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Small value probabilities via the branching
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In the first part of this paper, we give easy and intuitive proofs for the small value probabilities of the
martingale limit of a supercritical Galton–Watson process in both the Schröder and the Böttcher cases.
These results are well known, but the most cited proofs rely on generating function arguments which are
hard to transfer to other settings. In the second part, we show that the strategy underlying our proofs can be
used in the quite different context of self-intersections of stochastic processes. Solving a problem posed by
Wenbo Li, we find the small value probabilities for intersection local times of several Brownian motions, as
well as for self-intersection local times of a single Brownian motion.
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1. Introduction

The small value problem is to find, for a non-negative random variable X, the speed of decay of
the left tail P{X < ε} as ε ↓ 0. Important examples are the small ball problem, where X is the
norm of a random variable with values in a Banach space, the lower level problem, where X is the
maximum of a continuous random process (X(t) : t ∈ [0,1]) and boundary crossing problems,
where X is the first exit time of a stochastic process from a general space–time domain.

Small value problems arise in a great variety of contexts in probability and analysis. Examples
include approximation and quantization problems (Li and Linde (1999), Dereich et al. (2003)
and Graf et al. (2003)), Brownian pursuit problems (Li and Shao (2001a)), polymer measures
(Hofstad et al. (1997)) and convex geometry (Klartag and Vershynin (2007)). A systematic theory
of small value problems, however, is only available when X is the norm of a Gaussian random
variable. For other cases, some isolated techniques are known, but a bigger picture has not yet
emerged. A survey of Gaussian methods in this field is Li and Shao (2001b) and an updated
bibliography on small value problems is maintained at Lifshits (2006).

In this paper, we contribute to the theory of small value problems by systematically presenting
an approach which we found successful in a variety of cases. We illustrate our technique by three
main examples. The first example is the most natural one for our approach – the martingale limit
of a supercritical Galton–Watson process. In this case, the small value problem has been solved
– by Dubuc (1971a, 1971b) in the Schröder case and, up to a Tauberian theorem of Bingham
(1988), also in the Böttcher case. These proofs use an integral transformation approach, together
with some non-trivial complex analysis, a powerful method, but inflexible and not very intuitive.
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Our method, by contrast, is very simple and based on easy intuition. From this example, we
derive the term branching tree heuristic for the general approach.

The second example is our main result and is treated here for the first time: we solve a problem
posed by Wenbo Li at the mini-workshop “Small deviation probabilities and related topics” at
Oberwolfach in October 2003. The problem is to identify the small value probability of the
random variable

X =
∫ ∞

−∞

m∏
i=1

L
qi

i (x,1)dx,

where L1(x, t), . . . ,Lm(x, t) are the local times of m ≥ 2 independent Brownian motions. We
explain very carefully how a heuristic embedding of a tree in the Brownian motion framework
leads to a proof based on the same principles as in the Schröder case of the first example.

Our third example also appears to be new, although it is really quite elementary. We consider
the Lq -norm of the local time of a single Brownian motion stopped when it exits a bounded in-
terval for the first time, which, for q an integer, may be interpreted as the q-fold self-intersection
local time of the motion. We again find a relation to a Galton–Watson tree, this time of Böttcher
type, and exploit this relation to find a strikingly simple proof of the small value probability.

We believe that our method can be used in a number of further cases, when the optimal strategy
for a random variable to obtain small values is inhomogeneous. We conclude the paper with a
discussion of possible future research.

2. Small value probabilities for the martingale limit of a
Galton–Watson tree

Consider a Galton–Watson branching process (Zn :n ≥ 0) with offspring distribution (pk :k ≥ 0)

starting with a single founding ancestor, called ρ, in generation 0. We suppose that the offspring
variable N is non-degenerate and satisfies μ := EN > 1 and E[N logN ] < ∞. By the famous
Kesten–Stigum theorem, these conditions ensure that the martingale limit

W := lim
n→∞

Zn

μn

exists and is non-trivial almost surely on survival. Except in the case when N is geometric, the
distribution of W is not known explicitly and one relies on asymptotic results to describe its
behaviour.

For the formulation of our results, we further assume that p0 = 0, without loss of generality:
removing all finite subtrees from a Galton–Watson tree does not change its martingale limit, but
the resulting tree is still a Galton–Watson tree (with a modified offspring variable); see Athreya
and Ney (1972), Chapter 1, Section 12.

As usual, we distinguish between the Schröder case and the Böttcher case, depending on
whether p1 > 0 or p1 = 0. These two cases yield very different lower tail behaviours for W . In
the following, a(ε) � b(ε) means that there exist constants 0 < c < C < ∞ such that

ca(ε) ≤ b(ε) ≤ Ca(ε) for all 0 < ε < 1.
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Theorem 1 (Dubuc (1971b)).

(a) In the Schröder case, define τ := − logp1/ logμ > 0. Then,

P{W < ε} � ετ .

(b) In the Böttcher case, define ν := min{i ≥ 0 :pi 	= 0} ≥ 2 and β := logν
logμ

< 1. Then,

− logP{W < ε} � ε−β/(1−β).

In this paper, we offer simple proofs of both parts of Theorem 1 and show how the idea behind
these proofs can be adapted to obtain small value probabilities for situations which might look
quite different at first glance.

The main idea of the proofs is to understand the optimal strategy by which the tree keeps the
generation size small. It turns out that the best strategy consists of producing as few offspring
as possible at the beginning and then, once the necessary reduction in size is achieved, letting
the tree grow normally. If the tree produces a larger number of children at the beginning, it will
be more expensive to control the growth later on since every additional child is also likely to
produce more than one child. This effect is illustrated in Figure 1.

By (Zn(v) :n ≥ 0), we denote the generation sizes of the subtree consisting of all of the de-
scendants of the individual v. Note that for each fixed v, the process (Zn(v) :n ≥ 0) is again a
Galton–Watson process and we can hence define the martingale limit

W(v) := lim
n→∞

Zn(v)

μn
.

Figure 1. The picture on the left illustrates the optimal strategy to keep the final generation size small.
By comparison, in the picture on the right, the offspring of more individuals must be kept under control to
produce the same effect.
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Let vk(1), . . . , vk(Zk) be the individuals in the kth generation. By decomposing the individuals
in the nth generation according to their ancestors in the kth generation, we obtain, for all n ≥ k,

Zn =
Zk∑
i=1

Zn−k(vk(i)).

Hence, we obtain

W = lim
n→∞

Zn

μn
= lim

n→∞μ−k

Zk∑
i=1

Zn−k(vk(i))

μn−k
= μ−k

Zk∑
i=1

W(vk(i)), (2.1)

where all of the random variables W(vk(i)) are i.i.d. with the same distribution as W .
This section is organized as follows. We first investigate the Schröder case. We start by show-

ing that the suggested strategy is successful, which proves the lower bound. We then give a rough
argument which produces the precise logarithmic asymptotics. This argument is then refined, ex-
ploiting the self-similarity of the tree, to complete the proof of Theorem 1(a). The arguments
leading to the result in the Böttcher case, Theorem 1(b), are easier and are given in the final two
subsections.

2.1. The Schröder case: the lower bound

For the lower bound, suppose that 0 < ε < 1 and choose n such that μ−n ≤ ε < μ−n+1. Using
(2.1), we obtain

P{W < ε} ≥ P{W < μ−n|Zn = 1}P{Zn = 1}
= P{μ−nW(vn(1)) < μ−n}pn

1 = cpn
1 ≥ (cp1)ε

τ ,

where c := P{W < 1} > 0.

2.2. The Schröder case: the logarithmic upper bound

As the first step in the proof of the upper bound, we show that

lim sup
ε↓0

log P{W < ε}
− log ε

≤ −τ. (2.2)

Remark. In the second step of the argument, we only use the fact that P{W < ε} decreases like
some positive power of ε. Other instances of our method, however, make use of lower bounds on
this power, so it is instructive to show the ‘best possible’ argument here.

Fix a large m for the moment and let n ≥ m. By decomposing the set of individuals in the
nth generation of the branching process according to their last common ancestor with the ‘spine’
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Figure 2. Decomposition of the tree according to the ancestry from a spine with length m = 2. The shaded
parts of the tree are discarded in our calculation.

ρ = v0(1), v1(1), v2(1), . . . , vm(1) consisting of the leftmost individual in each of the first m+ 1
generations (see Figure 2 for illustration), we obtain a decomposition

Zn =
m∑

k=1

Z1(vk−1(1))∑
j=2

Zn−k(vk(j)) + Zn−m(vm(1)).

Discarding the contributions for j ≥ 3, if they exist, and also the last summand, dividing by μn

and letting n ↑ ∞ gives

W ≥
m∑

k=1

μ−kWk, (2.3)

where Wk = 0 if vk−1(1) has only one offspring and Wk = W(vk(2)) otherwise. Note that
W1, . . . ,Wk are independent and identically distributed with distribution given by P{Wk = 0} =
p1 and

P{Wk < x|Wk 	= 0} = P{W < x} for all x > 0.

Now suppose that δ > 0 is given. As W > 0 almost surely, there exists θ > 0 such that P{W <

θ} ≤ δp1. We fix the integer 	 such that μ	 ≤ θ < μ	+1. Let ε > 0 be arbitrary and define n by
μ−n−1 < ε ≤ μ−n. Then, using (2.3) for m = n + 	,

P{W < ε} ≤ P{W < μ−n} ≤ P

{
m∑

k=1

μ−kWk < μ−n

}
≤

m∏
k=1

P{Wk < μ−n+m}

≤ (p1 + P{W < θ})m ≤ (
p	

1(1 + δ)	
)
pn

1 (1 + δ)n ≤ Cετ eδn,

for C := p	
1(1 + δ)	μτ , from which (2.2) follows, as δ > 0 was arbitrary.



282 P. Mörters and M. Ortgiese

2.3. The Schröder case: up-to-constants asymptotics

We are now in a position to refine the upper bound and prove Theorem 1(a). Define a sequence
(a(n) :n ≥ 0) by setting

a(n) := P{W < μ−n}p−n
1 .

For arbitrary 0 < ε < 1, we pick the integer n ≥ 0 such that μ−n−1 ≤ ε < μ−n. Then,

P{W < ε} ≤ P{W < μ−n} = a(n)pn
1 ≤ a(n)(1/p1)ε

τ

and hence to complete the proof, it suffices to show that (a(n) :n ≥ 0) is bounded.
Denote by Nn the number of offspring of the leftmost individual in generation n and let

T := min{n ≥ 0 :Nn 	= 1}.

Obviously, P{T = j} = p
j

1(1 − p1). Let j < n be non-negative integers. Applying (2.1), we ob-
tain

P{W < μ−n, T = j} ≤ P
{
μ−(j+1)

(
W(vj+1(1)) + W(vj+1(2))

)
< μ−n, T = j

}
(2.4)

≤ p
j+1
1 P

{
W < μ−(n−j−1)

}
β(n − j − 1),

where β(i) := p−1
1 P{W < μ−i}. By the a priori estimate (2.2), we have

∑
β(i) < ∞.

Using (2.4), we obtain, for any positive integer n,

P{W < μ−n} ≤
n−1∑
j=0

P{W < μ−n, T = j} + P{T ≥ n}
(2.5)

≤
n−1∑
j=0

p
j+1
1 P{W < μ−(n−j−1)}β(n − j − 1) + pn

1 .

We deduce from (2.5) that a(n) ≤ ∑n−1
j=0 a(n − j − 1)β(n − j − 1) + 1. Define ã(−1) := 1,

β(−1) := 1 and, inductively, for non-negative n,

ã(n) :=
n−1∑
j=0

ã(n − j − 1)β(n − j − 1) + 1 =
n−1∑

j=−1

ã(j)β(j).

Then, since a(n) ≤ ã(n) for all n ≥ 0, it suffices to show that (ã(n) :n ≥ 0) is bounded. From the
definition, it easily follows that ã(n) = ã(n − 1)(1 + β(n − 1)), hence ã(n) = ∏n−1

i=0 (1 + β(i)),
which converges as

∑∞
i=0 β(i) converges. Hence, (ã(n) :n ≥ 0) is bounded and the proof is

complete.
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2.4. The Böttcher case: the lower bound

We now consider the case when p1 = 0. Recall that ν := min{j ≥ 0 :pj 	= 0} ≥ 2 and ν < μ. For
every n, there are at least νn individuals in generation n, hence

P{Zn = νn} = P{Zn = νn|Zn−1 = νn−1}P{Zn−1 = νn−1} = pνn−1

ν P{Zn−1 = νn−1}.
Also, P{Z1 = ν} = pν and therefore

P{Zn = νn} = p1+ν+···+νn−1

ν = p(νn−1)/(ν−1)
ν . (2.6)

Given ε > 0, we look at the lower bound of the probability P{W < ε}. Choose the integer n such
that ( ν

μ
)n ≤ ε < ( ν

μ
)n−1. Invoking (2.1) and (2.6), we obtain

P{W < ε} ≥ P

{
W <

(
ν

μ

)n ∣∣∣ Zn+1 = νn+1
}

P{Zn+1 = νn+1}

= P

{
W(vn+1(1)) + · · · + W(vn+1(ν

n+1)) <

(
μ

ν

)
νn+1

}
p(νn+1−1)/(ν−1)

ν

≥ P

{∣∣∣∣∣
νn+1∑
j=1

W(vn+1(j)) − νn+1

∣∣∣∣∣ < δνn+1

}
p(νn+1−1)/(ν−1)

ν ,

where δ := μ
ν

− 1 > 0. By the weak law of large numbers, we may choose N ∈ N such that

P

{∣∣∣∣∣
νm+1∑
j=1

W(vm+1(j)) − νm+1

∣∣∣∣∣ < δνm+1

}
≥ p1/(ν−1)

ν for all m ≥ N.

Then, for all n ≥ N , we have

− logP{W < ε} ≤ (− logpν)
νn+1

ν − 1
≤ Cε−β/(1−β),

where C := (− logpν)
ν2

ν−1 , using the fact that ( ν
μ
)−β/(1−β) = ν, by the definition of β .

2.5. The Böttcher case: the upper bound

Given ε > 0, we continue with an upper bound for the probability P{W < ε}. Choose the integer
n such that ( ν

μ
)n+1 ≤ ε < ( ν

μ
)n. Once again using (2.1), we obtain

P{W < ε} ≤ P

{
μ1−n

νn−1∑
j=1

W(vn−1(j)) <

(
ν

μ

)n
}

= P{S(νn−1) > 0}, (2.7)
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where Xj := ν
μ

− W(vn−1(j)) and S(k) := ∑k
j=1 Xj .

We now estimate the right-hand side by a simple large deviation bound, which only uses
the fact that Xj is bounded from above and has negative mean. By the exponential Chebyshev
inequality,

P{S(k) ≥ 0} ≤ P{eτS(k) ≥ 1} ≤ EeτS(k) = (EeτX1)k. (2.8)

We claim there exists τ > 0 such that EeτX1 < 1. Indeed, denoting ϕ(τ) := EeτX1 and using
Lebesgue’s dominated convergence theorem, we have

lim
τ↓0

ϕ(τ) − ϕ(0)

τ
= lim

τ↓0
E

[
eτX1 − 1

τ

]
= E lim

τ↓0

(
eτX1 − 1

τ

)
= EX1 = ν

μ
− 1 < 0.

Since ϕ(0) = 1, we can thus choose τ > 0 such that ϕ(τ) < 1. Combining this with (2.7)
and (2.8), we obtain − logP{W < ε} ≥ (− logϕ(τ))νn−1 ≥ cε−β/(1−β), where c := −ν−2 ×
logϕ(τ) > 0.

3. Small value probabilities for mutual intersection local times

In this section, we identify the small value probability of the random variables

X(t1, . . . , tm) :=
∫ ∞

−∞

m∏
i=1

L
qi

i (x, ti)dx,

where (L1(x, t) :x ∈ R, t ≥ 0), . . . , (Lm(x, t) :x ∈ R, t ≥ 0) are the local time fields of m in-
dependent Brownian motions started at the origin. For q1 = · · · = qm = 1, the random variable
X(t1, . . . , tm) measures the amount of intersection between the motions up to times t1, . . . , tm
and it is therefore called (mutual) intersection local time.

Our solution to the small value problem for intersection local times is based on an analogy
between the martingale limit W of a Galton–Watson tree in the Schröder case and the random
variables X(σ (1), . . . , σ (m)), where σ (1), . . . , σ (m) are the first exit times of the Brownian mo-
tions from the interval (−1,1). This analogy allows us to carry over the crucial steps in the proof
of Theorem 1(a) to the new situation and hence to prove the following theorem.

Theorem 2. Suppose that L1, . . . ,Lm are the local times of m ≥ 2 independent Brownian mo-
tions and that qj ≥ 1 for all 1 ≤ j ≤ m. Then, for q := ∑m

j=1 qj ,

(a) P

{∫ ∞

−∞

m∏
i=1

L
qi

i (x, σ (i))dx < ε

}
� ε2/(1+q),

(b) P

{∫ ∞

−∞

m∏
i=1

L
qi

i (x,1)dx < ε

}
� ε2/(1+q).

Remark. The excluded case m = 1 is entirely different, as the small value probabilities decay
exponentially. This will be discussed in Section 4 using the technique of the Böttcher case.
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Figure 3. The tree associated with two Brownian paths for η = 2, up to 2nd generation. The intervals

W(1)[τ (1)
1 , τ

(1)
0 ] and W(2)[τ (2)

1 , τ
(2)
0 ] have a non-empty intersection and therefore the root has more than

one offspring; in contrast, the intervals W(1)[τ (1)
2 , τ

(1)
1 ] and W(2)[τ (2)

2 , τ
(2)
1 ] are disjoint and therefore the

second vertex on the spine has just one offspring.

Before giving the detailed proof, we show how the analogy to the martingale limit of a Galton–
Watson tree arises. From the Brownian paths, we need to recognize the particular elements of the
tree featuring in the proof of the Schröder case: for each vertex of the spine, we first need to
decide whether a subtree splits off from the vertex (this happens independently with probabil-
ity 1 − p1) and, supposing this happens at the vertex in the kth generation, we need to see that
this subtree gives rise to a summand of the intersection local time, which, in distribution, equals
μ−k times the intersection local time. Once an inequality analogous to (2.3) is established, we
obtain lower tail asymptotics featuring the parameters μ and p1 used in the construction of the
tree.

To sketch the actual construction, focusing on m = 2 for the moment, we let W(1),W(2) be
two independent Brownian motions started at the origin and assume that W(1) exits (−1,1) at
the upper end, and W(2) exits (−1,1) at the lower end of the interval. Fix η > 1 and divide the
Brownian paths according to the stopping times

τ
(1)
k := inf

{
t ≥ 0 :W(1)(t) = η−k

}
and τ

(2)
k := inf

{
t ≥ 0 :W(2)(t) = −η−k

}
.

To build the tree from its spine v0(1), . . . , vn(1) of leftmost particles in the first n generations,
we let the kth individual v0(k) on this spine have more than one offspring if

W(1)
[
τ

(1)
k+1, τ

(1)
k

] ∩ W(2)
[
τ

(2)
k+1, τ

(2)
k

] 	= ∅.

If the intervals intersect, then the intersection local time of the two Brownian motions W(j),
started at time τ

(j)
k+1 and stopped at time τ

(j)
k , for j ∈ {1,2}, gives rise to a summand of the

total intersection local time which is distributed approximately like a scaled copy of the total
intersection local time (see Figure 3 for illustration).



286 P. Mörters and M. Ortgiese

3.1. Intersection local times: the parameters μ and p1

We start with a basic scaling property of intersection local times. For any points x1, . . . , xm ∈ R,
we suppose that under P(xj ), the Brownian motion W(j) is started in xj and for η > 0, we denote
by

τ (j)(η) = inf
{
t > 0 :W(j)(t) = η

}
the first hitting time of η by the Brownian motion W(j).

Lemma 3.1. For every ε > 0 and for q := ∑m
j=1 qj , we have

P(xj /η)

{∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ (j)(1)

)
dx < ε

}
= P(xj )

{∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ (j)(η)

)
dx < εη1+q

}
.

Proof. By Brownian scaling, we have

Pxj /η

{
L

(
x, τ (j)(1)

)
< ε

} = Pxj

{
η−1L

(
ηx, τ (j)(η)

)
< ε

}
.

Hence,

P(xj /η)

{∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ (j)(1)

)
dx < ε

}

= P(xj )

{
η

−∑m
j=1 qj

∫ ∞

−∞

m∏
j=1

L
qj

j

(
ηx, τ (j)(η)

)
dx < ε

}

= P(xj )

{
η−(1+q)

∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ (j)(η)

)
dx < ε

}

and this proves the lemma. �

Fix η > 1 and let W(1), . . . ,W(m) be Brownian motions started in the origin. Fix a set M ⊂
{1, . . . ,m} and define stopping times

τ
(j)
k := τ

(j)
k (M) :=

{
inf

{
t ≥ 0 :W(j)(t) = η−k

}
, if j ∈ M ,

inf
{
t ≥ 0 : W(j)(t) = −η−k

}
, if j /∈ M

and abbreviate τ (j) := τ
(j)

0 (M). Suppose that under P(±ε), the Brownian motion W(j) is started
in the point +ε if j ∈ M and in the point −ε otherwise.

For 0 < s < t , define local times Lj(x, s, t) := Lj (x, t)−Lj(x, s) over the time interval [s, t]
and

Lk :=
∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ

(j)

k+1, τ
(j)
k

)
dx.
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By the previous lemma, for every k, we have

ηk(1+q)Lk
d= L0. (3.1)

This identifies the parameter μ as η1+q . Recall that in the tree model, this parameter corresponds
to the mean offspring number.

Lemma 3.2. If M is a proper, nonempty subset of {1, . . . ,m}, we have

P(±ε)

{
W(1)

[
0, τ (1)

] ∩ · · · ∩ W(m)
[
0, τ (m)

] = ∅
} � ε2.

Proof. On the one hand, if {W(1)[0, τ (1)] ∩ · · · ∩ W(m)[0, τ (m)] = ∅}, then at least one of the
motions W(j), j ∈ M , does not reach level −ε before level 1, the probability of this being 2ε/(1+
ε) per motion by the gambler’s ruin probability. Analogously, one of the motions W(j), j /∈ M ,
does not reach level ε before level −1, which has the same probability. This gives the upper
bound

P(±ε)

{
W(1)

[
0, τ (1)

] ∩ · · · ∩ W(m)
[
0, τ (m)

] = ∅
} ≤ ε2

(1 + ε)2
4	(m − 	),

where 	 is the cardinality of M . For the lower bound, note that if one of the motions in each of
the two groups does not reach level 0 before level 1 (resp., −1), this implies that W(1)[0, τ (1)] ∩
· · · ∩ W(m)[0, τ (m)] = ∅. As, for each motion, this event has probability ε, we obtain

P(±ε)

{
W(1)

[
0, τ (1)

] ∩ · · · ∩ W(m)
[
0, τ (m)

] = ∅
} ≥ ε2. �

Remark. A refined calculation along the same lines shows that, as ε ↓ 0,

P(±ε)

{
W(1)

[
0, τ (1)

] ∩ · · · ∩ W(m)
[
0, τ (m)

] = ∅
} ∼ ε22	(m − 	),

where 	 is the cardinality of M , but we do not need this here.

By Brownian scaling, we infer from Lemma 3.2 that there are constants 0 < c < C such that,
if M ⊂ {1, . . . ,m} is proper and nonempty, then for any non-negative integer k and η > 1,

cη−2 ≤ P
{
W(1)

[
τ

(1)
k+1, τ

(1)
k

] ∩ · · · ∩ W(m)
[
τ

(1)
k+1, τ

(m)
k

] = ∅
} ≤ Cη−2

and thus the parameter p1 is identified (with sufficient accuracy) as η−2. Recall that in the tree
model, p1 corresponds to the probability that a vertex has only one offspring.

3.2. Intersection local times: the lower bound

Let W(1), . . . ,W(m) be Brownian motions started at the origin and fix M ⊂ {1, . . . ,m} such
that 1 ∈ M and 2 /∈ M . We propose a sufficient strategy to realize the event {X(σ (1)(1), . . . ,
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σ (m)(1)) < ε}, which is time-inhomogeneous and consists of two phases. Given ε > 0, the phases
are separated by the stopping times

ω(j) := inf
{
t ≥ 0 :W(j) /∈ (−ε1/(1+q), ε1/(1+q)

)}
for j ∈ {1, . . . ,m}.

The first phase is described by the event

E1 := {
W(j)

(
ω(j)

) = ±ε1/(1+q), inf
{±W(j)(s) : 0 ≤ s ≤ ω(j)

}
> − 1

2ε1/(1+q)

for all j and X
(
ω(1), . . . ,ω(m)

)
< ε

}
,

where ± indicates + if j ∈ M and − otherwise. By the scaling verified in Lemma 3.1, the
probability δ := P(E1) > 0 does not depend on ε. The second phase is described by the event

E2 := {
W(j)

(
τ (j)

) = ±1 for all j and inf
{
W(1)(s) :ω(1) ≤ s ≤ τ (1)

} ≥ 1
2ε1/(1+q)

and sup
{
W(2)(s) :ω(2) ≤ s ≤ τ (2)

} ≤ − 1
2ε1/(1+q)

}
.

Observe that if E1 and E2 hold, then we have

X
(
σ (1), . . . , σ (m)

) = X
(
τ (1), . . . , τ (m)

) = X
(
ω(1), . . . ,ω(m)

)
< ε,

as required. Moreover, using the strong Markov property and the gambler’s ruin estimate,

P(E1 ∩ E2) = E
[
1E1P(W(j)(ω(j)))(E2)

]
= P(E1)

(
1 + ε1/(1+q)

2

)m−2(
(1/2)ε1/(1+q)

1 − (1/2)ε1/(1+q)

)2

,

so the lower bound holds with c := δ(1/2)m.

3.3. Intersection local times: the logarithmic upper bound

We now give an upper bound for the small value probability of X(σ (1), . . . , σ (m)) along the lines
of the argument leading to (2.2). Fix an arbitrarily small δ > 0. Let C ≥ 1 be the constant in the
implied upper bound of Lemma 3.2. Choose and fix an integer η > (2C)1/δ .

For any subset M ⊂ {1, . . . ,m}, define the event

E(M) := {
W(j)

(
σ (j)

) = 1 for all j ∈ M,W(j)
(
σ (j)

) = −1 for all j /∈ M
}
.

Recall the definition of the stopping times τ
(j)
k := τ

(j)
k (M). Then,

P
{
X

(
σ (1), . . . , σ (m)

)
< ε

} =
∑

M⊂{1,...,m}
P
({

X
(
τ

(1)
0 , . . . , τ

(m)
0

)
< ε

} ∩ E(M)
)
. (3.2)
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It therefore suffices to fix M ⊂ {1, . . . ,m} and give upper bounds for P{X(τ
(1)
0 , . . . , τ

(m)
0 ) < ε}.

Define, for 0 < s < t , local times Lj(x, s, t) := Lj(x, t) − Lj (x, s) over the time interval [s, t].
Let

Lk :=
∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ

(j)

k+1, τ
(j)
k

)
dx.

The random variables Xk = ηk(1+q)Lk are then independent, by the Markov property, and iden-
tically distributed, by (3.1). By Lemma 3.2, we have P{X0 = 0} ≤ Cη−2 if M is a proper, non-
empty subset of {1, . . . ,m}, and otherwise, obviously, P{X0 = 0} = 0. This implies that there
exists a θ > 0 such that

P{X0 < θ} ≤ 2Cη−2.

Now, given ε > 0, choose the integer n such that

θη−(n+1)(1+q) < ε ≤ θη−n(1+q).

Note that for qi ≥ 1, by superadditivity of x �→ xqi , x ≥ 0, we obtain

L
qj

j

(
x, τ

(j)

0

) ≥
(

n−1∑
k=0

Lj

(
x, τ

(j)

k+1, τ
(j)
k

))qj

≥
n−1∑
k=0

L
qj

j

(
x, τ

(j)

k+1, τ
(j)
k

)
.

Applying this to the intersection local times, it follows that

X
(
τ

(1)
0 , . . . , τ

(m)
0

) =
∫ ∞

−∞

m∏
j=1

L
qj

j

(
x, τ

(j)

0

)
dx ≥

∫ ∞

−∞

m∏
j=1

(
n−1∑
k=0

L
qj

j

(
x, τ

(j)

k+1, τ
(j)
k

))
dx ≥

n−1∑
k=0

Lk.

Hence, we can estimate

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< ε

} ≤ P

{
n−1∑
k=0

Lk < ε

}
≤ P

{
n−1∑
k=0

η−k(1+q)Xk < θη−n(1+q)

}

≤ P

{
n−1∑
k=0

Xk < θ

}
≤ (P{X0 < θ})n ≤ (2C)nη−2n ≤ Kε(2−δ)/(1+q)

for the constant K := η2−δθ (−2+δ)/(1+q). As δ > 0 can be chosen arbitrarily small, this shows
that

lim sup
ε↓0

log P{X(σ (1), . . . , σ (m)) < ε}
− log ε

≤ −2

1 + q
. (3.3)

Note (for use in Lemma 3.3) that the proof also shows that (3.3) holds if W(1), . . . ,W(m) are
started in arbitrary points of the interval [−η−n, ηn] instead of the origin.
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3.4. Intersection local times: up-to-constant asymptotics

Fix the set M ⊂ {1, . . . ,m}, the integer η > 1 and recall the notation from the previous section.
Define a sequence (a(n) :n ≥ 0) by

a(n) := P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q)

}
η2n.

Given 0 < ε < 1, we again choose the integer n such that θη−(n+1)(1+q) ≤ ε < θη−n(1+q). Then,

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< ε

} ≤ P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q)

}
= a(n)η−2n ≤ a(n)η2θ−2/(1+q)ε2/(1+q)

and hence, to complete the proof, it suffices to show that (a(n) :n ≥ 0) is bounded. Define

T := min
{
k ≥ 0 :W(1)

[
τ

(1)
k+1, τ

(1)
0

] ∩ · · · ∩ W(m)
[
τ

(m)
k+1, τ

(m)
0

] 	= ∅
}
.

In our tree heuristic, T is the first generation in which a tree is branching off the spine. The next
lemma controls the behaviour of this tree and plays a similar role to (2.4).

Lemma 3.3. There exists a sequence (β(i) : i ∈ N) of non-negative numbers with
∑

β(i) < ∞
such that, for 0 ≤ j ≤ n − 1,

P(yi )

{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

} ≤ η−2j−2β(n − j − 1),

where yi = ±η−j−1 with the sign chosen according to whether or not i ∈ M .

Proof. For i ∈ {1, . . . ,m} and k ∈ {−ηn−j−1, . . . , ηn−j−1 − 1}, we introduce stopping times

�
(i)
k := inf

{
t ≥ 0 :W(i)(t) ∈ [kη−n, (k + 1)η−n]}.

The assumption T = j implies that there exists k ∈ {−ηn−j−1, . . . , ηn−j−1 − 1} such that �
(i)
k <

τ
(i)
0 for all i ∈ {1, . . . ,m}. If this holds, then let σ

(i)
j := inf{t ≥ �

(i)
k :W(i)(t) = ±η−j } (with

the usual convention on ±). Hence, for any 0 < δ < 1 and sufficiently large n − j , first using
Lemma 3.2 with ε = η−j , then (3.3) and the subsequent remark in combination with Lemma 3.1
and, of course, the strong Markov property, we have

P(yi )

{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

}

≤
ηn−j−1−1∑

k=−ηn−j−1

E(yi )

[
1
{
X

(
σ

(1)
j , . . . , σ

(m)
j

)
< θη−n(1+q)

}

× P
(W(i)(σ

(i)
j ))

{
W(1)

[
0, τ

(1)
0

] ∩ · · · ∩ W(m)
[
0, τ

(m)
0

] = ∅
}]
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≤
ηn−j−1−1∑

k=−ηn−j−1

P
(W(i)(�

(i)
k ))

{
X

(
σ

(1)
j , . . . , σ

(m)
j

)
< θη−n(1+q)

}
Cη−2j

≤ 2ηn−j−1η(−2+δ)(n−j)Cη−2j ,

which gives the result with β(i) := 2Cηδη(−1+δ)i . �

We now argue, as in (2.5) of the Schröder case, using the upper bound of Lemma 3.2 in the
second step and denoting the implied constant there by C > 0, that

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q)

}
≤ P{T ≥ n} +

n−1∑
j=0

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

}
(3.4)

≤ Cη−2n +
n−1∑
j=0

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

}
.

To estimate the remaining probability, we first use the strong Markov property, then Lemma 3.3
to estimate the inner probability and finally the definition of (a(n) :n ≥ 0) in combination with
Lemma 3.1, to obtain

P
{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

}
≤ E

{
1
{
X

(
τ

(1)
j+1, . . . , τ

(m)
j+1

)
< θη−n(1+q)

}
× P

(W(i)(τ
(i)
j+1))

{
X

(
τ

(1)
0 , . . . , τ

(m)
0

)
< θη−n(1+q), T = j

}}
≤ η−2j−2β(n − j − 1)P

{
X

(
τ

(1)
j+1, . . . , τ

(m)
j+1

)
< θη−n(1+q)

}
≤ η−2nβ(n − j − 1)a(n − j − 1).

Substituting this into (3.4), we obtain a recursion formula for a(n), namely

a(n) ≤
n−1∑
j=0

β(n − j − 1)a(n − j − 1) + C for n ≥ 0.

As before, boundedness of (a(n) :n ≥ 0) follows from the recursion and the fact that
∑

β(j) <

∞.
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3.5. Intersection local times at fixed times

In this section, we use a technique adapted from Lawler (1996) to transfer our results from hitting
times to fixed times, thus proving Theorem 2(b). Recall the following simple tail estimates for
the first exit times σ (j)(x) from the interval (−x, x) by a Brownian motion W(j) started in xj .

Lemma 3.4. There exist constants β > 0 and κ > 0 such that, for all x > 0, |xj | ≤ x/2 and
a > 0,

(a) P(xj )

{
m

min
j=1

σ (j)(x) ≤ ax2
}

≤ κe−β/a ;

(b) P(xj )

{
m

max
j=1

σ (j)(x) ≥ ax2
}

≤ κe−βa .

Proof. By scaling, we may assume that x = 1. On the one hand, using the reflection principle,
we obtain

Pxj

{
σ (j)(1) ≤ a

} ≤ P0

{
sup
t≤a

∣∣W(j)(t)
∣∣ ≥ 1

2

}
≤ 2P0

{∣∣W(j)(a)
∣∣ ≥ 1

2

}
= 2P0

{∣∣W(j)(1)
∣∣ ≥ 1

2
√

a

}

and hence (a) follows from a standard estimate for the tail of a normal distribution. On the
other hand, (b) follows from Pxj

{σ (j)(1) ≥ k|σ (j)(1) ≥ k − 1} ≤ P0{|W(j)(1)| ≤ 2} < 1, by
iteration. �

For the lower bound we obtain, for any a > 0, using Lemma 3.1 in the second step,

P{X(1, . . . ,1) < ε}

≥ P
{
X

(
σ (1)(a), . . . , σ (m)(a)

)
< ε

} − P

{
X

(
σ (1)(a), . . . , σ (m)(a)

)
< ε,

m

min
j=1

σ (j)(a) ≤ 1

}

= P
{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< a−(1+q)ε

}
− P

{
X

(
σ (1)(a), . . . , σ (m)(a)

)
< ε,

m

min
j=1

σ (j)(a) ≤ 1

}
.

First using Theorem 2(a) in combination with Lemma 3.1 and then Lemma 3.4(a), we have

P

{
X

(
σ (1)(a), . . . , σ (m)(a)

)
< ε,

m

min
j=1

σ (j)(a) ≤ 1

}

≤ E

[
1
{
X

(
σ (1)(a/2), . . . , σ (m)(a/2)

)
< ε

}
P(W(j)(σ (j)(a/2)))

{
m

min
j=1

σ (j)(a) ≤ 1

}]

≤ 4Ca−2ε2/(1+q) sup
|xj |=a/2

P(xj )

{
m

min
j=1

σ (j)(a) ≤ 1

}
≤ 4Ca−2ε2/(1+q)κe−βa2

,
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where C > 0 is the implied constant in the upper bound of Theorem 2(a). Substituting this into
the previous equation and applying the lower bound of Theorem 2(a) with the implied constant
denoted by c > 0, we obtain

P{X(1, . . . ,1) < ε} ≥ P
{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< a−(1+q)ε

} − 4Ca−2ε2/(1+q)κe−βa2

≥ (ca−2 − 4Ca−2κe−βa2
)ε2/(1+q)

and the result follows if we choose a large enough to ensure that the bracket is positive.
For the upper bound, given ε > 0, we choose the integer n such that

e−β2n ≤ ε2/(1+q) < e−β2n−1
. (3.5)

We base the argument on the decomposition

P{X(1, . . . ,1) < ε}
≤ P

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< ε

}
(3.6)

+
n−1∑
i=0

m∑
j=1

P
{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε,σ (j)(2−i ) ≥ 1

}

+ P

{
m

max
j=1

σ (j)(2−n) ≥ 1

}
.

We bound the first term on the right-hand side using Theorem 2(a) and the last term using
Lemma 3.4(b) and (3.5). It remains to bound the sum in the middle. To this end, we write

σ (j)(2−i ) =
n∑

k=i

(
σ (j)(2−k) − σ (j)

(
2−(k+1)

)) + σ (j)
(
2−(n+1)

)

and note that, as 2−2n−22n+i + ∑n
k=i 2i−k−1 ≤ 1, we obtain

P
{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε,σ (j)(2−i ) ≥ 1

}
≤

n∑
k=i

P
{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε,σ (j)(2−k) − σ (j)

(
2−(k+1)

) ≥ 2i−k−1}

+ P
{
σ (j)

(
2−(n+1)

) ≥ 2−2n−22n+i
}
.

Again, the contribution from the last summand can be bounded using Lemma 3.4(b). For the
remaining term, we use the strong Markov property to obtain, if n ≥ k ≥ i + 1,

P
{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε,σ (j)(2−k) − σ (j)(2−k−1) ≥ 2i−k−1}

≤ P
{
X

(
σ (1)(2−k−1), . . . , σ (m)(2−k−1)

)
< ε

}
sup

|xj |=2−k−1
Pxj

{
σ (j)(2−k) ≥ 2i−k−1} (3.7)
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× sup
|xj |=2−k

P(xj )

{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε

}
.

If n is large enough (or, equivalently, if ε > 0 small enough) to satisfy e−β2n−2 ≤ 2−n, then we
get that

sup
|xj |=2−k

P(xj )

{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε

}

= sup
|xj |=2i−k+1

P(xj )

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< ε2(i+1)(1+q)

}

≤ sup
|xj |=2i−k+1

P(xj )

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< 2(i−k+1)(1+q)

}
.

Recall that τ (j)(x) = inf{t ≥ 0 :W(j)(t) = x} and note that, for |xj | = 2−k ,

P(xj )

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< 2(i−k+1)(1+q)

}
≤ P(2i−k+1)

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< 2(i−k+1)(1+q)

}
+ P(−2i−k+1)

{
X

(
σ (1)(1), . . . , σ (m)(1)

)
< 2(i−k+1)(1+q)

}
+

m∑
j=1

m∑
	=1

Pxj

{
τ (j)(2i−k+1) > σ (j)(1)

}
Px	

{
τ (	)(−2i−k+1) > σ (	)(1)

}
.

While the first two probabilities are bounded by constant multiples of 22(i−k+1), by Theorem 2(a),
the double sum is bounded by m222(i−k+2), by the gambler’s ruin probability. Hence, for a suit-
able constant C0 > 1 and all n ≥ k ≥ i + 1,

sup
|xj |=2−k

P(xj )

{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε

} ≤ C022(i−k).

Combining this with Lemma 3.4(b) and substituting into (3.7), we obtain for all n ≥ k ≥ i,

P
{
X

(
σ (1)(2−i−1), . . . , σ (m)(2−i−1)

)
< ε,σ (j)(2−k) − σ (j)(2−k−1) ≥ 2i−k−1}

≤ C1ε
2/(1+q)

[
22k+2e−β2k+i−1

22(i−k)
]

for C1 := C0Cκ . After summing over k ≥ i, 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ m, the square bracket on
the right remains bounded and this completes the proof of Theorem 2(b).

4. Small value probabilities for self-intersection local times

In this section, we look at a single Brownian motion and its q-fold self-intersection local time

X(t) :=
∫ ∞

−∞
Lq(x, t)dx.
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This corresponds to the case m = 1 of the scenario described in Section 3 and, as mentioned
there, this is quite different from the case m > 1. The argument used to study the Böttcher case
of the Galton–Watson limit can be used to give an extremely simple proof of the following result.

Theorem 3. Suppose that (L(x, t) :x ∈ R, t ≥ 0) is the local time field and σ := inf{t ≥
0 : |B(t)| = 1} the first hitting time of level one of a Brownian motion. Then, for every q ≥ 1,
we have

− logP

{∫ ∞

−∞
Lq(x,σ )dx < ε

}
� ε−1/q .

Remark. The behaviour is radically different when the Brownian motion is stopped at a fixed
time instead of a fixed level. Indeed, in the proof of Theorem 3, we will see that the optimal
strategy to make X(σ) small is simply to make σ small, an option which cannot be used to make
X(1) small. It was shown, for q = 2 in Hofstad et al. (1997), Proposition 1, and extended to
general q > 1 by Xia Chen and Wenbo Li (unpublished), that there is a constant c(q) > 0 such
that

− logP

{∫ ∞

−∞
Lq(x,1)dx < ε

}
∼ c(q)ε−2/(q−1).

4.1. Self-intersection local time: the branching tree heuristic

We first show how to establish the analogy between the q-fold self-intersection local times and
the martingale limit of a Galton–Watson tree in the Böttcher case. The idea is to construct a nested
family of random walks embedded into the Brownian path: the natural nesting of the embedded
walks establishes the tree structure and a constant multiple of the total number of steps of the
finest embedded walk approximates the q-fold self-intersection local times.

Let (W(t) : t ≥ 0) be a Brownian motion started at the origin, for each non-negative integer n,
let

Dn := {
k2−n :k ∈ {−2n, . . . ,2n}}

be the collection of dyadic points of the nth stage and let 0 = τ
(n)
0 < τ

(n)
1 < · · · < τ

(n)
N(n) = σ be

the collection of stopping times defined for j ≥ 1 by

τ
(n)
j := inf

{
t > τ

(n)
j−1 :W(t) ∈ Dn, W(t) 	= W

(
τ

(n)
j−1

)}
.

Then (X(n)(j) : 0 ≤ j ≤ N(n)), defined by

X(n)(j) := 2nW
(
τ

(n)
j

)
,

is the nth embedded random walk and N(n) its length. We assign N(1) offspring to the root
so that the vertices in the first generation correspond to the steps of height 1/2 which the path
takes to reach level 1 or −1 for the first time. The number of children of each vertex in the first
generation is then determined by the number of steps of height 1/4 that the path makes during
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Figure 4. On the left, the first two embedded random walks with step sizes 1
2 (resp., 1

4 ); on the right, the
corresponding first two generations of the associated tree.

the step of height 1/2 corresponding to that vertex. This will be iterated ad infinitum to map the
Brownian path to an infinite tree. Note that the resulting tree is a Galton–Watson tree and every
vertex in this tree has at least two offspring so that we are in the Böttcher case (see Figure 4 for
illustration).

4.2. Self-intersection local time: the lower bound

Recall from the last subsection the definition of the stopping times 0 = τ
(n)
0 < τ

(n)
1 < · · · <

τ
(n)
N(n) = σ and that of N(n). Note that N(n) ≥ 2n and P{N(n) = 2n} = 2(1/2)2n

. Hence, for any
n and ε > 0,

P

{∫ ∞

−∞
Lq(x,σ )dx ≤ ε

}
≥ P

{∫ ∞

−∞
Lq(x,σ )dx ≤ ε

∣∣∣ N(n) = 2n

}
× 2(1/2)2n

.

By scaling, there exists a positive constant C(q) such that, for all j ∈ {1, . . . ,N(n)}, the random
variables

Yj := C(q)2n(1+q)

∫ ∞

−∞
Lq

(
x, τ

(n)
j−1, τ

(n)
j

)
dx
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have mean one. Given ε > 0, we choose the integer n such that 2−(n+1)q ≤ C(q)2−2qε < 2−nq .
Conditional on N(n) = 2n, for every x ∈ R, we know that in the decomposition

L(x,σ ) =
2n∑

j=1

L
(
x, τ

(n)
j−1, τ

(n)
j

)
,

only two summands can be non-zero. Thus, using the convexity of x �→ xq for q ≥ 1, we obtain

∫ ∞

−∞
Lq(x,σ )dx ≤ 2q−1

2n∑
j=1

∫ ∞

−∞
Lq

(
x, τ

(n)
j−1, τ

(n)
j

)
dx ≤ ε2−1−n

2n∑
j=1

Yj

and the summands on the right are independent, identically distributed random variables with
mean one. Hence, by the law of large numbers,

P

{∫ ∞

−∞
Lq(x,σ )dx ≤ ε

∣∣∣ N(n) = 2n

}
≥ P

{
2−n

2n∑
j=1

Yj ≤ 2
∣∣∣ N(n) = 2n

}
n↑∞−→ 1

and, altogether, for c(q) := 4(log 2)C(q)−1/q > 0 and all large values of n,

P

{∫ ∞

−∞
Lq(x,σ )dx ≤ ε

}
≥ (1/2)2n ≥ exp(−c(q)ε−1/q).

4.3. Self-intersection local time: the upper bound

Using the notation from the previous section, given ε > 0, we choose the integer n such that
2−(n+1)q ≤ 2C(q)ε < 2−nq . Using the super-additivity of x �→ xq for q ≥ 1, we obtain

∫ ∞

−∞
Lq(x,σ )dx ≥

N(n)∑
j=1

∫ ∞

−∞
Lq

(
x, τ

(n)
j−1, τ

(n)
j

)
dx ≥ ε2−n+1

2n∑
j=1

Yj .

Hence, we obtain

P

{∫ ∞

−∞
Lq(x,σ )dx < ε

}
≤ P

{
21−n

2n∑
j=1

Yj < 1

}
= P{S(2n) > 0},

where S(k) := ∑k
j=1 Xj for Xj := 1

2 − Yj . By the simple large deviation bound for the sum of
bounded random variables with negative mean given in Section 2.5, we deduce the existence of
a constant 0 < ϕ < 1 such that

− logP

{∫ ∞

−∞
Lq(x,σ )dx < ε

}
≥ − logP{S(2n) ≥ 0} ≥ (− logϕ)2n ≥ c̃(q)ε−1/q

for the constant c̃(q) := (− logϕ)(2−1−1/qC(q)−1/q) > 0.
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5. Outlook to future research

Small value probabilities for intersection local times of Brownian motions in dimensions two
and three are considerably more difficult to handle, but, in principle, our method still applies.
An analog of Theorem 2 for Brownian motions in dimensions two and three is proved, using the
branching tree heuristic, in Mörters and Shieh (2007); see also Klenke and Mörters (2005) for
partial results and their applications in multifractal analysis.

There is no direct analog to Theorem 3 for a higher-dimensional Brownian motion. However,
our main results have natural analogs for random walks and in the random walk setting, problems
analogous to Theorem 3 can also be tackled in higher dimensions. This research project, together
with some applications to weakly self-avoiding walks, is currently ongoing.

Finally, it is natural to ask whether the main results of the present paper can be extended from
Brownian motion to Lévy processes. It appears that the approach presented here may be suited
to such an extension and further investigations of this problem appear promising.
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