d0

, c2 ¼
º0u � º0l
2(�� d0)

:

2.1. Wald-type confidence intervals

It can be shown using Brownian scaling (see Banerjee and Wellner 2001) that

Q(t) ¼d a (a=b)
1=3 Q1((b=a)

2=3 t), (2:3)

where Q1(t) ¼ W (t)� t2, so the limit in the above theorem can be expressed more simply as

(c1, c2, 1) (a=b)
2=3 argmax

t

Q1(t):

Let pÆ=2 denote the upper Æ=2-quantile of the distribution of argmax t Q1(t) (this is

symmetric about 0), known as Chernoff’s distribution. Accurate values of pÆ=2, for selected

values of Æ, are available in Groeneboom and Wellner (2001), where numerical aspects of

Chernoff’s distribution are studied. Utilizing the above theorem, this allows us to construct

approximate 100(1� Æ)% confidence limits simultaneously for all the parameters

(º0l , º
0
u, d

0) in the working model:

º̂º l � ĉc1�̂�n, º̂ºu � ĉc2�̂�n, d̂d n � �̂�n, where �̂�n ¼ n�1=3(âa=b̂b)2=3 pÆ=2, (2:4)

given consistent estimators ĉc1, ĉc2, âa, b̂b of the nuisance parameters. Estimates of c1 and c2 are

obtained by standard plug-in. The derivative of the baseline hazard function at d0, appearing

in b, can be estimated without difficulty using kernel smoothing (see Ramlau-Hansen 1983).

In view of the third normal equation, the numerator of a2 is estimated by the average of º̂º l

and º̂ºu, and the denominator by S(0)( �̂�, d̂d n).

2.2. Confidence sets based on deviance

Another strategy is to use a deviance function as an asymptotic pivot, which can be inverted

to provide a confidence set for d0; cf. the use of a residual sum of squares statistic in

Banerjee and McKeague (2006). Define the deviance as

Dn(d) ¼ Mn(º̂º
d
l , º̂º

d
u , d)�Mn(º̂º l, º̂ºu, d̂d n),

where º̂ºdl and º̂ºdu are defined as in (2.2) but with d̂d n replaced by d. Our next result provides

the asymptotic distribution of this statistic at d ¼ d0.

Theroem 2.2. If (A1) and (A2) hold, then
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n2=3Dn(d
0) !d 2jº0l � º0ujmax t Q(t),

where Q is given in Theorem 2.1.

Using the Brownian scaling (2.3), the above limiting distribution can be expressed more

simply as

2jº0l � º0uja(a=b)1=3 max t Q1(t):

This leads to the following approximate 100(1� Æ)% confidence set for the threshold:

fd : Dn(d) < 2n�2=3jº̂º l � º̂ºujâa(âa=b̂b)1=3 qÆg, (2:5)

where qÆ is the upper Æ-quantile of maxt Q1(t). This set is a finite union of intervals, so in

practice (as in the next section) we only report the end-points of the component containing

d̂d n, at the expense of a slight under-coverage.

3. Numerical examples

In this section we study examples with simulated data and an application to a large cohort

study concerning the onset age for schizophrenia.

For our simulation example, we consider a p-dimensional covariate Z � Unif [0, 1] p, for

p ¼ 1 and p ¼ 5, and specify the baseline hazard function as º(t) ¼ t, the regression

parameter �0 ¼ (1, 1, . . . , 1)T=p, the censoring time C as exponential with mean 3, and the

terminal time as � ¼ 1.5. For both p ¼ 1 and p ¼ 5, about 65% of the failure times are

uncensored and occur before �, and roughly 10% exceed �. The threshold is unique, d0 ¼
0.75, and the conditions of Theorem 2.1 are satisfied. Although the best-fitting binary

decision tree here provides a relatively crude approximation to º(t), the aim is to condense

the information in º(t) rather than provide good local predictive power. Indeed, we chose

this example to show that our approach works well even when there is no abrupt change in

º(t). To provide a fair comparison between the Wald and deviance type confidence

intervals, we used the true values of the nuisance parameters a and b to calibrate the

intervals. Tables 1 and 2 report the coverage and average lengths of nominal 95%

confidence intervals, and show that the deviance type confidence interval performs

somewhat better than the Wald type one, with average length about 15% less while

maintaining close to 95% coverage, except possibly at low sample sizes.

Next we apply our approach to estimate a threshold for the onset age of schizophrenia in

the Jerusalem perinatal cohort comprising 92 000 individuals born during 1964–1976 to

Israeli women living in Jerusalem and the adjoining rural areas. We restrict attention to 87 642

of these individuals for whom complete covariate information is available, and treat X as the

(possibly right-censored) age in years at onset of schizophrenia. Malaspina et al. (2001) found

a steady increase in schizophrenia risk with advancing paternal age, so we include paternal

age at the time of the individual’s birth as a covariate, along with two other covariates:

indicator of male, and indicator of low socio-economic status. The Breslow estimator of the

cumulative baseline hazard function is plotted in Figure 1. The Ramlau-Hansen kernel
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estimate of º9(d0), which is a part of b̂b, uses a bandwidth of one year and the Epanechnikov

kernel.

The threshold estimate for the onset age is d̂d n ¼ 16:69 years, with 95% confidence

intervals 15:79–17:59 and 16:29–17:06, for the Wald and deviance type methods,

respectively. Note that the confidence interval based on deviance is considerably tighter.

The point estimates of the baseline hazard levels are �̂� l ¼ 2:393 10�5 and �̂�u ¼
20:163 10�5, showing about a tenfold increase in risk across the threshold. We set the

terminal time at � ¼ 30 years, but the results are virtually the same for any � greater than

25 years.

Table 1. Coverage and average confidence interval length, p ¼ 1

Wald Deviance type

n Coverage Length Coverage Length

50 98.4 1.77 93.6 1.10

100 99.0 1.42 93.1 1.02

150 97.6 1.16 93.9 0.90

200 98.0 1.05 95.1 0.85

250 98.0 0.95 94.6 0.79

300 97.5 0.89 94.5 0.74

350 95.6 0.81 94.5 0.69

400 94.8 0.76 96.4 0.66

450 94.0 0.73 94.4 0.62

500 93.7 0.70 93.8 0.59

Table 2. Coverage and average confidence interval length, p ¼ 5

Wald Deviance type

n Coverage Length Coverage Length

50 92.4 2.44 83.4 0.98

100 95.4 1.47 89.8 0.96

150 96.0 1.23 92.3 0.89

200 96.8 1.09 92.0 0.82

250 94.5 0.99 93.5 0.78

300 94.6 0.89 94.9 0.73

350 95.3 0.82 93.5 0.68

400 93.9 0.79 92.4 0.65

450 91.9 0.73 94.4 0.61

500 92.4 0.70 92.0 0.59
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4. Discussion

In this paper we have studied the effect of misspecification of a binary decision tree for the

baseline hazard function in the Cox model. The convergence rate of the threshold estimator

is found to be n1=3, which is much slower than the rate of n that is obtained under correctly

specified change-point models. Furthermore, the limit distribution of the threshold estimator

is expressed in terms of the maximizer of a Gaussian process (a scaled Chernoff

distribution) with continuous sample paths, as opposed to a limiting jump process of the

type that arises in change-point estimation problems. The estimators of the hazard levels on

either side of the threshold are also n1=3-consistent (with scaled Chernoff distributions

appearing once again in the limit), in contrast to the (correctly specified) change-point

scenario where the hazard level estimators are
ffiffiffi
n

p
-consistent with normal limits.

While, in this paper, we have considered a threshold in time, it is also of considerable

interest to study covariate thresholds, which would be relevant, for example, to the study of

paternal age-related effects in schizophrenia risk (Malaspina et al. 2001). Pons (2003)

studies a covariate change-point Cox model, but the behaviour of the change-point estimator

she proposes is not known in the misspecified setting. For this problem, it is not

unreasonable to expect similar results to what we have obtained here, but its treatment is

well beyond the scope of the present paper. Going beyond the Cox model, one can, for

instance, consider threshold estimation in covariate or time for right-censored transformation

models; Kosorok and Song (2006) study estimation of a covariate threshold in a correctly

specified change-point model of this type. However, inference under misspecification or for

time thresholding in this setting remains to be developed.

The extension of our working model to allow general parametric models before and after

the threshold (rather than constants) is straightforward. We refer to Banerjee and McKeague

(2006) for the way this can be done in the nonparametric regression framework; a similar

extension goes through in the present setting.

Inspection of the proofs in the next section shows that they utilize an intricate

combination of empirical process and martingale/counting process theory. Initially we

attempted to use empirical process techniques exclusively, but this was not possible. In

addition, we found that it was not feasible to establish a crucial weak convergence part of

the proof (Lemma 5.1) using the martingale central limit theorem; even though f n, t is a

martingale in t . 0 and has zero mean by the martingale property of M , the martingale

property of f n, t fails when t , 0.

The determination of a threshold level for the hazard function and mean hazard levels on

either side of the threshold are potentially important in a variety of biomedical contexts

beyond the examples mentioned earlier. For example, patients suffering from terminal

illnesses are often monitored over time in order to determine when a drastic – but

potentially life-saving – medical intervention should be used. A similar issue arises on a

population level when deciding the time (or age) at which vaccination is advisable from a

public health point of view. In such scenarios, it is important to estimate a threshold in time

for the hazard rate, after which the intervention may be justified. The methods of this paper

can be used to determine a confidence interval not only for the threshold, but also for the
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relative risk º0u=º
0
l across the threshold. Large values of this relative risk would indicate a

greater necessity for medical intervention in the time zone given by the confidence interval

for the threshold. Procedures of this type could also have a beneficial impact on health care

policies pertaining to diagnostic testing.

We have restricted attention to the classical case of right censoring, but there is another

form of censoring under which inference becomes considerably more difficult, namely

interval censoring; here, the exact time to failure is observed for none of the individuals

being studied. Rather, the failure time is only known to lie in a random interval. Interval

censoring arises extensively in HIV/AIDS studies. In contrast to right-censored data, the

cumulative baseline hazard ¸ in the Cox model with interval-censored data can only be

estimated at rate n1=3 using the maximum likelihood estimator ^̧̧
n (Huang 1996). This

strongly suggests that if we base our criterion function Mn on ^̧̧
n, the estimate of d0

obtained by minimizing Mn will converge at a rate slower than n1=3. Preliminary

simulations indicate that this is indeed the case. However, we believe that the asymptotics

in this situation will be considerably harder than in the right-censored setting; little is

currently known about the global behaviour of ^̧̧
n to derive a minimax rate of convergence

for d̂d n. One way to bypass this problem might be to use a different estimate of ¸ (possibly

a smoothed estimate with a faster rate of convergence, under appropriate regularity

conditions) in Mn, leading to a possibly faster rate of convergence for (the corresponding)

d̂d n. In any case, this problem needs detailed investigation and is left as a topic for future

research.

5. Proofs

The notation ( means that the left-hand side is bounded by a generic constant times the

right-hand side. For a vector v, let jvj be its Euclidean norm.

Proof of Theorem 2.1. The proof uses a standard strategy applicable to M-estimators in

which we establish the rate of convergence (this step is delayed until the end of the proof)

and the weak convergence of a suitably localized version of the criterion function, and then

apply the argmax continuous mapping theorem (cf. van der Vaart and Wellner 1996: 288).

First note that the normalized estimators can be expressed as

n1=3 º̂º l � º0l , º̂ºu � º0u, d̂d n � d0
� �

¼ argmin
h

Qn(h), (5:6)

where the localized version of the criterion function is given by

Qn(h) ¼ n2=3 Mn(º
0
l þ h1 n

�1=3, º0u þ h2 n
�1=3, d0 þ h3 n

�1=3)�Mn(º
0
l , º

0
u, d

0)
n o

,

h ¼ (h1, h2, h3) 2 R3. To apply the argmax continuous mapping theorem we need to show

that Qn converges in distribution (and that its minimizer is tight; see the last step of the

proof). The weak convergence is established in the space Bloc(R
3) of locally bounded

functions on R3 equipped with the topology of uniform convergence on compacta. This is
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done by decomposing the process into parts with random and non-random limits,

Qn ¼ Qn,1 þQn,2, where

Qn,1(h)¼ n2=3 (Mn �M) (º0l þ h1 n
�1=3, º0u þ h2 n

�1=3, d0 þ h3 n
�1=3)� (Mn �M)(º0l , º

0
u, d

0)
n o

and

Qn,2(h) ¼ n2=3 M(º0l þ h1 n
�1=3, º0u þ h2 n

�1=3, d0 þ h3 n
�1=3)�M(º0l , º

0
u, d

0)
n o

:

A second-order Taylor expansion of Qn,2(h), the gradient of which vanishes at h ¼ 0, shows

that it converges to hT V h=2 uniformly on every compact rectangle in R3, where V is the

(positive-definite) Hessian matrix of the function M at (º0l , º
0
u, d

0). Explicitly,

V ¼
2 d0 0 º0l � º0u

0 2 (�� d0) º0l � º0u

º0l � º0u º0l � º0u 2º0u � º0lº9(d
0)

0
BB@

1
CCA :

Now consider the first term in Qn. Using the fact that

(Mn �M) (º l, ºu, d) ¼ 2 (ºu � º l) ( ^̧̧ n �¸)(d)� 2ºu ( ^̧̧ n �¸)(�),

after some algebra we can write

Qn,1(h) ¼ 2 (º0u � º0l ) n
2=3 [( ^̧̧ n(d

0 þ h3 n
�1=3)� ^̧̧

n(d
0))� (¸(d0 þ h3 n

�1=3)�¸(d0))]

þ 2 (h2 � h1) n
1=3 ( ^̧̧ n �¸)(d0 þ h3 n

�1=3)� 2 h2 n
1=3 ( ^̧̧ n �¸)(�):

From Theorem 3.4 of Andersen and Gill (1982), sup0<d<�j ^̧̧ n(d)�¸(d)j ¼ Op(n
�1=2), and it

follows that the last two terms in the above display are o p(1) uniformly over every compact

rectangle in R3. The first term can be written as 2(º0u � º0l )Qn,1(h3), where

Qn,1(t) ¼ n2=3
ðd0þ tn�1=3

d0

1

S(0)( �̂�, u)
� 1

S(0)(�0, u)

( )
PndN (u)

þ
ffiffiffi
n

p
Pn n1=6

ðd0þ tn�1=3

d0

dM(u)

s(0)(�0, u)

" #

þ n2=3
ðd0þ tn�1=3

d0

1

S(0)(�0, u)
� 1

s(0)(�0, u)

� 	
PndM(u)

� n2=3
ðd0þ tn�1=3

d0
1fPnY (u) ¼ 0gº(u) du

¼ An(t)þ Bn(t)þ Cn(t)þ Dn(t):

(5:7)

Here N (t) ¼ �1(X < t) is the basic counting process, and M(t) ¼ N (t)�
Ð t
0
Y (u)e �T

0
Zº(u) du

is the martingale part of N (t), and 1=0 ¼ 0. In Lemma 5.1 we show that Bn(t) converges to

Instantaneous hazard rates 289



aW (t) in distribution in the space Bloc(R). Moreover, as we show later in the proof, all other

terms in the above display are asymptotically negligible. This allows us to conclude that

Qn(h) converges in distribution to L(h) ¼ ~aaW (h3)þ hT V h=2, where ~aa ¼ 2jº0l � º0uja. The
argmax continuous mapping theorem then implies that argminh Qn(h) converges in

distribution to argminh L(h); cf. the proof of Theorem 2.1 in Banerjee and McKeague

(2006). Note that

min
h

L(h) ¼ min
h3

~aaW (h3)þ min
h1,h2

hT V h=2

� 	

and that we can find argminh1,h2 h
T V h=2 explicitly. After some routine calculus, we conclude

that the limiting distribution of (5.6) can be expressed as

(c1, c2, 1)argmin
t

faW (t)þ bt2g ¼d (c1, c2, 1)argmax
t

Q(t),

the limit stated in the theorem.

We now examine the three remainder terms in (5.7) and show that they are

asymptotically negligible uniformly over t in any compact interval. For the first term, a

Taylor expansion gives

An(t) ¼ n�1=6H(��, t)Tf
ffiffiffi
n

p
( �̂�� �0)g, (5:8)

where �� is on the line segment between �̂� and �0,

H(�, t) ¼ �n1=3
ðd0þ tn�1=3

d0

S(1)(�, u)

S(0)(�, u)2
PndN (u),

and S(1)(�, u) ¼ Pn[ZY (u)e
�T Z]. For any K . 0,

sup
�2B,j tj,K

jH(�, t)j < sup
�2B,u2[0,�]

jS(1)(�, u)j
S(0)(�, u)2

" #
n1=3Pn1fjX � d0j , Kn�1=3g
h i

:

The second term on the right of the above display converges in probability to 2KpX (d
0),

where pX is the pdf of X , and the first term is bounded in probability by elementary

Glivenko–Cantelli type arguments. It follows that jAn(t)j ¼ n�1=6Op(1)j
ffiffiffi
n

p
( �̂�� �0)j !p 0

uniformly over t belonging to a compact interval. For the third term in (5.7), given K . 0,

sup
j tj,K

jCn(t)j < n2=3
ðd0þKn�1=3

d0�Kn�1=3





 1

S(0)(�0, u)
� 1

s(0)(�0, u)





(Pn dN (u)þ º(u)S(0)(�0, u) du)

¼ Cn,1 þ Cn,2

where

Cn,1 < n1=3 sup
u2[0,�]





 1

S(0)(�0, u)
� 1

s(0)(�0, u)





n1=3Pn1fjX � d0j , Kn�1=3g

¼ n1=3Op(n
�1=2)[2KpX (d

0)þ o p(1)] !p 0
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and

Cn,2 < n1=3 sup
u2[0,�]





 1

S(0)(�0, u)
� 1

s(0)(�0, u)





n1=3
ðd0þKn�1=3

d0�Kn�1=3

º(u)S(0)(�0, u) du

¼ n1=3Op(n
�1=2)[2Kº(d0)s(0)(�0, d

0)þ o p(1)] !p 0,

as required. Here we have used the fact that fY (u)e �T
0
Z , u 2 [0, �]g is Donsker, and the limit

of S(0)(�0, �), namely s(0)(�0, �), is bounded away from zero on [0, �], to handle the

supremum term. The last term, Dn(t), in (5.7) is asymptotically negligible uniformly over t in

a compact interval, since P(PnY (u) ¼ 0) < P(X < �)n ! 0 for any u , �.
It remains to derive the convergence rates of the estimates promised earlier. This will be

done by applying a slight extension of Theorem 3.2.5 of van der Vaart and Wellner (1996)

in which we only need to check the moment condition of that theorem on a set �n with

P?(�n) ! 1. Let Ł generically denote the vector (º l, ºu, d), and Ł0 ¼ (º0l , º
0
u, d

0). Since M

is uniquely minimized at Ł0 and is twice continuously differentiable, the condition

M(Ł)�M(Ł0) ) d2(Ł, Ł0) holds with d being the l1 norm in R3 (this is equivalent to the

usual Euclidean metric, but somewhat simpler to work with). The rate of convergence will

be derived in terms of the expected continuity modulus of
ffiffiffi
n

p
(Mn �M) at Ł0:

ffiffiffi
n

p
E? sup

d(Ł,Ł0),E
j(Mn �M)(Ł)� (Mn �M)(Ł0)j1� n

" #
(5:9)

for E . 0. The set �n will be defined below in such a way that it is tractable to compute a

bound on the above expectation. In what follows, we simplify the notation by using E and P

in place of E? and P?.

Straightforward algebra shows that

(Mn �M)(Ł)� (Mn �M)(Ł0) ¼ 2[(ºu � º l)� (º0u � º0l )](
^̧̧

n �¸)(d)� 2(ºu � º0u)(
^̧̧

n �¸)(�)

þ 2 (º0u � º0l ) [(
^̧̧

n �¸)(d)� ( ^̧̧ n �¸)(d0))]:

This implies that (5.9) is bounded above by

6ERn þ 2jº0l � º0ujSn(E), (5:10)

where Rn ¼
ffiffiffi
n

p
E[sup d 2 [0, �]j ^̧̧ n(d)�¸(d)j1�n

] and

Sn(E) ¼
ffiffiffi
n

p
E sup

jd�d0j<E
j( ^̧̧ n �¸)(d)� ( ^̧̧ n �¸)(d0)j1�n

" #
:

First consider Sn(E), and a similar decomposition to (5.7):

Instantaneous hazard rates 291



( ^̧̧ n �¸)(d)� ( ^̧̧ n �¸)(d0) ¼
ðd
d0

1

S(0)( �̂�, u)
� 1

S(0)(�0, u)

( )
Pn dN (u)

þ Pn

ðd
d0

dM(u)

s(0)(�0, u)

� �

þ
ðd
d0

1

S(0)(�0, u)
� 1

s(0)(�0, u)

� 	
Pn dM(u)

�
ðd
d0
1fPnY (u) ¼ 0gº(u) du

¼ An(d)þ Bn(d)þ Cn(d)þ Dn(d): (5:11)

For the first term in this decomposition,

ffiffiffi
n

p
E sup

jd�d0j<E
jAn(d)j1�n

" #
< Ej

ffiffiffi
n

p
( �̂�� �0)j3=21� n

� �2=3
E sup
jd�d0j<E

jH(��, d)j31�n

 !1=3

,

where we have used Hölder’s inequality (with p ¼ 3=2, q ¼ 3), and a Taylor expansion

(similar to (5.8)) with �� on the line segment between �̂� and �0, and

H(�, d) ¼ �
ðd
d0

S(1)(�, u)

S(0)(�, u)2
Pn dN (u):

From (2.6) in Andersen and Gill (1982),

ffiffiffi
n

p
( �̂�� �0)1� n

¼ n�1I (��, �)

 ��1 ffiffiffi

n
p

U (�),

where �n is the event on which the matrix I (��, �) is non-singular, I is defined by

Andersen and Gill (see the display after their (2.5)), the matrix inverse of a singular matrix is

defined to be zero, and

U (t) ¼ Pn

ð t
0

Z � S(1)(�0, u)

S(0)(�0, u)

� �
dM(u): (5:12)

Here note that P(�n) ! 1 by the proof of Andersen and Gill’s Theorem 3.2. From that proof,

kn�1I (��, �)� �k !p 0, where k � k is the operator norm, and � is an invertible matrix, so

P(�n) ! 1. Also, by a matrix inequality (cf. Lemma 7 of Gandy and Jensen 2005), it

follows that for some constant C, knI (��, �)�1 � ��1k < Ckn�1I (��, �)� �k on a (new)

set �n (which is a subset of the previous �n) such that P(�n) ! 1, so on this set

j
ffiffiffi
n

p
( �̂�� �0)j < k��1kjn1=2U (�)j þ Ckn�1I (��, �)� �kjn�1=2U (�)j,

and applying Hölder’s inequality (with p ¼ 4, q ¼ 4=3),
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Ej
ffiffiffi
n

p
( �̂�� �0)1� n

j3=2 ( Ejn1=2U (�)j3=2

þ Ekn�1I (��, �)� �k61�n


 �1=4
Ejn1=2U (�)j2
� �3=4

:

Since U (t) is a stochastic integral with respect to a counting process martingale, we can

compute its second moment explicitly in terms of the intensity of the counting process:

Ejn1=2U (�)j2 ¼ E Pn

ð�
0

Z � S(1)(�0, u)

S(0)(�0, u)

� �2
Y (u)e�

T
0
Zº(u) du

( )

( O(1)þ E
1fPnY (�) . 0g

PnY (�)

� �2
,

which is uniformly bounded in n (cf. Lemma 1 of McKeague and Utikal 1990), where we

have used the boundedness of the covariates and the baseline hazard function. Next, consider

Ekn�1I (��, �)� �k61� n
( Ekn�1I (��, �)k61�n

þ k�k6:

We show that the first term is uniformly bounded, using a new �n by intersecting the

previous one with finf u2[0,�],�2B S(0)(�, u) . cg, where c ¼ inf u2[0,�],�2B s(0)(�, u)=2 . 0. By

the uniform convergence in probability of S(0) to s(0), we still have P?(�n) ! 1. Inspecting

the expression for I in Andersen and Gill (1982), note that

sup
t2[0,�],�2B

����� 1n I (�, t)
�����1� n

, C,

where C is a constant that does not depend on n. It follows that Ej
ffiffiffi
n

p
( �̂�� �0)j3=21�n

is

uniformly bounded. To complete our work with the first term in (5.11), we now turn to

E supjd�d0j<EjH(��, d)j31�n
. Let �n with P(�n) ! 1 now be chosen (as a subset of the

earlier one) so that

sup
u2[0,�],�2B

jS(1)(�, u)j
S(0)(�, u)2

1� n

is bounded by a constant. Writing Ai ¼ 1fjX i � d0j < Eg and using the independence of the

Ai, we have

E sup
jd�d0j<E

jH(��, d)j31�n
( E

1

n

Xn
i¼1

Ai

" #3

¼ 1

n3

Xn
i¼1

E(A3
i )þ

X
i6¼ j6¼k

E(AiA jAk)þ
X
i 6¼ j

E(A2
i A j)

" #

(
1

n3
nEþ n3E3 þ n2E2
� �

,
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where in the last step we use the uniform boundedness of the density of X over [0, �]. Thus,
the first term in the decomposition (5.11) satisfies

ffiffiffi
n

p
E sup

jd�d0j<E
jAn(d)j1�n

" #
(

E1=3

n2=3
þ Eþ E2=3

n1=3
: (5:13)

Now consider the second term in (5.11). Noting that the martingale integral has zero

mean, we may write Bn in terms of the empirical process Gn ¼
ffiffiffi
n

p
(Pn � P). Using an

inequality of van der Vaart and Wellner (1996: 291), we then have

ffiffiffi
n

p
E sup

jd�d0j<E
jBn(d)j

" #
¼ E sup

jd�d0j<E
jGn f d j

" #
( J (1, ME) (P M2

E )
1=2, (5:14)

where J (1, ME) is an entropy integral and ME is an envelope (specified later) for the class of

functions ME ¼ f f d : jd � d0j < Eg, with

f d ¼
�[1(X < d)� 1(X < d0)]

s(0)(�0, X )
� e�T

0
Z

ðd
d0

1(X > u)º(u)

s(0)(�0, u)
du

� �

¼ f1,d � f 2,d :

We now set about finding an upper bound on the entropy integral. Set M1,E ¼
f f 1,d : jd � d0j < Eg. It can be seen that M1,E is obtained by multiplying a fixed function

by members of a Vapnik–Chervonenkis class of functions, and is therefore itself Vapnik–

Chervonenkis, so

sup
Q

N (�kM1,EkQ,2, M1,E, L2(Q)) ( ��V1 ,

for all � . 0 and some constant V1 . 0, where M1,E ¼ K11fjX � d0j < Eg is an envelope for

M1,E. Set

M2,E ¼ f f 2,d : jd � d0j < Eg ¼ f f 2,d : d0 < d < d0 þ Eg [ f f 2,d : d0 � E < d < d0g

¼ Mþ
2,E [M�

2,E:

Note that Mþ
2,E is obtained by multiplying e�T

0
Z by members of a class of functions, say GE,

that is contained in the class of monotone increasing functions taking values in [�KE, KE],
for some constant K . 0. Taking GE ¼ KE as an envelope for this class, we have

sup
Q

log N (�kGEkQ,2, GE, L2(Q)) ( ��1,

for all � . 0, where we have used a simple extension of Theorem 2.7.5 of van der Vaart and

Wellner (1996). Now setting M2,E ¼ BGE as an envelope for Mþ
2,E, where B is a bound on

e �T
0
Z , we obtain

sup
Q

log N (�kM2,EkQ,2, Mþ
2,E, L2(Q)) ( ��1:

By choosing K large enough, we can ensure that M2,E is an envelope for M�
2,E as well, so the
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same argument as before shows that the above display also holds with Mþ
2,E replaced by M�

2,E.

Thus

sup
Q

log N (�kM2,EkQ,2, M2,E, L2(Q)) ( ��1:

Noting that ME � M1,E �M2,E, and that ME ¼ M1,E þ M2,E is an envelope for this class, it is

easily deduced that

sup
Q

log N (�kMEkQ,2, ME, L2(Q)) ( ��1 � V1 log �:

Thus,

J (1, ME) � sup
Q

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ log N (� kMEkQ,2, ME, L2(Q))

q
d�

(

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1 � V1 log �

p
d� , 1:

Finally, noting that P M2
E ( E, we conclude from (5.14) that

ffiffiffi
n

p
E sup

jd�d0j<E
jBn(d)j

" #
(

ffiffi
E

p
: (5:15)

Now consider the third term in (5.11). Note that S(0)(�0, u) is bounded away from zero

on �n, and the total variation of the (random) signed measure Pn dM over the interval

[d0 � E, d0 þ E] is bounded by Un ¼ PnfjX � d0j < Eg þ O(E), so we have

ffiffiffi
n

p
E sup

jd�d0j<E
jCn(d)j1� n

" #
( E sup

ju�d0j<E

ffiffiffi
n

p
jS(0)(�0, u)� s(0)(�0, u)jUn

" #

< E sup
ju�d0j<E

jGn1fX > uge�T0 Z j2
 !1=2

EU 2
n


 �1=2

(
E
n
þ E2

� �1=2
(5:16)

using the Cauchy–Schwarz inequality. The above second moment term involving Gn is

bounded by Theorem 1.3 of Talagrand (1994). Here Talagrand’s result is applied to the

uniformly bounded Vapnik–Chervonenkis class of functions F ¼ f(x, z) 7! 1fx >
uge�T0 z, u 2 [0, �]g, where z is confined to a bounded set in R p. It follows from Theorem

2.6.7 of van der Vaart and Wellner (1996) that the covering number of F satisfies the

assumption of Talagrand’s theorem. A similar argument shows that Rn in (5.10) is bounded.

The fourth term in (5.11) vanishes on �n, so it makes no contribution to (5.9).

Combining our results for the various other terms, (5.13), (5.15) and (5.16), along with

(5.10), we find that the expected continuity modulus (5.9) is of order
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�n(E) ¼ Eþ E1=3

n2=3
þ Eþ E2=3

n1=3
þ

ffiffi
E

p
þ E

n
þ E2

� �1=2
for E . 0. The leading term in �n(E) is

ffiffi
E

p
. Solving r2n�n(1=rn) <

ffiffiffi
n

p
yields the rate of

convergence rn < n1=3, and we conclude from Theorem 3.2.5 of van der Vaart and Wellner

(1996) that

n1=3 º̂º l � º0l , º̂ºu � º0u, d̂d n � d0
� �

¼ Op(1) :

This completes the proof. h

Lemma 5.1. The process Bn(t) in the proof of Theorem 2.1 converges in distribution in the

space Bloc(R) to the Gaussian process Q(t) ¼ aW (t) defined in the statement of the theorem.

Proof. We appeal to Theorem 2.11.22 of van der Vaart and Wellner (1996), which gives a

central limit theorem for processes indexed by classes of functions changing with n, under

various assumptions including an entropy integral condition. In the notation of that theorem,

we can write Bn(t) ¼ Gn f n, t, where Gn ¼
ffiffiffi
n

p
(Pn � P) is the empirical process and

f n, t ¼ n1=6
ðd0þ tn�1=3

d0

dM(u)

s(0)(�0, u)
,

with t restricted to [�K, K] for K . 0. Note that the martingale integral above has zero

mean. We now verify that the limiting covariance function

R(s, t) ¼ lim
n!1

E( f n,s f n, t)

of Bn(t) coincides with that of aW (t). By the martingale property, E( f n,s f n, t) ¼ 0 if s and t

are of opposite sign, so R(s, t) ¼ 0 whenever s and t have opposite sign. The predictable

quadratic variation process of M is the integrated intensity of the counting process N , so for

s, t . 0,

E( f n,s f n, t) ¼ n1=3E

ðd0þ(s^ t)n�1=3

d0

Y (u)º(u)e �T
0
Z

s(0)(�0, u)2
du

¼ n1=3
ðd0þ(s^ t)n�1=3

d0

º(u)

s(0)(�0, u)
du

! º(d0)

s(0)(�0, d0)
(s ^ t):

Thus, R(s, t) ¼ a2 (s ^ t) for s, t . 0. It can be checked similarly that for s, t , 0,

R(s, t) ¼ a2 (�s ^ �t). Hence the limiting covariance function of Bn(t) is indeed that of

aW (t). The entropy integral condition can be checked in a very similar way to the steps

involved with Bn(t) in the proof of Theorem 2.1, using the envelope function

Fn(X , �, Z) ¼ n1=6K11fjX � d0j < Kn�1=3g þ K2n
�1=6�,
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where the first term bounds the counting process part of f n, t and the second term bounds the

compensator part, for (sufficiently large) constants K1 and K2. We omit the details of the

remainder of the proof as they are similar to arguments used in Banerjee and McKeague

(2006). h

Proof of Theorem 2.2. Writing º̂ºd
0

l and º̂ºd
0

u as º̂º0l and º̂º0u, respectively, we have

n2=3 Dn(d
0) ¼ n2=3 [Mn(º̂º

0
l , º̂º

0
u, d

0)�Mn(º̂º l, º̂ºu, d̂d n)]

¼ n2=3 [Mn(º
0
l , º

0
u, d

0)�Mn(º̂º l, º̂ºu, d̂d n)]

� n2=3 [Mn(º
0
l , º

0
u, d

0)�Mn(º̂º
0
l , º̂º

0
u, d̂d n)] � I n þ J n:

Now, I n ¼ �minh Qn(h) by (5.6) and converges in distribution to �minh L(h), using

Theorem 5.1 of Banerjee and McKeague (2006), and this simplifies to the limit stated in the

theorem. It only remains to show that J n ¼ o p(1). Straightforward algebra allows J n to be

written as

n2=3((º̂º0l )
2 � (º0l )

2)d0 � 2 n2=3(º̂º0l � º0l )
^̧̧

n(d
0)

þ n2=3(�� d0)((º̂º0u)
2 � (º0u)

2)� 2 n2=3(º̂º0u � º0u)(
^̧̧

n(�)� ^̧̧
n(d

0)),

which is simply

n2=3d0 º̂º0l � º0l

h i
º̂º0l þ º0l � 2

^̧̧
n(d

0)

d0

" #
þ n2=3 �� d0

� �
º̂º0u � º0u

h i
º̂º0u þ º0u � 2

^̧̧
n(�)� ^̧̧

n(d
0)

�� d0

" #
:

Using the fact that º̂º0l ¼ ^̧̧
n(d

0)=d0 and º̂º0u ¼ ( ^̧̧ n(�)� ^̧̧
n(d

0))=(�� d0), this simplies to

�n2=3(º̂º0l � º0l )
2 � n2=3 (�� d0)(º̂º0u � º0u)

2

which is Op(n
�1=6) (using the

ffiffiffi
n

p
-consistency of º̂º0u and º̂º0l for º

0
u and º0l respectively) and

hence o p(1). This completes the proof.
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