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1. Introduction

Throughout this paper, I(Rd) (Isym(Rd)) stands for the class of all infinitely divisible (all

symmetric infinitely divisible) distributions on Rd . The characteristic function �̂�(z), z 2 Rd,

of an infinitely divisible distribution � 2 I(Rd) has the so-called

representation as follows:

�̂�(z) ¼ exp � 1

2
hz, Azi þ ihª, zi þ

ð
Rd

eihz,xi � 1 � ihz, xi
1 þ jxj2

� �
�(dx)

� �
,

where A is a symmetric non-negative definite d 3 d matrix, ª 2 Rd and � is a measure

(called the Lévy measure) on Rd satisfying

�(f0g) ¼ 0 and

ð
Rd

(jxj2 ^ 1)�(dx) , 1:

The triplet (A, �, ª) is called the generating triplet of � 2 I(Rd). Let C�(z) ¼ log �̂�(z) be the

cumulant of � 2 I(Rd). Summarizing the discussions in Rosinski (1991) and Maejima and

Rosiński (2001, 2002), we use the following definition of type G distributions on Rd .

Definition 1.1. A probability measure �0 2 Isym(Rd) is said to be of type G if its Lévy

measure �0 is given by

�0(B) ¼ E[�(Z�1 B)], B 2 B0(Rd), (1:1)
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where � is another Lévy measure on Rd and Z is the real-valued standard normal random

variable. Here B0(Rd) is the class of all Borel sets B in Rd such that B � fjxj . �g for some

� . 0.

Remark 1.1. � in (1.1) is not necessarily unique. However, if we let � be the symmetrization

of � defined by �(B) ¼ 1
2
(�(B) þ �(�B)), then

�0(B) ¼ E[�(Z�1 B)] ¼ E[�(jZj�1 B)]

also holds and � is uniquely determined (see Maejima and Rosiński 2002).

Definition 1.1 is a multidimensional extension of the well-known notion of type G

distributions on R. (Another type of multidimensional extension is discussed in Barndorff-

Nielsen and Pérez-Abreu (2002).) In the one-dimensional case, a type G random variable X

can be expressed as X ¼d V 1=2 Z, where ¼d means equality in law and V is a non-negative

infinitely divisible random variable, independent of Z. Examples of R-valued type G

distributions are symmetric stable distributions, convolution of symmetric stable distribu-

tions of different stability indices, symmetric gamma distributions (a special case of which

is the Laplace distribution), Student’s t-distributions and normal inverse Gaussian

distributions. The first two have multidimensional extensions.

Maejima and Rosiński (2001) introduced an operator K : Isym(Rd) ! Isym(Rd), where

K(�) is a symmetric infinitely divisible distribution having the same Gaussian component as

� and the Lévy measure �0 in (1.1), where � is the Lévy measure of � 2 Isym(Rd). Let

G0(Rd) be the class of all type G distributions on Rd and define, for m 2 N,

Gm(Rd) ¼ f�0 2 G0(Rd) : � in (1:1) is the Lévy measure of

some symmetric infinitely divisible distribution in Gm�1(Rd)g:

Also define G1(Rd) ¼ \m>0Gm(Rd). The classes Gm(Rd), 1 < m < 1, were introduced in

Maejima and Rosiński (2001), and if we use the operator K,

G0(Rd) ¼ K(Isym(Rd)) (1:2)

and Gm(Rd) ¼ K(Gm�1(Rd)). It was also shown in the paper that

Isym(Rd) � G0(Rd) � G1(Rd) � � � � � Gm(Rd) � � � � � G1(Rd) � Ssym(Rd),

where Ssym(Rd) is the class of all symmetric stable distributions on Rd , and G1(Rd) is the

largest subclass of Isym(Rd) that is invariant under the operation K.

2. The case m ¼ 0

We start with the case m ¼ 0. The following is a known characterization of the Lévy

measures of type G distributions (see Maejima and Rosiński 2002).
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Proposition 2.1. A probability distribution �0 2 Isym(Rd) is of type G if and only if its Lévy

measure �0 either is zero or can be represented as

�0(B) ¼
ð

S

º(d�)

ð1
0

1B(r�)g�(r2)dr, B 2 B0(Rd),

where º is a symmetric probability measure on the unit sphere S in Rd, g�(r) is a jointly

measurable function such that g� ¼ g��, º-almost everywhere for any fixed � 2 S, and g�(�)
is completely monotone on (0, 1) and satisfiesð1

0

(1 ^ r2)g�(r2)dr ¼ c 2 (0, 1),

with c independent of �.

One of our purposes in this paper is to give a characterization of type G distributions by

stochastic integrals with respect to Lévy processes. This is a probabilistic characterization,

while Proposition 2.1 is an analytic characterization in terms of the Fourier transform of the

probability distribution. As to the definition of stochastic integrals of non-random functions

with respect to Lévy processes fX tg on Rd , we follow the definition in Sato (2004, 2005),

whose idea is to define the integrals with respect to Rd-valued independently scattered

random measure induced by a Lévy process on Rd . This idea was used in Urbanik and

Woyczyński (1967) and Rajput and Rosinski (1989) for the case d ¼ 1. See also Barndorff-

Nielsen et al. (2006).

We call � 2 I(Rd) self-decomposable if, for every b 2 (0, 1), there exists a distribution

rb on Rd such that �̂�(z) ¼ �̂�(bz)r̂rb(z). We know that the class of all self-decomposable

distributions can be characterized by stochastic integrals with respect to Lévy processes;

� is self-decomposable if and only if there exists a Lévy process fX tg such that

E[logþjX 1j] , 1 and � ¼ L(
Ð1

0
e� t dX t), where L(Y ) stands for the law of Y . Jurek

(1985) defined s-self-decomposable distributions. � 2 I(Rd) is s-self-decomposable if, for

every b 2 (0, 1), there exists rb 2 I(Rd) such that �̂�(z) ¼ �̂�(bz)br̂rb(z), and Jurek gave a

stochastic integral characterization such that � is s-self-decomposable if and only if

� ¼ L(
Ð 1

0
t dX t) for some Lévy process fX tg. However, only a few classes of infinitely

divisible distributions were characterized in this way. Recently, Barndorff-Nielsen et al.

(2006) found such characterizations for what they call the Goldie–Steutel–Bondesson class

and the Thorin class. Our study is along the lines of this history.

The following result for the integrability of stochastic integrals is due to Sato (2005),

who studied more general stochastic integrals of matrix-valued integrands with respect to

additive processes. We state without proof parts of Propositions 2.7 and 3.4 of Sato (2005)

as the following lemma.

Lemma 2.2. Let � 2 I(Rd), let fX
(�)
t g be the Lévy process with L(X

(�)
1 ) ¼ � on Rd, and let

f (t) be a real-valued measurable function on [0, 1]. Ifð1

0

f (t)2 dt , 1, (2:1)

that is,
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then Y :¼
Ð 1

0
f (t)dX

(�)
t is integrable,

Ð 1

0
jC�( f (t)z)jdt , 1 and CL(Y )(z) ¼

Ð 1

0
C�( f (t)z)dt.

Furthermore, if we let (A, �, ª) and (AY , �Y , ªY ) be the generating triplets of � and L(Y ),

respectively, then

AY ¼ A

ð1

0

f (t)2 dt, (2:2)

�Y (B) ¼
ð1

0

dt

ð
Rd

1B( f (t)x)�(dx) (2:3)

and

ªY ¼
ð1

0

f (t)ªþ f (t)

ð
Rd

x
1

1 þ j f (t)xj2 �
1

1 þ jxj2

� �
�(dx) dt: (2:4)

Let

�(u) ¼ (
ffiffiffiffiffiffi
2�

p
)�1e�u2=2

and

h(x) ¼
ð1

x

�(u)du, x 2 R:

Define the inverse function of h by h�, namely, x ¼ h�(t) if and only if h(x) ¼ t. The

stochastic integrals we need can be shown to be integrable as follows.

Theorem 2.3. The stochastic integral ð1

0

h�(t)dX
(�)
t

is integrable for every � 2 I(Rd).

Proof. It is enough to show that f (t) ¼ h�(t) satisfies the conditions in Lemma 2.2 for every

� 2 I(Rd). Since ð1

0

h�(t)2 dt ¼
ð1
�1

r2�(r)dr ¼ 1,

we have (2.1). This completes the proof. h

Definition 2.1. For any � 2 I(Rd), define a mapping G : I(Rd) ! I(Rd) by

G(�) ¼ L
ð1

0

h�(t)dX
(�)
t

� �
:

Proposition 2.4. (i) For any � 2 I(Rd),

� �
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ð1

0

jC�(zh�(t))jdt , 1 (2:5)

and

CG(�)(z) ¼
ð1

0

C�(zh�(t))dt, z 2 Rd : (2:6)

(ii) The mapping G is many-to-one from I(Rd) into Isym(Rd), and one-to-one from

Isym(Rd) into Isym(Rd).

(iii) For any �1, �2 2 I(Rd), G(�1 � �2) ¼ G(�1) � G(�2).

(iv) Let �n 2 I(Rd), n ¼ 1, 2, . . . . If �n ! �, then G(�n) ! G(�).

(v) Let (A, �, ª) be the triplet of � and ( ~AA, ~��, ~ªª) the triplet of ~�� ¼ G(�). Then

~AA ¼ A,

~��(B) ¼
ð1

0

dt

ð
Rd

1B(h�(t)x)�(dx) ¼ E[�(Z�1 B)],

~ªª ¼ 0:

Proof. (i) Expressions (2.5) and (2.6) follow from Lemma 2.2.

(ii) Since dG(�)G(�)(z) ¼ expfCG(�)(z)g, in order to show that G(�) 2 Isym(Rd), it is enough to

show that CG(�)(z) is symmetric in z. Actually, we have

CG(�)(�z) ¼
ð1

0

C�(�zh�(t))dt ¼ �
ð1
�1

C�(�zr)dh(r)

¼
ð1
�1

C�(�zr)�(r)dr ¼
ð1
�1

C�(zs)�(s)ds

¼ �
ð1
�1

C�(zr)dh(r) ¼
ð1

0

C�(zh�(t))dt

¼ CG(�)(z),

and thus CG(�)(z) is symmetric. This shows that the mapping G is from I(Rd) into Isym(Rd).

The fact that G is one-to-one from Isym(Rd) into Isym(Rd) can be shown by Remark 1.1.

(iii) and (iv) can be proved using the same idea as Proposition 2.7(iii) and (iv) of

Barndorff-Nielsen et al. (2006).

(v) follows from (2.2)–(2.4) if we notice that
Ð 1

0
h�(t)dt ¼ 0 and

Ð 1

0
h�(t)2dt ¼ 1. h

The following theorem shows that each type G distribution admits the stochastic integral

representation defined in Definition 2.1.

Theorem 2.5.

G0(Rd) ¼ G(I(Rd)):
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Proof. Let � 2 I(Rd) and ~�� ¼ G(�). Then by Proposition 2.4(v), we have (1.1), and thus

~�� 2 G0(Rd), concluding that G(I(Rd)) � G0(Rd).

Conversely, suppose that ~�� 2 G0(Rd). Then by Definition 1.1 and Proposition 2.4(v)

again, we see that ~�� ¼ L(
Ð 1

0
h�(t)dX

(�)
t ) for some � 2 I (Rd). This means that ~�� 2 G(I(Rd)

and G0(Rd) � G(I(Rd)), completing the proof. h

Corollary 2.6. Let H be a subclass of I(Rd) and let

G H (Rd) ¼ f�0 2 Isym(Rd) : ��0
(B) ¼ E[�(Z�1 B)], B 2 B0(Rd), for some �� 2 Hg,

where �� is the Lévy measure of � 2 I(Rd) and �� is the infinitely divisible distribution with

Lévy measure �. Then we have

G H (Rd) ¼ G(H):

Remark 2.1. If H ¼ I(Rd), then the corollary above is nothing but Theorem 2.5. The

corollary can be proved in the same way as Theorem 2.5. Also, we see from the discussions

above that, as mappings from Isym(Rd) into Isym(Rd), the two mappings K and G are the

same.

3. Lévy measures of distributions in Gm(Rd), m 2 N

In this section, we characterize Lévy measures of distributions in Gm, m 2 N. Write

�0(x) ¼ �(x), h0(x) ¼ h(x) and h�0 (t) ¼ h�(t).

For m 2 N, let �m(x) be the probability density function of the product of m þ 1

independent standard normal random variables. Then we have the following.

Lemma 3.1. For each m 2 N,

(i)

�m(x) ¼ �m(�x),

(ii) ð1
�1

�m(x)dx ¼ 1,

(iii) ð1
�1

jxj�m(x)dx , 1 and

ð1
�1

x�m(x)dx ¼ 0,

(iv) ð1
�1

x2�m(x)dx ¼ 1,

(v)
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�m(x) ¼
ð1
�1

�0(u)�m�1(xjuj�1)juj�1 du: (3:1)

Proof. (i)–(iv) are trivial. (v) is a consequence of a standard calculation. h

For m 2 N, let

hm(x) ¼
ð1

x

�m(u)du, x 2 R,

and define its inverse, x ¼ h�m(t), by t ¼ hm(x). We note that, for each m 2 N [ f0g,

hm(þ1) ¼ 0, hm(�1) ¼ 1,ð1

0

h�m(t)dt ¼ 0

ð1

0

h�m(t)2 dt ¼ 1,

Theorem 3.2. For each m 2 N, let �m 2 Isym(Rd) and denote its Lévy measure by �m. Then

�m 2 Gm(Rd) if and only if

�m(B) ¼
ð1
�1

�0(u�1 B)�m�1(u)du, (3:2)

where �0 is the Lévy measure of some �0 2 G0(Rd).

Proof. We begin with the ‘only if’ part. Let m ¼ 1. Then, by definition,

�1(B) ¼ E[�0(Z�1 B)] ¼
ð1
�1

�0(u�1 B)�0(u)du

for some Lévy measure �0 whose distribution is in G0. Suppose the statement is true for

some m 2 N. The Lévy measure �mþ1 of �mþ1 2 Gmþ1(Rd) is given by

�mþ1(B) ¼ E[�m(Z�1 B)]

for some Lévy measure �m of a distribution �m 2 Gm(Rd). Then, by the induction

hypothesis,

�mþ1(B) ¼
ð1
�1

�0(u)�m(u�1 B)du

¼
ð1
�1

�0(u)du

ð1
�1

�0(u�1v�1 B)�m�1(v)dv

¼
ð1
�1

�0(u)du

ð1
�1

�0(y�1 B)�m�1(yjuj�1)juj�1 dy

¼
ð1
�1

�0(y�1 B)�m(y)dy

by (3.1).

where the last two integrals are given by Lemma 3.1(iii) and (iv).
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We now turn to the ‘if part’. Let m ¼ 1. Then, by definition, if a Lévy measure �1 is

represented as

�1(B) ¼
ð1
�1

�0(u�1 B)�0(u)du

for some �0, the Lévy measure of some �0 2 G0(Rd), then �1 2 G1(Rd). Suppose that the

‘if’ part of the statement is true for some m 2 N. By the same calculation as above (from the

bottom to the top), we have

�mþ1(B) ¼
ð1
�1

�0(u�1 B)�m(u)du

¼
ð1
�1

�0(u)�m(u�1 B)du

¼ E[�m(Z�1 B)]

for some Lévy measure �m having the representation (3.2). Then, by the induction hypothesis,

�m with the Lévy measure �m belongs to Gm(Rd). Thus, �mþ1 2 Gmþ1(Rd). This completes

the proof. h

The following is a Gm-version of Proposition 2.1, and it characterizes Lévy measures of

distributions in Gm(Rd).

Theorem 3.3. Let m 2 N. A �m 2 Isym(Rd) belongs to Gm(Rd) if and only if its Lévy

measure �m either is zero or can be represented as

�m(B) ¼
ð

S

º(d�)

ð1
0

1B(r�)g m,�(r2)dr, B 2 B0(Rd),

d and g m,�(r) is

represented as

gm,�(s) ¼
ð1
�1

�m�1(
ffiffiffi
s

p
jrj�1)jrj�1 g�(r2)dr,

for some function g� on (0, 1) which has the same properties as in Proposition 2.1.

m 2 Gm(Rd) if and only if �m is
represented as

�m(B) ¼
ð1
�1

�0(u�1 B)�m�1(u)du

¼
ð1
�1

�m�1(u)du

ð
S

º(d�)

ð1
0

1u�1 B(r�)g�(r2)dr:

If we use here the facts that º(d�) ¼ º(�d�), g� ¼ g�� and �m�1(u) ¼ �m�1(�u), then we

have

Rwhere º is a symmetric  probability measure on the unit sphere S in

�Proof. We see by Theorem 3.2 and Proposition 2.1,
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�m(B) ¼
ð1
�1

�m�1(yjrj�1)jrj�1dy

ð
S

º(d�)

ð1
0

1B(y�)g�(r2)dr

¼
ð

S

º(d�)

ð1
�1

1B(y�)gm,�(y2)dy,

where

g m,�(s) ¼
ð1
�1

�m�1(
ffiffiffi
s

p
jrj�1)jrj�1 g�(r2)dr:

This completes the proof. h

4. Stochastic integral characterizations of Gm(Rd), m 2 N

In this section, we characterize distributions in Gm(Rd) by stochastic integral representa-

tions.

Theorem 4.1. For each m 2 N, the stochastic integral

Ym :¼
ð1

0

h�m(t)dX
(�)
t

is integrable for every � 2 I(Rd), ð1

0

jC�(h�m(t)z)jdt , 1

and

CL(Ym)(z) ¼
ð1

0

C�(h�m(t)z)dt:

Proof. Since ð1

0

hm�(t)2dt ¼
ð1
�1

jxj2�m(x)dx , 1,

we have the assertion by Lemma 2.2. h

Let G1 ¼ G1 ¼ G.

Definition 4.1. Let m 2 N. Define a mapping Gmþ1 by

Gmþ1(�) ¼ L
ð1

0

h�m(t)dX
(�)
t

� �
, � 2 I(Rd),

and
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Gmþ1(�) ¼ G(Gm((�)), � 2 I(Rd):

Proposition 4.2. For m 2 N,

Gm(Rd) ¼ G(Gm�1(Rd)):

Proof. The proof is almost the same as that of Theorem 2.5. Let �m�1 2 Gm�1(Rd) and

�m ¼ G(�m�1). Also let �m�1 and �m be the Lévy measures of �m�1 and �m, respectively.

Then by Proposition 2.4(v), we have �m(B) ¼ E[�m�1(Z�1 B)]. Thus �m 2 Gm(Rd) and

G(Gm�1(Rd)) � Gm(Rd).

Conversely, suppose that �m 2 Gm(Rd). Then by the definition of Gm(Rd) and

Proposition 2.4(v) again, we see that �m ¼ L(
Ð 1

0
h�(t)dX

(�)
t ) for some � 2 Gm�1(Rd). This

means that �m 2 G(Gm�1(Rd)) and Gm(Rd) � G(Gm�1(Rd)), completing the proof. h

Corollary 4.3. For m 2 N,

Gm(Rd) ¼ Gmþ1(I(Rd)):

We next show the following.

Theorem 4.4. For m 2 N,

Gmþ1(I(Rd)) ¼ Gmþ1(I(Rd)):

Proof. We note that

~�� 2 Gmþ1(I(Rd)) if and only if ~�� ¼ L
ð1

0

h�m(t)dX
(�)
t

� �
, � 2 I(Rd),

and that

~�� 2 Gmþ1(I(Rd)) if and only if ~�� ¼ L
ð1

0

h�0 (t)dX
(�)
t

� �
, � 2 Gm(I (Rd)):

We next claim thatð1
�1

�0(u)du

ð1
�1

jC�(uvz)j�m�1(v)dv , 1, z 2 Rd : (4:1)

If this can be proved, we can exchange the order of the integrals in the calculation of

cumulants below.

The proof of (4.1) is as follows. The idea is from Barndorff–Nielsen et al. (2006). If the

generating triplet of � is (A, v, ª), then

jC�(z)j < 2�1(trA)jzj2 þ jªj jzj þ
ð
Rd

jg(z, x)jv(dx),

where
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g(z, x) ¼ eihz,xi � 1 � ihz, xi(1 þ jxj2)�1:

Hence

jC�(uvz) < 2�1(trA)u2v2jzj2 þ jªj juj jvj jzj þ
ð
Rd

jg(z, uvx)jv(dx)

þ
ð
Rd

jg(uvz, x) � g(z, uvx)jv(dx) ¼: I1 þ I2 þ I3 þ I4,

say. The finiteness of
Ð1
�1 �0(u)du

Ð1
�1(I1 þ I2)�m�1(v)dv follows from Lemma 3.1. Noting

that jg(z, x)j < czjxj2(1 þ jxj2)�1 with a positive constant cz depending on z, we haveð1
�1

�0(u)du

ð1
�1

I3�m�1(v)dv

< cz

ð
Rd

v(dx)

ð1
�1

�0(u)du

ð1
�1

(uvjxj)2

1 þ (uvjxj)2
�m�1(v)dv

¼ cz

ð
jxj<1

v(dx) þ
ð
jxj.1

v(dx)

 !ð1
�1

�0(u)du

ð1
�1

(uvjxj)2

1 þ (uvjxj)2
�m�1(v)dv

¼: I31 þ I32,

say, and

I31 < cz

ð
jxj<1

jxj2�(dx)

ð1
�1

u2�0(u)du

ð1
�1

v2�m�1(v)dv , 1,

I32 < cz

ð
jxj.1

�(dx)

ð1
�1

�0(u)du

ð1
�1

�m�1(v)dv , 1:

As to I4, note that for a 2 R,

jg(az, x) � g(z, ax)j ¼ jhaz, xij jxj2j1 � a2j
(1 þ jxj2)(1 þ jaxj2)

<
jzj jxj3(jaj þ jaj3)

(1 þ jxj2)(1 þ jaxj2)

<
jzj jxj2(1 þ jaj2)

2(1 þ jxj2)
,

since jbj(1 þ b2)�1 < 2�1. Then

j
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ð1
�1

�0(u)du

ð1
�1

I4�m�1(v)dv

< jzj
ð
Rd

jxj2
1 þ jxj2 �(dx)

ð1
�1

�0(u)du

ð1
�1

(1 þ u2v2)�m�1(v)dv , 1:

This completes the proof of (4.1).

If we calculate the necessary cumulants, we have

CGmþ1(�)(z) ¼
ð1

0

C�(h�m(t)z)dt

¼ �
ð1
�1

C�(uz)dhm(u)

¼
ð1
�1

C�(uz)�m(u)du

CG mþ1(�)(z) ¼
ð1

0

CG m(�)(h�0 (t)z)dt

¼
ð1

0

dt

ð1

0

C�(h�0 (t)h�m�1(s)z)ds

¼
ð1
�1

dh0(u)

ð1
�1

C�(uvz)dhm�1(v)

¼
ð1
�1

�0(u)du

ð1
�1

C�(uvz)�m�1(v)dv

¼
ð1
�1

C�(yz)dy

ð1
�1

�0(u)�m�1(yjuj�1)juj�1du

¼
ð1
�1

C�(yz)�m(y)dy

¼ CG mþ1(�)(z):

This completes the proof of Theorem 4.4. h

The following is a goal of this section and a Gm-version of Theorem 2.5. Namely, any

� 2 Gm(Rd) has the stochastic integral representation defined in Definition 4.1.

Theorem 4.5.

Gm(Rd) ¼ Gmþ1(I(Rd)):

Proof. The statement is an immediate consequence of Corollary 4.3 and Theorem 4.4. h
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5. The case m ¼ 1
We conclude this paper with two statements for G1(Rd).

Proposition 5.1. G(G1(Rd)) ¼ G1(Rd).

Proposition 5.2. Ssym(Rd) is invariant under G-mapping and G1(Rd) is the largest class

which is invariant under G-mapping.

These two propositions are given by Remark 2.1 above and Theorem 2.3 of Maejima and

Rosiński (2001).
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