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The EM procedure is a principal tool for parameter estimation in the hidden Markov models. However,
applications replace EM by Viterbi extraction, or training (VT). VT is computationally less intensive, more
stable and has more of an intuitive appeal, but VT estimation is biased and does not satisfy the following
fixed point property. Hypothetically, given an infinitely large sample and initialized to the true parameters,
VT will generally move away from the initial values. We propose adjusted Viterbi training (VA), a new
method to restore the fixed point property and thus alleviate the overall imprecision of the VT estimators,
while preserving the computational advantages of the baseline VT algorithm. Simulations elsewhere have
shown that VA appreciably improves the precision of estimation in both the special case of mixture models
and more general HMMs. However, being entirely analytic, the VA correction relies on infinite Viterbi
alignments and associated limiting probability distributions. While explicit in the mixture case, the existence
of these limiting measures is not obvious for more general HMMs. This paper proves that under certain mild
conditions, the required limiting distributions for general HMMs do exist.
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1. Introduction

Hidden Markov models (HMMs) have been called “one of the most successful statistical mod-
elling ideas that have [emerged] in the last forty years” [8]. Since their classical application to
digital communication in 1960s (see further references in [8]), HMMs have had a defining im-
pact on the mainstream technologies of speech recognition [18–20,32,35,38,40,41,46–48] and,
more recently, bioinformatics [11,12,25]. Natural language [21,36], image [30] and more general
spatial [17] models are only a few of the numerous other applications of HMMs.

Applications of HMMs inevitably face the problem of parameter estimation. Let us con-
sider estimation of parameters of a finite-state hidden Markov model (HMM) given observations
x1:n = x1, . . . , xn on X1:∞ = X1,X2, . . . , the observable process of the HMM, up to time n. For
any real application, Xi can be assumed to take on values in X = R

D for some suitable D. Let
Y1:∞ = Y1, Y2, . . . , the hidden layer of the HMM, be a (time-homogeneous) Markov chain (MC)
with state space S = {1, . . . ,K}, transition matrix P = (pij ) and initial distribution π = πP. To
every state l ∈ S, there corresponds an emission distribution Pl(θl) with density fl that is known
up to the parametrization fl(x; θl), θl ∈ �l , where �l are rather general domains in R

d . When
Yk , k ≥ 1, is in state l, an observation xk on Xk is emitted according to Pl(θl) and indepen-
dent of everything else. The Y1:∞ process is also called a regime [31]. The maximum likelihood
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(ML) approach has become standard for estimation of ψ = (P, θ), the HMM parameters, where
θ = (θ1, θ2, . . . , θK). In part, this has been due to the well-known theoretical properties of (local)
consistency and asymptotic normality generally enjoyed by the ML estimators (MLE). Perhaps
a more significant reason for the widespread use of the ML approach has been the availability of
the EM algorithm with its computationally efficient implementation known as the Baum–Welch
or simply Baum, or forward–backward algorithm [1,2,8,14,20,39,40].

Since EM can, in practice, be slow or computationally expensive, it is commonly replaced by
Viterbi extraction, or training (VT), also known as the Baum–Viterbi algorithm. VT appears to
have been introduced in [19] by F. Jelinek and his colleagues at IBM in the context of speech
recognition, in which it has been used extensively ever since [14,18,32,35,40,41,46–48]. Its com-
putational stability (i.e., rapid exit) and intuitive appeal [14] have also made VT popular in natural
language modeling [36], image analysis [30] and bioinformatics [4,11,13,25,37]. VT is also re-
lated to constrained vector quantization [10]. The main idea of the method is to replace the com-
putationally costly expectation (E-step) of the EM algorithm with an appropriate maximization
step that generally requires less intensive computer operations (otherwise, the two algorithms
scale as K2n). In speech recognition, essentially the same training procedure was also described
by L. Rabiner et al. in [22,41] (see also [39,40]) as a variation of the Lloyd algorithm used in
vector quantization. In that context, VT has gained the name segmental K-means [14,22]. The
analogy with vector quantization is especially pronounced when the underlying chain is trivi-
alized to i.i.d. variables, thus producing an i.i.d. sample from a mixture distribution. For such
mixture models, VT was also described by R. Gray et al. in [10], where the training algorithm
was considered in the vector quantization context under the name entropy constrained vector
quantization (ECVQ). A better-known name for VT in the mixture case is classification EM
(CEM) [9,15], stressing that instead of the mixture likelihood, CEM maximizes the classifica-
tion likelihood [4,9,15,33]. VT-CEM was also particularly suitable for the early efforts in image
segmentation [44,45]. Also, for the uniform mixture of Gaussians with a common covariance
matrix of the form σ 2I (where I is the K × K identity matrix) and unknown σ , VT, or CEM, is
equivalent to the k-means clustering [9,10,15,43].

1.1. VT estimation and relevance of VA to real applications

The VT algorithm for estimation of ψ can be described as follows. Start with some initial values
ψ(0) = (P(0), θ (0)) and (use the Viterbi algorithm to) find a realization of Y1:n that maximizes
the likelihood of the given observations. Any such n-tuple of states is called a Viterbi, or forced,
alignment. An alignment partitions the original sample x1:n into subsamples corresponding to
distinct states. If regarded as an i.i.d. sample from Pl(θl), the subsample corresponding to state
l gives rise to μ̂n

l , the maximum likelihood estimate (MLE) of θl , l ∈ S. At step m + 1, these
estimates replace θ(m). The transition probabilities are similarly estimated (by MLE) from the
current alignment. The updated parameters ψ(m+1) are subsequently used to obtain a new align-
ment, and so on. It can be shown that, in general, ψ(m) converges (to some ψ∗(x1:n,ψ(0))) in
finitely many steps m [22]; also, it is usually much faster than the Baum algorithm. Note that
when each fl is modelled as a mixture, which is common in audio and visual processing, VT can
be applied at both stages of this model – first, in its general form (i.e., as with fl general) and then
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in its CEM form to learn each individual fl . Alternatively, the original HMM can, from the very
beginning, be replaced by the equivalent one with hidden states (l, s(l)), where s(l) indicates the
(sub)component of fl . VT can then also be applied to this new HMM as, for example, has been
done in the Philips speech recognition system [35].

Despite its attractiveness, VT can be challenged, as its estimators are generally biased and
not consistent. This has been noted, at least in the case of mixtures, since [4], with a specific
caveat issued in [49]. Simulations in [27] and [24] illustrate appreciable biases in VT estimation
in the i.i.d. and more general HMM settings, respectively. At the same time, these facts are not
surprising. Indeed, unlike EM, which increases the likelihood of ψ given x1:n, VT increases the
joint likelihood of the (hidden) state sequence y1:n and the parameters ψ , given x1:n. According
to [34], under certain conditions, the difference between the two objective functions vanishes
as D, the dimension of the emission Xi , grows sufficiently large relative to log(K), which can
be realistic in isolated word recognition [34]. However, as later clarified in [14], this does not
imply closeness of the parameter estimates obtained by EM and VT (unless the algorithms are
initialized identically) since both perform a local, rather than global, optimization.

Certainly, unbiasedness and consistency are neither necessary nor sufficient for a procedure
to perform well in applications [45]. However, there are indications that some applications, such
as segment-based speech recognition [46], do prefer the standard, that is, EM-type, likelihood
maximization. Also, [46] notes that conventional speech recognizers would prefer the ‘smoother
convergence’ of ψ(m) under EM, presumably over the more abrupt, greedy convergence of ψ(m)

under VT. At the same time, it appears that in complex environments, VT can be appreciably
simpler to implement than EM [46]. Hence, it appears to be sensible to combine the simplicity
of VT’s implementation with the desirable properties of EM.

Indeed, there are variations of VT that use more than one best alignment or several pertur-
bations of the best alignment [36]. VA, our type of adjusted VT, is of a different nature as it
improves the estimation precision by means of analytic calculations and does not compute more
than one optimal alignment per iteration. Moreover, we suggest that investigating such alterna-
tives to VT and EM for real applications is nowadays much more appealing than ever before,
thanks to the abundance of virtually infinite and freely available streams of audio and video (e.g.,
real-time broadcasting) as well as biological data. Actually, practitioners have already realized
this by shifting from entirely supervised to semi- and unsupervised modes of training [50]. One
naïve realization of these ideas is to simply use the estimates obtained from a labeled sample
(i.e., with y1:n known) as the initial guess ψ(0) for a further unsupervised retraining. A more
dedicated application would be model adaptation, wherein the model ψ(0) (initially trained in
any mode) may need to be adapted to a new environment (e.g., speaker) differing from the origi-
nal one mostly, or only, by the emission parameters. Applicability of our adjusted VT for mixture
models and situations when the transition probabilities are either known or nuisance is further
discussed in Section 2.3. Finally, simulations in [27] and [24] clearly show that VA, our method of
adjusting VT, does significantly improve the precision of VT estimation. In those experiments,
the VA estimates are always comparable to the EM estimates, while the VA algorithm is only
marginally more intensive than the baseline VT algorithm.
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1.2. The adjusted Viterbi training and contribution of this work

Is it possible to adjust VT in an analytic way in order to enjoy both the desirable properties of
VT (fast convergence of ψ(m), overall computational feasibility, simplicity of implementation
and an overall intuitive appeal) and more consistent estimation? Ensuring that an algorithm has
the true parameters as its asymptotically fixed point turns out to be pivotal in constructing such
adjusted estimators. Evidently, this fixed point property holds for EM, but not for VT. Namely,
for a sufficiently large sample, the EM algorithm ‘recognizes’ and ‘confirms’ the true parameters.
In contrast to this, an iteration of VT generally disturbs the correct values noticeably. In [27], we
have proposed to modify VT in order to make the true parameters an asymptotically fixed point
of VA, the resulting algorithm.

In order to understand VA, it is crucial to understand the asymptotic behaviors of μ̂n
l and p̂n

ij ,
the maximum likelihood estimators based on the Viterbi alignment. Since the alignment depends
on ψ(0), the initial values of the parameters (and on the tie-breaking rule, which is ignored for
the time being), so do μ̂n

l (ψ
(0),X1:n) and p̂n

ij (ψ
(0),X1:n). Note that, for ψ to be asymptotically

fixed by an estimation algorithm, it means that if ψ = (P, θ) are the true parameters and are used
to compute the alignment, then

μ̂n
l (ψ,X1:n) −→

n→∞ θl a.s. ∀l ∈ S; p̂n
ij (ψ,X1:n) −→

n→∞pij a.s. ∀(i, j) ∈ S2. (1.1)

The reason why VT does not enjoy the desired fixed point property is that (1.1) need not hold in
general [4,49]. Hence, in order to restore the above fixed point property in VT, we need to verify
that the sequences in (1.1) converge almost surely and, provided they do, exhibit their limits. This
paper essentially accomplishes these tasks. Namely, we show that (under certain mild conditions)
the empirical measures P̂ n

l (ψ,X1:n) obtained via the Viterbi alignment do converge weakly to a
certain limiting probability measure Ql(ψ) (2.5) and that, in general, Ql(ψ) �= Pl(θl). In [24], we
have shown that under general conditions on the densities fl(x; θl) (and, for �l , closed subsets
of R

d ), the above convergence P̂ n
l (ψ,X1:n)⇒n→∞ Ql(ψ) a.s. (properly introduced in (2.5))

implies convergence of μ̂n
l , that is,

μ̂n
l (ψ,X1:n) −→

n→∞μl(ψ) a.s., where μl(ψ)
def= arg max

θ ′
l ∈�l

∫
lnfl(x; θ ′

l )Ql(dx;ψ). (1.2)

Since, in general, Ql(ψ) �= Pl(θl), clearly μl(ψ) need not equal arg maxθ ′
l

∫
lnfl(x; θ ′

l ) ×
Pl(dx; θl).

In order to obtain the above results, in Section 4, we extend Viterbi alignments, or paths, ad
infinitum. Namely, considering (finite) Viterbi alignments with tie-breaking rules of a special
kind, we prove the existence of a decoding v :X∞ → S∞ such that, for almost every realization
x1:∞, the following property holds: for every m ∈ N, there exists an n = n(x1:∞,m) ∈ N, n > m,
such that the codeword v(x1:∞) and the Viterbi alignment based on x1:n agree up to time m. To
emphasize the dependence of v on ψ , we will write v(x1:∞;ψ). It can then also be shown that

when ψ are the true parameters, the process V
def= v(X1:n;ψ) is regenerative. In particular, for

any i, j ∈ S, there exists qij (ψ) ≥ 0 such that
∑

j qij (ψ) = 1 for every i ∈ S and

p̂n
ij (ψ;X1:n)

a.s.−→
n→∞qij (ψ). (1.3)
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Again, in general, pij �= qij (ψ). Reduction of the biases μl(ψ)− θl and qij (ψ)−pij is the main
feature of the adjusted Viterbi training.

1.3. Previous related work

We are not aware of any systematic treatment of asymptotic reduction of the bias in VT esti-
mation (without compromising the advantages of the VT algorithm over Baum–Welch) preced-
ing [27]. In [23], however, a sequential version of VT (‘the segmental K-means algorithm’) is
suggested, which can allegedly reduce the estimation bias asymptotically. The suggested mod-
ification appears substantially different from our adjustment, although we have been unable to
evaluate the algorithm of [23] thoroughly due to the lack of detail in its description in [23] or
anywhere else to date.

Moreover, to the best of our knowledge, there has been no systematic study of asymptotic
properties of the Viterbi alignments to date besides certain attempts made by Kogan in [23] in
the context of the sequential version of VT (see above) and, more recently, by Caliebe and Rösler
in [7] and Caliebe in [5]. Both groups have given thorough treatments of certain special cases,
mostly K = 2, but this, as we explain below, is too special.

Importantly, it was recognized in [23] that under certain conditions, longer Viterbi alignments
can be obtained piecewise. Roughly, the end-points of the pieces and the (random) times of their
occurrence were termed ‘special columns’ and ‘most informative stopping times’, respectively.
In [5,7], related notions of ‘meeting states’ and ‘meeting times’ are used. Independently of [5,
7,23], we have built our theory on the notion of nodes (roughly, observations emitted from the
‘special columns’; see Section 3.1) and the stopping times of their occurrence. If defined to be
independent of a particular global tie-breaking rule, the meeting times of [5] would correspond to
‘strong nodes’ of order 0, a particular type of nodes. More importantly, even our (general) nodes,
which are essentially equivalent to the special columns of [23] and ‘path crossings’ of [5,7], are
not sufficiently general in the sense that HMMs with aperiodic and irreducible Markov chains
need not necessarily have special columns, or nodes, infinitely often almost surely, despite the
claim to the contrary made in Theorem 2 of [23] (stated without proof and implicitly cited in
[14]). For a counterexample, we refer to Example 3.11 in [26], a downloadable preprint of this
paper. Appropriate sufficient conditions to guarantee the desired property have also been given
in [26] for the first time. Implicitly, the alignment process in [23] was recognized as regenerative
with respect to the ‘most informative stopping times’. The limiting alignment process of [5] is
already explicitly shown to be regenerative. Regenerativity with respect to (the times of) nodes is
also essential for our purpose of exhibiting the limiting measures Ql(ψ) (2.5) and qij (ψ) (1.3).

Convergence of the Viterbi paths was, to the best of our knowledge, first seriously considered
in [5,7], where the existence of infinite alignments for certain special cases, such as K = 2 and
some HMMs with additive white Gaussian noise, was also proven. While innovative, the main
result of [7] (Theorem 2) makes several restrictive assumptions preventing its extension beyond
the K = 2 case. As its by-product, this work extends some, and corrects other, results of [5,7].
This is explained in detail in the appropriate paragraphs of Sections 3.1– 3.3 and Section 4. Also,
note that our goal of exhibiting Ql(ψ) and qij (ψ) extends beyond solely defining infinite Viterbi
alignments (the main goal of [7]).
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1.4. Organization of the rest of the paper

First, in Section 2, we properly introduce the baseline and adjusted Viterbi training procedures
(Section 2.2) for HMMs. In Section 2.3, the adjusted Viterbi training is discussed in the con-
text of the following two important variations on the main situation: the regime parameters are
known or nuisance. More general issues of implementation are discussed in Section 2.4. Sec-
tions 2.3 and 2.4 can be skipped without interruption of the main presentation.

Recall that our ultimate goal has been asymptotic reduction of the bias in VT estimation for
as general a class of HMMs as possible. The main goal of this paper, however, is to prove the
existence of the limiting measures Ql(ψ) (2.5) and qij (ψ) (1.3) that underpin our approach to
achieving the ultimate goal. A significant effort has been made to achieve this accurately and
under as non-restrictive conditions as possible. This is the main reason why we cannot directly
reuse the tools used by others ([5,7,23]). As we reiterate further in Section 3, the asymptotic
behavior of the Viterbi alignment is not trivial and does require special tools. Thus, nodes and
barriers, our main tools, are presented in Sections 3.1 and 3.3, respectively. In Section 3.2, we
explain our piecewise construction of the proper Viterbi alignments. This is still at the level of
individual realizations of the HMM process. In Section 3.3, barriers, on the other hand, extend
our construction for almost every realization of the HMM process. This is the essence of Lem-
mas 3.1 and 3.2, the first of the two main results of this paper. In Section 4, we define V1:∞, the
proper infinite alignment process. Finally, in the same section we prove the existence of the mea-
sures Ql(ψ) and qij (ψ), our second main result, using regenerativity of the augmented process
(V1:∞,X1:∞) (Theorem 4.1 and Corollary 4.1).

Exhibiting the measures Ql(ψ) under very general conditions has necessitated several rather
technical constructions, mainly used to prove Lemmas 3.1 and 3.2. Due to spatial limitations,
they are not given here, but rather appear in [26].

2. The adjusted Viterbi training

2.1. The model

Recall that Y1:∞ takes values in S = {1, . . . ,K} and has transition matrix P. Let Y1:∞ be ir-
reducible and aperiodic, hence a unique π = πP exists. Let the emission distributions Pl(θl),
l ∈ S, be defined on (X ,B), where X and B are a separable metric space and the corresponding
Borel σ -algebra, respectively. Let fl be the density of Pl(θl) with respect to a suitable reference
measure λ on (X ,B).

Definition 2.1. The stochastic process X is a hidden Markov model if there is a (measurable)
function h such that, for each n,

Xn = h(Yn, en), where e1, e2, . . . are i.i.d. and independent of Y. (2.1)

Hence, the emission distribution Pl(θl) is the distribution of h(l, en). The distribution of X is
completely determined by the regime parameters P and the emission distributions Pl(θl), l ∈ S.
The process X is also α-mixing and, therefore, ergodic [14,16,29].
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2.2. Viterbi alignment and training

Let

	(y1:n;x1:n,ψ) = P(Y1:n = y1:n)
n∏

i=1

fyi
(xi; θyi

), where P(Y1:n = y1:n) = πy1

n∏
i=2

pyi−1yi
,

be the likelihood functions of the y1:n, treated as parameters. Given x1:n, let V(x1:n;ψ) be the set
of all maximum-likelihood estimates of y1:n. These estimates, or paths, are efficiently obtained
by the Viterbi algorithm and are called the Viterbi alignments.

The non-uniqueness of the alignments causes substantial technical inconveniences. In Sec-
tion 3.2, we specify unique v(x1:n;ψ) ∈ V(x1:n;ψ) for every n ∈ N and x1:n ∈ X n (and every ψ )
in a consistent manner that is suitable to prove the existence of Ql(ψ). Meanwhile, the unique-
ness of v(x1:n;ψ) is an assumption. VT estimation of ψ is defined formally as follows (where
IA is the indicator function of set A):

(1) choose initial values for the parameters ψ(k) = (P(k), θ (k)), k = 0;
(2) given ψ(k), current parameters, obtain the alignment v(k) = v(x1:n;ψ(k));

(3) update the regime parameters P
(k+1) def= (p̂n

ij ) as given by

p̂n
ij

def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n−1
m=1 I{i}(v(k)

m )I{j}(v(k)
m+1)∑n−1

m=1 I{i}(v(k)
m ),

if
n−1∑
m=1

I{i}
(
v(k)
m

)
> 0,

P
(k)
ij , otherwise,

i, j ∈ S; (2.2)

(4) assign xm, m = 1,2, . . . , n, to class v
(k)
m and, equivalently, define empirical measures

P̂ n
l

(
A;ψ(k), x1:n

) def=
∑n

m=1 IA×{l}(xm, v
(k)
m )∑n

m=1 I{l}(v(k)
m )

, A ∈ B, l ∈ S; (2.3)

(5) for each class l ∈ S, obtain μ̂n
l (ψ

(k), x1:n), MLE of θl , given by

μ̂n
l (ψ, x1:n)

def= arg max
θ ′
l ∈�l

∫
lnfl(x; θ ′

l )P̂
n
l (dx;ψ,x1:n) (2.4)

and for all l ∈ S, let

θ
(k+1)
l

def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂n
l

(
ψ(k), x1:n

)
, if

K∑
m=1

I{l}
(
v
(
x1:n;ψ(k)

)
m

)
> 0,

θ
(k)
l , otherwise.

To better interpret VT, suppose that, at some step k, ψ(k) = ψ , thus v(k) is obtained using
the true parameters. Let y1:n be the actual hidden realization of Y1:n. The training ‘pretends’
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that the alignment v(k) is perfect, that is, that v(k) = y1:n. If the alignment were indeed per-
fect, then the empirical measures P̂ n

l , l ∈ S, would be obtained from the i.i.d. samples gener-
ated from Pl(θl) and the MLE μ̂n

l (ψ,X1:n) would be natural estimators to use. Under these

assumptions, P̂ n
l (ψ,X1:n) ⇒ Pl(θl) as n → ∞ a.s. and, provided that {fl(·; θl) : θl ∈ �l}

is a Pl-Glivenko–Cantelli class and �l is equipped with a suitable metric, we would have
limn→∞ μ̂n

l (ψ,X1:n) = θl a.s. Hence, if n is sufficiently large, then P̂ n
l (ψ,X1:n) ≈ Pl(θl) and

θ
(k+1)
l = μ̂n

l (ψ, x1:n) ≈ θl = θ
(k)
l for every l ∈ S. Similarly, if the alignment is perfect, then

limn→∞ p̂n
ij (ψ,X1:n) = P(Y2 = j |Y1 = i) = pij , a.s. Thus, for the perfect alignment, ψ(k+1) =

(P(k+1), θ (k+1)) ≈ (P(k), θ (k)) = ψ(k) = ψ , that is, ψ would be (approximately) a fixed point
of the training algorithm. Certainly, the alignment, in general, is not perfect, even when it is
computed with the true parameters. In particular, the empirical measures P̂ n

l (ψ,X1:n) can be
rather far from those based on i.i.d. samples from Pl(θl). Hence, we have no reason to ex-
pect that limn→∞ μ̂n

l (ψ,X1:n) = θl a.s. and limn→∞ p̂n
ij (ψ,X1:n) = pij a.s. Moreover, we do

not even know whether the sequences of empirical measures P̂ n
l (ψ,X1:n), or MLE estimators

μ̂n
l (ψ,X1:n) and p̂n

ij (ψ,X1:n), converge almost surely at all.
As stated in Theorem 4.1, under certain mild conditions, there exist probability measures

Ql(ψ), l ∈ S, such that

P̂ n
l (ψ,X1:n) �⇒

n→∞Ql(ψ) a.s. (2.5)

From the proof of Theorem 4.1, it also follows (Corollary 4.1) that for every i ∈ S, there exist
probabilities qi1, . . . , qiK such that (1.3) holds. In general, μl(ψ) �= θl and qij (ψ) �= pij . In order
to reduce the biases θl −μl(ψ) and pij −qij (ψ), we have proposed the adjusted Viterbi training.
Namely, suppose that (1.2) and (1.3) hold and consider the mappings

ψ 
→ μl(ψ), ψ 
→ qij (ψ), l, i, j = 1, . . . ,K. (2.6)

The functions in (2.6) do not depend on x1:n, hence the following corrections are well defined:


l(ψ)
def= θl − μl(ψ), Rij (ψ)

def= pij − qij (ψ), l, i, j = 1, . . . ,K. (2.7)

Based on (2.7), the adjusted Viterbi training replaces VT steps (3) and (5) as given below:

(3) for every i, j ∈ S, update the matrix P
(k+1) def= (p

(k+1)
ij ) according to

p
(k+1)
ij

def= p̂n
ij + Rij

(
ψ(k)

); (2.8)

(5) for all l ∈ S, let

θ
(k+1)
l

def= 
l

(
ψ(k)

) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂n
l

(
ψ(k), x1:n

)
, if

K∑
m=1

I{l}(vm) > 0,

θ
(k)
l , otherwise.
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Provided n is sufficiently large, VA, as desired, has the true parameters ψ as its (approximately)
fixed point. Indeed, suppose that ψ(k) = ψ . From (1.2), μ̂n

l (ψ
(k), x1:n) = μ̂n

l (ψ, x1:n) ≈ μl(ψ) =
μl(ψ

(k)) for all l ∈ S. Similarly, from (1.3), p̂n
ij (ψ

(k), x1:n) = p̂n
ij (ψ, x1:n) ≈ qij (ψ) = qij (ψ

(k))

for all i, j ∈ S. Thus,

θ
(k+1)
l = μ̂n

l (ψ, x1:n) + 
l(ψ) ≈ μl(ψ) + 
l(ψ) = θl = θ(k), l ∈ S, (2.9)

p
(k+1)
ij = p̂n

ij (ψ, x1:n) + Rij (ψ) ≈ qij (ψ) + Rij (ψ) = pij = p
(k)
ij , i, j ∈ S. (2.10)

Hence, ψ(k+1) = (P(k+1), θ (k+1)) ≈ (P(k), θ (k)) = ψ(k).

Example 1 (Mixtures). Let X1,X2, . . . be i.i.d. and follow a mixture distribution with density∑K
l=1 πlfl(x; θl) and (positive) mixing weights πl . Such a sequence is an HMM with transition

probabilities pij = πj for all i, j ∈ S. In this special case, the alignment and the measures Ql

are easy to exhibit. Indeed, for any set of parameters ψ = (π, θ), the alignment v(x1:n;ψ) can
be obtained via a generalized Voronoi partition S(ψ) = {S1(ψ), . . . , SK(ψ)}, where

S1(ψ) = {x ∈ X :π1f1(x; θ1) ≥ πjfj (x; θj ),∀j ∈ S}, (2.11)

Sl(ψ) = {x ∈ X :πlfl(x; θl) ≥ πjfj (x; θj ),∀j ∈ S}\
l−1⋃
k=1

Sk(ψ), l = 2, . . . ,K. (2.12)

Now, the alignment can be defined pointwise as follows: v(x1:n;ψ) = (v(x1;ψ), . . ., v(xn;ψ)),
where v(x;ψ) = ∑K

k=1 kISk(ψ)(x), which returns l if and only if x ∈ Sl(ψ). The conver-
gence (2.5) now follows immediately from the strong law of large numbers. Indeed, if ψ are
the true parameters and if the alignment is obtained based on ψ , then the SLLN immediately
gives P̂ n

l (ψ) ⇒ Ql(ψ) almost surely, with densities ql(x;ψ) of Ql(ψ) ∝ f (x;ψ)ISl(ψ) =
(
∑K

k=1 πkfk(x; θk))ISl(ψ), l = 1,2, . . . ,K. Hence, the limit of the class-conditional MLE μ̂n
l

is given by

μl(ψ) = arg max
θ ′
l ∈�l

∫
Sl(ψ)

lnfl(x; θ ′
l )

(
K∑

k=1

πkfk(x; θk)

)
λ(dx), (2.13)

which, depending on the model, can differ from θl significantly ([24,27]). Also, (1.3) follows
easily in this case (see [27] for further details). Namely, note that

π̂n
l (ψ,X1:n)

a.s.−→
n→∞ql(ψ) =

K∑
k=1

πk

∫
Sl(ψ)

fk(x; θk)λ(dx). (2.14)

Thus, in the special case of mixtures, the adjustments 
l and Rl are relatively easy to obtain and
the adjusted Viterbi training is easy to implement. The simulations in [27] have largely supported
the theory, demonstrating both the computational advantage of VA over EM and the increased
precision of VA relative to VT.
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2.3. VA for ‘independent training’

Some applications, such as large vocabulary speech recognition systems [35], fix the regime
parameters exogenously. With the appropriate simplifications, the baseline and adjusted Viterbi
training procedures, as well as the EM algorithm, immediately apply in such situations. In fact,
in [24,27], VA is discussed primarily in this simplified context. It can then be argued that, when
the regime parameters are known, VA is unnecessary as MLI, the maximum likelihood estimation
under the independence assumption (which can also be called independent training), applies. Let
us discuss this issue in more detail. According to [31], MLI estimates the emission parameters
(and possibly π when P is unknown and not of interest) of general (ergodic) HMMs pretending
that Y1, Y2, . . . , are independent, that is, the entire HMM follows a mixture model. This is ap-
pealing since the marginal distribution of the emissions of any HMM (with a stationary regime)
is indeed the mixture with density

∑
k πkfk(·; θk). Thus, MLI is an instance of the maximum

pseudo-likelihood (MPL) based on the above mixture approximation. The MLI–MPL estimators
for the emission parameters are (locally) consistent [31,42] and can also be delivered by EM (for
mixtures). Similarly to the general case, when computational resources do matter, VT (for mix-
tures) can also be used instead of EM in this case. As in the general case, Baum–Welch and VT
scale identically, but their common computational complexity is now Kn, as opposed to K2n.
The comparative computational performances of Baum–Welch and VT for mixtures and in the
general case are also similar (the Baum algorithm involves more intensive operations). At the
same time, as Example 1 in Section 2.2 above shows, the VT estimators are still not consistent
and, in particular, the correction 
l = θl − μl(ψ), with μl(ψ) as in (2.13), can be significant.

Let us make another point. Let θ be fixed and let 
l and 
∗
l be the corrections obtained with

and without the independence assumption (pij = πj , i, j ∈ S), respectively. The following in-
tuitive fact has been shown in [24] by simulation: 
∗

l ≤ 
l and the difference 
l − 
∗
l widens

as the dependence in P becomes stronger. This suggests that there is more to gain by adjusting
VT for mixtures toward MPL-MLI than by adjusting VT for the actual HMM toward the true
MLE. Thus, if one is interested in a computationally efficient approximation to (the Baum im-
plementation of) MPL–MLI, the adjusted Viterbi training for mixtures is a sensible alternative
to the baseline Viterbi training for mixtures. Also, note that VA for mixture models was studied
in [27], where, in addition to the theoretical demonstration of the VT bias, it was also shown
by simulations that this bias could be significantly reduced by VA. Importantly, in the mixture
case, the VA corrections are often given explicitly, which simplifies the implementation of the
algorithm.

The independent training approach is also a natural choice when the underlying regime is a
general ergodic process (not necessarily Markov) with an (unknown) stationary distribution π .
Even when not of direct interest, π can and needs to be estimated. Again, if computational
efficiency is an issue, VA for mixtures with unknown weights is an alternative to the Baum
algorithm (for mixtures with unknown weights). Note that in this case, the corrections Rl =
πl −ql(ψ), with ql(ψ) as in (2.14), should be used in addition to the 
l corrections. Simulations
in [27] showed a clear advantage of using both adjustments Rl and 
l for mixture models with
unknown π . In particular, VA was, as usual, both superior to VT and only slightly inferior to
EM, in precision. Remarkably, taking few steps to stabilize, VA also outperformed VT in total
runtime.
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2.4. Implementation

To implement VA in practice, explicit expressions for Ql(ψ) (or μl(ψ)) and qij (ψ) are desirable.
In general, however, these functions can be very difficult to compute with high precision. At the
same time, as was just pointed out in Section 2.3 above, the corrections 
l and Rl are easy
to obtain for a broad class of mixture models including the most commonly used mixtures of
Gaussians with equal and known covariances. Other details of VA implementation have been
addressed in [27] and [24] for mixture and more general models, respectively. For one example,
[24] discusses the stochastically adjusted Viterbi training, an efficient implementation of VA for
general HMMs when the corrections cannot be obtained analytically. Although simulations do
require extra computations, the overall complexity of the stochastically adjusted VT can still be
considerably lower than that of Baum–Welch. Certainly, this requires further investigation. Other
practical issues are also a subject of continuing investigation.

3. Infinite Viterbi alignment

The idea of the adjusted Viterbi training is based on, firstly, the observation that the maximum
likelihood path (the Viterbi alignment) differs substantially from the underlying Markov chain
and, secondly, that these differences need to be accounted for in order for the overall HMM-based
inference to be accurate. Our adjusted Viterbi training need not be the only method to correct the
training process for these differences. However, any such method must inevitably appreciate
the asymptotic properties of both the Viterbi alignment and the subsamples of the emissions as
classified by the alignment. After all, it is these features that determine the properties of the VT
estimators in general and the asymptotic bias of VT in particular.

Even disregarding the non-uniqueness of the Viterbi alignment v(x1:n) (dependence on ψ is
temporarily suppressed), the asymptotic behavior of v(X1:n) is not trivial since the (n + 1)th
observation can in principle change the entire alignment based on x1:n. Namely, let v(x1:n) and
v(x1:n+1) be the alignments based on x1:n and x1:n+1, respectively. It might happen with positive
probability that v(x1:n)i �= v(x1:n+1)i for every i = 1, . . . , n. At the same time, the fact that the
alignment changes infinitely often makes it difficult to define a meaningful infinite alignment
process. For most HMMs, however, there is a positive probability of observing x1:n such that,
regardless of the value of the (n + 1)th observation (provided n is sufficiently large), the align-
ments v(x1:n) and v(x1:n+1) agree for a sufficiently long time u ≤ n. Consequently, regardless of
what happens in the future, the first u elements of the alignment remain constant. Provided that
there is an increasing unbounded sequence ui (u < u1 < u2 < · · ·) such that the alignment up to
ui remains constant, infinite alignments can then be defined. The observation that for most com-
monly used HMMs, a typical realization x1:∞ has infinitely many ui is the basis of our further
analysis.

Consider the following simple model that guarantees almost every x1:∞ to have infinitely many
ui ’s and provides an insight into a significantly more general scenario. Let state 1 ∈ S and event
A ∈ B be such that P1(A) > 0, while Pl(A) = 0 for l = 2, . . . ,K . Thus, any observation xu ∈ A

is almost surely generated under Yu = 1 and we say that xu indicates its state. Consider n to
be the terminal time and note that any positive likelihood path, including v(x1:n), the maximum
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likelihood one, must go through the state 1 at time u. This allows us to split the Viterbi alignment
into v1 and v2, an alignment from time 1 through time u and an alignment from time u through
time n, respectively. Namely, v1 and v2 maximize 	(y1:u;x1:u) and 	(yu:n;xu:n), the respective
likelihoods. By concatenating v1 with v2

2:n−u+1 (removing the overlapping v2
1 = 1), we obtain

v(x1:n) that maximizes 	(y1:n;x1:n). Clearly, any additional observations xn+1:m do not change
the fact that xu indicates its state. Hence, for any extension of x1:n, the first part of the align-
ment is always v1. Thus, any observation that indicates its state also fixes the beginning of the
alignment. Since our HMM is a stationary process that has a positive probability of generating
state-indicating observations, there will be infinitely many such observations almost surely. (The
overlap v2

1 = 1 is surely a nuisance since v2
2:n−u+1 maximizes 	(yu+1:n;xu+1:n) with the initial

distribution π replaced by (p1j )j∈S .)

3.1. Nodes

The above example is rather exceptional and we next define nodes to generalize the idea of state-
indicating observations.

First, consider the scores

δu(l)
def= max

y1:u−1∈Su−1
	((y1:u−1, l);x1:u), (3.1)

defined for all u ≥ 1, x1:u ∈ X u and states l in S. Thus, δu(l) is the maximum of the likelihood
of the paths terminating at u in state l. Note that δ1(l) = πlfl(x1). The recursion

δu+1(j) = max
l∈S

(δu(l)plj )fj (xu+1) for all u ≥ 1 and j ∈ S (3.2)

helps to verify that V(x1:n), the set of all the Viterbi alignments, can be written as follows:

V(x1:n) = {v ∈ Sn :∀i ∈ S, δn(vn) ≥ δn(i) and ∀u : 1 ≤ u < n,vu ∈ t (u, vu+1)},
(3.3)

where t (u, j)
def= {l ∈ S :∀i ∈ S δu(l)plj ≥ δu(i)pij } for every u = 1, . . . , n.

Thus, using (3.2), the Viterbi algorithm in its forward pass calculates δu(i), i = 1, . . . ,K ,
u = 1, . . . , n, and stores maximizers l ∈ t (u, j) (with some tie-breaking rule) to yield δu+1(j) =
δu(l)plj fj (xu+1). The final alignment can then be found by backtracking as follows: vn ∈
arg maxi∈S δn(i), vu ∈ t (u, vu+1), u = n − 1, . . . ,1.

Definition 3.1. Given x1:u, the first u observations, the observation xu is said to be an l-node (of
order 0) if

δu(l)plj ≥ δu(i)pij for all i, j ∈ S. (3.4)

We also say that xu is a node (of order 0) if it is an l-node for some l ∈ S. We say that xu is a
strong node if the inequalities in (3.4) are strict for every i, j ∈ S, i �= l. Definition 3.2 below
generalizes this one by including nodes of positive orders.
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Figure 1. An example of the Viterbi algorithm in action. The solid line corresponds to the final alignment
v(x1:n). The dashed links are of the form (k, l) − (k + 1, j) with l ∈ t (k, j) and are not part of the final
alignment. For example, (1,3)–(2,2) is because 3 ∈ t (1,2), 2 ∈ t (2,3). The observation xu is a 2-node
since we have 2 ∈ t (u, j) for every j ∈ S. Also, note that v(x1:u) is fixed, that is, v(x1:u) = v(x1:n)1:u.

Clearly, if xu is an l-node, then l ∈ t (u, j) for all j ∈ S (see Figure 1). Consequently, if x1:u is
such that xu is an l-node, then there exists v(x1:n) ∈ V(x1:n) with v(x1:n)u = l, which guarantees
(the existence of) a fixed alignment up until u. If the node is strong, then all the Viterbi alignments
must coalesce at u. Thus, the concept of strong nodes circumvents the inconveniences caused by
the non-uniqueness. Namely, regardless of how the ties are broken, every alignment is forced into
l at u and any tie-breaking rule would suffice for the purpose of obtaining the fixed alignments.
However tempting, strong nodes, unlike the general ones, are quite restrictive. Indeed, suppose
our model allows for A with P1(A) > 0 and Pl(A) = 0, for l = 2, . . . ,K . Hence, for almost every
xu ∈ A, we have δu(1) > 0 and δu(i) = 0 for every i ∈ S, i �= 1. Thus, (3.4) holds and xu is a
1-node. If, in addition, p1j > 0 for every j ∈ S, then for every i, j ∈ S, i �= 1, the left-hand side
of (3.4) is positive, whereas the right-hand side is 0, making xu a strong node. If, however, there
is a j such that p1j = 0, which can easily happen if K > 2, then for this j , both sides are 0 and
xu is no longer strong.

The concept of nodes (including higher order nodes to be defined below) is essentially the
same as ‘crossing Viterbi paths’ of [7] or ‘meeting times/states’ [5], where the existence of strong
nodes is proved implicitly. The above works assume that the entries of P, the transition matrix,
are positive, which excludes our previous example of xu being a node and not a strong node.
Using the concept of nodes, let us briefly analyze the results of these works. In [7], there are
two main theorems. In terms of nodes, Theorem 1 of [7] states the following. Let j0 ∈ S be a
recurrent state. Let i0 ∈ S be such that for all i, j, k ∈ S, i �= i0,

Pj0

({x ∈X :pji0fi0(x)pi0k > pjifi(x)pik}
)
> 0. (3.5)

Then, almost every realization of HMM has infinitely many nodes. Up to notation, the condition
(3.5) above is stated as it appears in [7]. However, this theorem is proved in [7] under the fol-
lowing stronger condition (3.6) (in [6], the authors of [7] have recently confirmed this to be a
misprint):

Pj0

({x ∈X :pji0fi0(x)pi0k > pjifi(x)pik ∀i, j, k ∈ S, i �= i0}
)
> 0. (3.6)
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To see how significantly this alteration weakens the theorem, let A ⊂ X be the set as in (3.6)
and let us first show that any xu ∈ A is a strong i0-node. Indeed, fix i ∈ S, i �= i0. There then
exists j (depending on i) such that δu(i) = δu−1(j)pjifi(xu). Next, for every k, δu(i)pik =
δu−1(j)pjifi(xu)pik and thus

δu(i)pik < δu−1(j)pji0fi0(xu)piok ≤ max
j

δu−1(j)pji0fio(xu)pi0k = δu(i0)pi0k.

Thus, (3.6) implies that every observation from A is a strong node. Since j0 is recurrent and
A has a positive Pj0 -probability, clearly there are almost surely infinitely many such nodes. The
existence of A satisfying (3.6), however, appears to be more of an exception than a rule. Note that
(3.6) does not hold if P contains a 0 in every row or in every column. Another important example
of HMMs for which A satisfying (3.6) need not exist is the HMM with additive white Gaussian
noise (Example 1 of [5,7]). In fact, it is stated in [7] that the assumption of their Theorem 1 is
satisfied for this model independently of the transition matrix. In [6], the authors of [5,7] have
recently confirmed accidental omissions of the intended positivity condition, which, from the
example below, can be seen to be crucial for Theorem 1 of [7], as well as Theorems 3 and 6
of [5]. Also, note that the following example does not require that P contain zeros in every row
or column and is hence substantially different from the example given above. Thus, let K = 3
and let p13 = 0 be the only zero entry of P. This already rules out (3.6) for i0 = 1 and i0 = 3.
Following [7], in the additive white Gaussian noise model, the emission density fi is univariate
normal with mean i = 1,2,3 and variance 1. Let x be such that

pj2f2(x)p2k > pjifi(x)pik ∀i, j, k ∈ S, i �= 2.

In particular, with j = 2, p22f2(x)p23 > p23f3(x)p33 and p22f2(x)p21 > p21f1(x)p11. Hence,

f2(x)

f3(x)
>

p33

p22
,

f2(x)

f1(x)
>

p11

p22
. (3.7)

Since p11 and p33 are both positive, one can easily find p22 > 0 sufficiently small for (3.7) to fail,
implying that i0 �= 2. Therefore, (3.6), the (corrected) hypothesis of Theorem 1 of [7], which is
also the hypothesis of Theorem 3 of [5], need not hold for the HMM with the additive Gaussian
noise and P general.

We next extend the notion of nodes (Definition 3.1) to account for the fact that a gen-
eral ergodic P can have a zero in every row, in which case nodes of order 0 need not exist.
Indeed, suppose that x1:u is such that δu(i) > 0 for every i ∈ S. In this case, (3.4) implies
that plj > 0 for every j ∈ S (the lth row of P must be positive) and (3.4) is equivalent to
δu(l) ≥ maxi (maxk(

pik

plk
)δu(i)).

First, we introduce p
(r)
ij (u), the maximum likelihood of the paths connecting states i and j at

times u and u + r , respectively. Thus, for each u ≥ 1 and r ≥ 1, let

p
(r)
ij (u)

def= max
q1:r∈Sr

piq1fq1(xu+1)pq1q2fq2(xu+2)pq2q3 · · ·pqr−1qr fqr (xu+r )pqr j .

Also, note that p
(r)
ij (u) = maxq∈S p

(r−1)
iq (u)fq(xu+r )pqj , where p

(0)
ij (u)

def= pij , u ≥ 1. Re-
cursion (3.2) then generalizes as follows: for all r > u ≥ 1, for each j ∈ S, δu+1(j) =
maxi∈S(δu−r (i)p

(r)
ij (u − r))fj (xu+1).
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Figure 2. xu is a 2nd order 2-node, xu−1 is a 3rd-order 3-node. Any alignment v(x1:n) has v(x1:n)u = 2.

Definition 3.2. Let 1 ≤ r < n, 1 ≤ u ≤ n − r and let l ∈ S. Given x1:u+r , the first u + r observa-
tions, xu is said to be an l-node of order r if

δu(l)p
(r)
lj (u) ≥ δu(i)p

(r)
ij (u) for all i, j ∈ S. (3.8)

xu is said to be an r th-order node if it is an r th-order l-node for some l ∈ S. xu is said to be a
strong node of order r if the inequalities in (3.8) are strict for every i, j ∈ S, i �= l.

Note that any r th-order node is also a node of order r ′ for any integer r ≤ r ′ < n and thus,
by the order of a node, we will mean the minimal such r . Also, note that for K = 2, a node of
any order is a node of order 0. Hence, positive order nodes only emerge for K ≥ 3. If xu is an
l-node of order r , then regardless of what the observations after xu+r are, xu remains an l-node
of order r . Moreover, it follows from a decomposition of V(x1:n) similar to that of (3.3) that
there exists v(x1:n) ∈ V(x1:n) such that v(x1:n)u = l. The difference between nodes (of order 0)
and nodes of positive order r is that for v(x1:n)u = l to hold, u needs to be at least r steps before
n (n > u + r). Otherwise, for m such that u < m ≤ u + r , it might happen that no alignment
v(x1:m) ∈ V(x1:m) satisfies v(x1:m)u = l. The role of higher order nodes is similar to that of
nodes. Namely, provided a proper tie-breaking rule is given the existence of a higher order node
xu ensures the existence of a fixed alignment up to u. At the same time, allowing nodes of higher
orders removes the positivity restriction on rows of P.

Although implicit (and defined relative to a fixed and global tie-breaking rule), nodes of orders
possibly higher than 0 are also a main tool in [5,7]. Specifically, statements K ′ and K ′′, under-
pinning the main results of [7], are interpreted in terms of nodes as follows. K ′: almost every
realization of an HMM has infinitely many (variable order) nodes. (The node orders r1, r2, . . .

in K ′ can depend on the realization x1:∞ and hence need not be almost surely bounded.) K ′′:
almost every realization of an HMM has infinitely many nodes of order 0. (Thus, K ′ implies K ′′
and for K = 2, K ′ is equivalent to K ′′.) Lemmas 3.1 and 3.2 below give significantly stronger
results, which also allow for an algorithmic construction of infinite piecewise alignments.
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3.2. Piecewise alignment

Let x1:n be such that xui
is an li -node of order r , 1 ≤ i ≤ k, for some k < n and assume that

uk + r < n and ui+1 > ui + r for all i = 1,2, . . . , k − 1. Such nodes are said to be separated. It
follows from the definition of nodes that there exists a Viterbi alignment v1:n ∈ V(x1:n) such that
vui

= li for every i = 1 ≤ k. Indeed, Definition 3.2 immediately implies the existence of a Viterbi
alignment v′

1:n ∈ V(x1:n) with v′
uk

= lk . The same definition and optimality of backtracking by
the Viterbi algorithm imply that (w1:uk−1+r , v

′
uk−1+r+1:n) ∈ V(x1:n) for some prefix w1:uk−1+r

with wuk−1 = lk−1. Continuing in this manner down to node xu1 , we exhibit v1:n with vui
= li ,

i = 1,2, . . . , k.
Let us discuss the assumption ui+1 > ui + r , i = 1,2, . . . , k − 1. The fact that xui

is an r th-
order li -node guarantees that when backtracking from ui + r down to ui , ties can be broken
in such a way that, regardless of the values of xu+r+1:n and how ties are broken in between n

and ui + r , the alignment goes through li at ui . At the same time, segment ui, . . . , ui + r is
‘delicate’, that is, unless xui

is a strong node, breaking ties arbitrarily on ui, . . . , ui + r can result
in v(x1:n)ui

�= li . Hence, when neither xui
nor xui+1 is strong and ui+1 ≤ ui + r , breaking ties

in favor of xui
can result in vui+1 �= li+1. Note that such a pathological situation is impossible if

r = 0 and might be rare in practice for r > 0. Finally, note that this assumption is not restrictive
since it is always possible to choose from any sequence of nodes a subsequence of nodes that are
separated.

To formalize the piecewise construction introduced above, let

W l(x1:n) = {v ∈ Sn :vn = l,	(v;x1:n) ≥ 	(w;x1:n) ∀w ∈ Sn :wn = l},
V l(x1:n) = {v ∈ V(x1:n) :vn = l}, for all n ≥ 1, l ∈ S and x1:n ∈ X n,

be the sets of maximizers of the constrained likelihood and the subset of maximizers of the
(unconstrained) likelihood, respectively, all elements of which go through l at u. Note that, unlike
W l(x1:n), V l(x1:n) might be empty. It can be shown that V l (x1:n) �= ∅ implies that V l(x1:n) =
W l(x1:n). Also, let the subscript (l) stand for using (pli)i∈S as the initial distribution in place
of π . Thus, the sets V(l)(x1:n) and Wm

(l)(x1:n), m ∈ S, will also be used.
The piecewise construction can be formulated as follows. Suppose that there exist l1, . . . , lk ∈

S and u1, . . . , uk ≥ 1, r1, . . . , rk ≥ 0 with u1 + r1 < u2 + r2 < · · · < uk + rk < n such that xui
is

an li -node of order ri for every i ≤ k. There then exists an alignment v(x1:n) = (v1, . . . , vk+1) ∈
V(x1:n), where v1 ∈ W l1(x1:u1),

vi ∈W li
(li−1)

(xui−1+1:ui
), 2 ≤ i ≤ k, and vk+1 ∈ V(lk)(xuk+1:n). (3.9)

Moreover, for every i = 1,2, . . . , k, w(i)
def= (v1, . . . , vi) ∈ V li (x1:ui

). Thus, when a node is ob-
served at time uk , the alignment up to uk becomes fixed, yielding natural extensions of finite
alignments for n → ∞. Besides providing the tool for the asymptotic analysis, the piecewise
construction is also of computational significance. Indeed, note that once xu1 has been recog-
nized to be a node and w(1) has been constructed, the memory allocated for storing x1:u1 and
t (u, j) (see (3.3)) for u ≤ u1 and j ∈ S is no longer needed and can be freed.
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Thus, if x1:∞ has infinitely many nodes {xuk
}k≥1 that are separated, then v(x1:∞), an infi-

nite piecewise alignment based on the node times {uk(x1:∞)}k≥1 can be defined as follows.
If the sets W li

(li−1)
(xui−1+1:ui

), i ≥ 2, as well as W l1(x1:u1) are singletons, then (3.9) imme-

diately defines a unique infinite alignment v(x1:∞) = (v1(x1:u1), v
2(xu1+1:u2), . . .). Otherwise,

ties must be broken. In order for our infinite alignment process to be regenerative, a natural
consistency condition must be imposed on rules to select unique v(x1:n) from W l1(x1:u1) ×
W l2

(l1)
(xu1+1:u2) × · · · × W lk

(lk−1)
(xuk−1+1:uk

) × V(lk)(xuk+1:n). Resulting infinite alignments, as
well as decoding v :X∞ → S∞ based on such alignments, will be called proper. This condi-
tion is, perhaps, best understood by the following example. Suppose, for some x1:5 ∈ X 5, that
W1

(1)(x1:5) = {12211,11211} and suppose that the tie is broken in favor of 11211. Now, whenever

W1
(l)(x

′
1:4) contains {1221,1121}, we naturally require that 1221 not be selected. In particular,

we break the tie in W1
(1)(x1:4) = {1221,1121} by selecting 1121. Subsequently, 112 is selected

from W2
(1)(x1:3) = {122,112}, and so on. It can be shown that a decoding by piecewise alignment

(3.9) with ties broken in favor of min (or max) under the reverse lexicographic ordering of Sn,
n ∈ N, is a proper decoding.

Example 2 (Mixtures revisited). Consider the mixture model as in Example 1. In this case,
an observation xu is an l-node if and only if δu(l) ≥ δu(i) for every i ∈ S. In particular, this
implies that every observation is an l-node (of order 0) for some l ∈ S. Recursion (3.2) can then
be written for any u ≥ 2 and i ∈ S as δu(i) = maxj∈S δu−1(j)πifi(xu) = cπifi(xu), where c

does not depend on i. Hence, xu is an l-node if and only if πlfl(xu) ≥ πifi(xu) for all i ∈ S.
Therefore, the alignment can be obtained component-wise: v(x1:n) = (v(x1), . . . , v(xn)), where

v(x) = arg max
i∈S

πifi(x). (3.10)

Clearly, the alignment is proper if the ties in (3.10) are broken consistently, that is, if v(x) is
indeed a well-defined function of x.

Example 2 helps to understand the necessity of breaking ties consistently. If our sole goal were
to construct infinite alignments, then any piecewise (not necessarily proper) alignment would
suffice. However, the existence of Ql(ψ), l ∈ S, requires more. Indeed, suppose that the right-
hand side of (3.10) is not unique for some x, an atom of, say P̂ n

1 , as defined in (2.3). If the
selection in (3.10) is consistent, say, v(x) = 1, then, in the limit, x will also be an atom of
Q1(ψ). Otherwise, if ties in (3.10) are broken arbitrarily, then the limiting measures might not
exist at all.

Also, note that we break ties locally, that is, within individual intervals ui−1 +1, . . . , ui , i ≥ 2,
enclosed by the adjacent nodes. This is in contrast to global ordering of V(x1:∞), such as the
one in [5,7], which ignores decomposition (3.9). A global rule can fail to produce an infinite
alignment going through infinitely many nodes unless the nodes are strong (as assumed in [5,7]).
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3.3. Barriers

To test whether xu is a node of order r requires the entire realization x1:u+r (Definition 3.2).
In particular, for an arbitrary prefix x′

1:w ∈ Xw and m < u, the (w + m + 1)th element of
(x′

1:w,xu−m:u+r ) need not be a node relative to (x′
1...w, xu−m:u+r ), even when xu is a node of

order r relative to x1:u+r . We show below that typically, a block xb
1:k ∈ X k (k ≥ r) can be found

such that for any w ≥ 1 and any x′
1:w ∈ Xw , the (w + k − r)th element of (x′

1:w,xb
1:k) is a node

of order r (relative to (x′
1:w,xb

1:k)). Sequences xb
1:k that ensure the existence of such persistent

nodes will be called barriers.

Definition 3.3. Given l ∈ S, xb
1:k ∈ X k is called a (strong) l-barrier of order r ≥ 0 and length

k ≥ 1 if, for any w ≥ 1 and every x′
1:w ∈ Xw , (x′

1:w,xb
1:k) is such that (x′

1:w,xb
1:k)w+k−r is a

(strong) l-node of order r .

Note that any observation from the set A considered in (3.6) is a barrier of length 1. In partic-
ular, any observation that indicates a state is a barrier of length 1.

Next, we state and discuss Lemmas 3.1 and 3.2, the first of the two main results of this paper.
First, let Gl = ⋂

G-closed,Pl(G;θl )=1 G denote the support of the family Pl(θl), θl ∈ �l , for all
l ∈ S.

Definition 3.4. We call a subset C ⊂ S a cluster, if the following conditions are satisfied:

min
j∈C

Pj

(⋂
i∈C

(
Gi ∩ {x ∈X :fi(x) > 0})

)
> 0 and Pj

(⋂
i∈C

Gi

)
= 0 ∀j /∈ C.

Hence, a cluster is a maximal subset of states such that GC = ⋂
i∈C Gi is ‘detectable’. Distinct

clusters need not be disjoint and a cluster can consist of a single state. In this latter case, such
a state is not hidden since it is indicated by any observation which it emits. When K = 2, S

is the only cluster possible since otherwise, all observations would reveal their states and the
underlying Markov chain would cease to be hidden. In practice, many other HMMs have the
entirity of S as their (necessarily unique) cluster.

The proof of the following lemma is rather technical and can be found in [26], Appendix 5.1,
pages 26–39.

Lemma 3.1. Assume that for each state l ∈ S,

Pl

({
x ∈ X :fl(x)max

j∈S
(pjl) > max

i∈S,i �=l

(
fi(x)max

j∈S
(pji)

)})
> 0. (3.11)

Moreover, assume that there exists a cluster C ⊂ S and an integer m < ∞ such that the mth
power of the substochastic matrix Q = (pij )i,j∈C is strictly positive. Then, for some integers M

and r , M > r ≥ 0, there exist B = B1 × · · · × BM ⊂ XM , q1:M ∈ SM and l ∈ S such that every
xb

1:M ∈ B is an l-barrier of order r (and length M), qM−r = l, P(X1:M ∈ B|Y1:M = q1:M) > 0
and P(Y1:M = q1:M) > 0.
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Lemma 3.1 implies that P(X1:M ∈ B) > 0. Also, since every element of B is a barrier of
order r , the ergodicity of X therefore guarantees that almost every realization of X1:∞ contains
infinitely many l-barriers of order r . Hence, almost every realization of X1:∞ also has infinitely
many l-nodes of order r .

Let us briefly analyze (3.11) and the existence of a cluster C assumed in Lemma (3.1). First,
consider the case when S itself is a cluster. This occurs, for example, if the supports of all the
emission distributions coincide. Then, the substochastic matrix (pij )i,j∈C = P and aperiodicity
of P implies that P

m is strictly positive for some power m. Hence, the cluster assumption is
satisfied in this case. Our cluster assumption essentially generalizes assumption A1 of [5,7],
which requires P, the transition matrix, to be strictly positive and the supports Gi to be all equal.
As already pointed out, the assumption of strict positivity of P becomes rather restrictive when
K > 2. Moreover, [26], Example 3.11, shows that the cluster assumption is not only sufficient but
also necessary for nodes (and barriers) to exist. We also point out that the proof of the existence
of nodes in [5] (Theorem 2) heavily relies on the supports being equal, which is also crucial for
assumption A2 [5,7] and which is not assumed in Lemma 3.1.

Note that (3.11) basically says that for every state l ∈ S, there is a set where the measure Pl(θl)

‘dominates’, that is, {x ∈ X :fl(x)maxj∈S pjl > maxi∈S,i �=l (fi(x)maxj∈S pji)} is of positive
λ-measure. We are not aware of any HMMs used in practice for which this assumption does not
hold. Moreover, for many models (see Example 3 below), it is actually sufficient for proving the
existence of barriers that (3.11) holds for at least one state l, which, provided that the emission
distributions Pl(θl), l ∈ S, are all distinct, is always the case. Also, note that for the mixture
model, (3.11) simplifies to Pl({x :fl(x)πl > fi(x)πi,∀i �= l}) > 0 and that assumption (3.11) is
weaker than (3.6) since the latter implies that

Pi0

({
x ∈ X :fi0(x)max

j∈S
pji0 > max

i∈S,i �=i0

(
fi(x)max

j∈S
pji

)})
> 0.

Example 3 (K = 2). S = {1,2} is the only cluster. Assume P to be strictly positive. Thus, the
cluster assumption of Lemma 3.1 is fulfilled. Assume P1(θ1) and P2(θ2) to be distinct. Fol-
lowing [5], consider the following three cases. Case 1: p11 > p21 (equivalently, p22 > p12);
case 2: p11 < p21 (equivalently, p22 < p12); case 3: p11 = p21 (equivalently, p22 = p12).
Note that since λ({x ∈ X :f1(x) �= f2(x)}) > 0 (the two emission distributions differ), the sets

X1
def= {x ∈X :f1(x)p11 > f2(x)p22}, X2

def= {x ∈X :f1(x)p11 < f2(x)p22} satisfy

λ(X1) > 0 or λ(X2) > 0. (3.12)

Without loss of generality, assume p11 ≥ p22, hence λ(X1) > 0. It is then not hard to exhibit
strong 1-barriers in case 1. Indeed, in this case, a Viterbi path v(x1:n) can switch states only at
nodes, that is, v(x1:n)u:u+1 = (l, j), l �= j , implies that xu is a strong l-node. An integer k can
then be chosen sufficiently large for any sequence z1:k ∈ X k

1 to be a strong 1-barrier. Suppose
that this were not the case and hence that no zi , 1 ≤ i ≤ k, would be a 1-node. It could then
be shown that no zi could be a 2-node either, hence corresponding k-segments of Viterbi paths
v(x1:n), n > k, would have to be constant, namely all 1’s or all 2’s. However, k is so large that
segment 211 . . .12 is more optimal than 22 . . .2, implying the presence of a strong 1-node.
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Thus, in case 1, the occurrence of infinitely many barriers (or nodes) does not require any
additional assumptions. In particular, assumptions A1 (the supports being equal) and A2 (log-
ratio of the densities being square-integrable) of [5,7] are unnecessary for proving the results
of Theorems 7, 8 and 9 of [5]. Furthermore, assumption (3.11) of Lemma 3.1 is, in this case,
equivalent to the conjunction of λ(X1) > 0 and λ(X2) > 0. Thus, Lemma 3.1 can be further
strengthened in this case to guarantee that almost every realization of the HMM has infinitely
many both 1- and 2-barriers. Alternatively, assumption (3.11) can be relaxed to (3.12) in this
case, as well as in many other practical situations, for Lemma 3.1 to still guarantee at least one
type of barrier.

Next, consider case 2. Lemma 3.1 says that when both sets

X1
def= {x ∈X :f1(x)p21 > f2(x)p12},

(3.13)
X2

def= {x ∈X :f1(x)p21 < f2(x)p12}
have positive λ-measure, then almost every realization x1:∞ includes infinitely many barriers.
One can show that these barriers are the elements of the set B = X1 × X2 × X1 × · · · × X2.
Indeed, it can be shown that the absence of nodes in a generic subsequence xt :t+T would imply
optimality of the likelihood motif pbafa(xt )pabfb(xt+1), a, b ∈ S, a �= b. However, if xt :t+T ∈
Xb ×Xa ×Xb × · · · and T is sufficiently large, then this motif will no longer be optimal, hence
a node inside xt :t+T . In [28], we additionally show that barriers (or nodes) also exist in case 2,
even if only one of the sets in (3.13) has positive measure. Since a typical Viterbi path in case
2 oscillates between the states (as also acknowledged in [5]), case 2 is not similar to case 1,
requiring a different approach to prove the existence of barriers (or nodes) under the weakened
assumption max{λ(X1), λ(X2)} > 0. This also explains why we generally (K ≥ 2) require (3.11)
to hold for more than one state. In [5], the author reports similar results, Theorems 10 and 11,
without proofs, alleging that the omitted proofs are “very similar” to the respective proofs of
Theorems 7 and 8 of [5]. We are convinced that proving Theorem 10 of [5] requires an approach
different from that of the proof of Theorem 7 in [5].

Finally, case 3 is the mixture model with weights π1 = p11 = p21, π2 = p22 = p12. Every
observation is now a node (Example 2). Again, if λ({f1 �= f2}) > 0 holds, then so does (3.12),
say, with the first of its statements. Every element of {x ∈ X :f1(x)π1 > f2(x)π2} is then a
strong 1-barrier of order 0 and length 1. Therefore, unlike in Theorems 12, 13 and 14 of [5], the
existence of infinitely many barriers (nodes) again follows with no additional assumptions.

In summary, barriers allow us to prove, relatively easily, the existence of infinitely many nodes.
Although the existence of barriers is rather obvious for K = 2, the CLT-based proof of [7],
Theorem 2, does not apply if K > 2, necessitating generalizations such as Lemma 3.1.

For certain technical reasons, instead of extracting subsequences of separated nodes from gen-
eral infinite sequences of nodes guaranteed by Lemma 3.1, we achieve node separation by ad-
justing the notion of barriers. Namely, note that two r th order l-barriers xj :j+M−1 and xi:i+M−1
might be in B with j < i ≤ j + r , implying that the associated nodes xj+M−r−1 and xi+M−r−1
are not separated. Thus, we impose on B the following condition:

xj :j+M−1, xi:i+M−1 ∈ B, i �= j �⇒ |i − j | > r. (3.14)
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If (3.14) holds, then we say that the barriers from B ⊂ XM are separated. This is often easy
to achieve by a simple extension of B , as shown in the following example. Suppose that there

exists x ∈ X such that x /∈ Bm for all m = 1,2, . . . ,M . All elements of B∗ def= {x} × B are
evidently barriers and, moreover, they are now separated. The following lemma incorporates a
more general version of the above example (see [26], Appendix 5.2, pages 39–40, for proof).

Lemma 3.2. Suppose that the assumptions of Lemma 3.1 are satisfied. Then, for some integers
M and r , M > r ≥ 0, there exist B = B1 ×· · ·×BM ⊂XM , q1:M ∈ SM and l ∈ S such that every
xb

1:M ∈ B is a separated l-barrier of order r (and length M), qM−r = l, P(X1:M ∈ B|Y1:M =
q1:M) > 0 and P(Y1:M = q1:M) > 0.

4. The alignment process

For the rest of this work, we adopt the assumptions of Lemma 3.2 to guarantee that almost every
realization of HMM has infinitely many separated barriers. Every such barrier contains a node.
Note that both the barrier and the node encapsulated in it are therefore observable via testing the
running M-tuples of X1:∞ for membership in B . Based on such nodes, we define v :X∞ → S∞
to be a proper decoding by piecewise alignment (3.9) (and v(x1:∞)i = 1, i ≥ 1, for x1:∞ that do
not have infinitely many B-barriers). Next, we study properties of the random alignment process

V1:∞
def= v(X1:∞).

Let M ≥ 0, B ⊂ XM , r ≥ 0, l ∈ S and q = q1:M ∈ SM , as promised by Lemma 3.2. For

every n ≥ 1, P(Yn:n+M−1 = q) > 0, γ ∗ def= P(Xn:n+M−1 ∈ B|Yn:n+M−1 = q) > 0, hence every
xn:n+M−1 ∈ B is a separated l-barrier of order r . Next, define, for all n ≥ 1,

Un
def= Xn:n+M−1, Dn

def= Yn:n+M−1, Fn
def= σ(Y1:n,X1:n), as well as

stopping times ν0, ν1, ν2, . . . , ϑ0, ϑ1, ϑ2, . . . of the filtration {Fn+M−1}n≥1:

ν0
def= min{n ≥ 1 :Un ∈ B,Dn = q},

νi
def= min{n > νi−1 :Un ∈ B,Dn = q} ∀i ≥ 1,

ϑ0
def= min{n ≥ 1 : Un ∈ B},

ϑi
def= min{n > ϑi−1 :Un ∈ B} ∀i ≥ 1,

with the convention that min ∅ = 0 and max∅ = −1. Note that ϑi ≤ νi , i ≥ 0. Stopping times ϑi

(i ≥ 0) are observable via the X process alone, whereas stopping times νi (i ≥ 0) already require
knowledge of the full process (X1:∞, Y1:∞). Also, note that ν0, (νi+1 −νi), i ≥ 0, are independent
and (νi+1 − νi), i ≥ 0, are identically distributed. To every νi , there corresponds an l-barrier of
order r . This barrier extends over the interval [νi, νi + M − 1] and Xτi

is an l-node of order r ,

where τi
def= νi + (M − 1)− r for every i ≥ 0. Define T0

def= τ0 and Ti
def= τi − τi−1 = νi − νi−1 for

every i ≥ 1.
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Proposition 4.1. E(T0) < ∞ and E(T1) < ∞.

Proof. We need to show that Eν0 < ∞ and E(ν1 − ν0) < ∞. Let us introduce the following
non-overlapping block-valued processes Ub

m and Db
m, defined by Ub

m = X(m−1)M+1:mM , Db
m =

Y(m−1)M+1:mM , for all m ≥ 1, and stopping times defined, for every i ≥ 1, by

νb
0

def= min{m ≥ 1 :Ub
m ∈ B,Db

m = q},
(4.1)

νb
i

def= min{m > νb
i−1 :Ub

m ∈ B,Db
m = q},

Rb
0

def= min{m > 1 :Db
m = q},

(4.2)
Rb

i

def= min{m > Rb
i−1 :Db

m = q}.

The process Db is clearly a time-homogeneous, finite-state Markov chain. Since Y1:∞ is aperi-
odic and irreducible, so is Db. Hence, (Db,Ub) is also an HMM.

Since Y1:∞ is also stationary (under π ), q occurs in every interval of length M with the same
positive probability (Lemma 3.2). In particular, q belongs to the state space of Db . Since Db

is irreducible and its state space is finite, all of its states, including q , are positive recurrent.
Hence, E(Rb

0) < ∞ and E(Rb
1 − Rb

0) < ∞. The following bound ultimately yields the second
statement: E(ν1 − ν0) ≤ E(νb

1 − νb
0 ) = 1

γ ∗ E(Rb
1 − Rb

0) < ∞. This bound is obtained by twice
applying Wald’s equation [3].

It can similarly be verified that E(νb
0 ) = γ ∗E(Rb

0) + 1−γ ∗
γ ∗ E(Rb

1 − Rb
0), which is again finite.

Finally, Eν0 ≤ M(Eνb
0 − 1) + 1 < ∞. �

According to Proposition 4.1 above, ETi < ∞ for every i ≥ 0, implying that the random
variables T0, T1, . . . form a delayed renewal process (for a general reference, see, e.g., [3]). In [5],
the process τ and the expectation ET1 are denoted by S and E(S1|S0), respectively. As the proof
of Proposition 4.1 above shows, using the barriers, it is relatively easy to prove that ET1 < ∞.
On the other hand, without such a unifying concept, [5] must prove E(S1|S0) < ∞ separately
for every case considered therein.

Next, let u0, u1, . . . be the locations of r th order l-nodes corresponding to the stopping
times ϑi , that is, ui = ϑi + (M − 1) − r for every i ≥ 0. Clearly, for every i ≥ 0, τi = uj for
some j ≥ i. Also, since the barriers are separated, so are (ui)i≥0. Using these nodes, we build the
alignment v and thus extend the definitions of the empirical measures P̂ n

l (ψ,X1:n) given in (2.3)
and the estimators of transition probabilities p̂n

ij given in (2.2) for the general case of non-unique
alignments. Specifically, given X1:n, define V ′

1:n = v(X1:n) to be the (finite) piecewise proper
alignment based on the ui ’s (and a consistent selection scheme) in accordance with (3.9). For
each state l ∈ S that appears in V ′

1:n, define

P̂ n
l (A;ψ,X1:n)

def=
∑n

i=1 IA×{l}(Xi,V
′
i )∑n

i=1 I{l}(V ′
i )

, A ∈ B.
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For other l ∈ S (i.e.,
∑n

i=1 I{l}(V ′
i ) = 0), define P̂ n

l (ψ,X1:n) to be an arbitrary probability mea-
sure.

Similarly, for every pair of states l, j ∈ S, we define

p̂n
lj (ψ,X1:n)

def=
∑n−1

i=1 I{l}(V ′
i )I{j}(V ′

i+1)∑n−1
i=1 I{l}(V ′

i )
.

Again, if
∑n−1

i=1 I{l}(V ′
i ) = 0, define p̂n

l·(ψ,X1:n) to be an arbitrary probability vector on S.

We shall next consider the 2-dimensional process Z
def= (X1:∞,V1:∞). Based on Z, for every

l ∈ S, we also define auxiliary empirical measures Q̂n
l and (q̂n

lj )j∈S as follows:

Q̂n
l (A,Z1:n)

def=
∑n

i=1 IA×{l}(Xi,Vi)∑n
i=1 I{l}(Vi)

=
∑n

i=1 IA×{l}(Zi)∑n
i=1 I{l}(Vi)

, A ∈ B,

q̂n
lj (Z1:n)

def=
∑n−1

i=1 I{l}(Vi)I{j}(Vi+1)∑n−1
i=1 I{l}(Vi)

for every j ∈ S.

As in the definition of P̂ n
l (ψ,X1:n), if l �= Vi , i = 1, . . . , n (i = 1, . . . , n − 1), then Q̂n

l (Z1:n)’s
(q̂n

l·(Z1:n)’s) are defined arbitrarily. Note that, in general, v(x1:∞)1:n �= v(x1:n). However, the two
are equal up to the last node occurring prior to n and used in the construction of v. Thus, after
that last node, V ′

i need no longer agree with Vi .
To prove the existence of Ql such that P̂ n

l (ψ,X1:n) ⇒ Ql(ψ) a.s., we first note that Z is a

regenerative process [3] with respect to the renewal times (τi)i≥0. This implies that Q̂n
l (Z1:n) ⇒

Ql(ψ), a.s. Finally, since the difference between Q̂n
l (Z1:n) and P̂ n

l (ψ,X1:n) vanishes as n → ∞,

we have P̂ n
l (ψ,X1:n) ⇒ Ql(ψ) almost surely. Similarly, we prove the almost sure convergence

p̂n
lj (ψ,X1:n) → qlj (ψ).
The fact that the process Z is regenerative is crucial and is the main result in [5], Theorem 2.

That X is regenerative immediately follows from the fact that for every i ≥ 0, Yτi
= l and the

Ti ’s are renewal times. V is regenerative because all the nodes occurring at τi ’s are used in the
construction of V1:∞ via (3.9) and because decoding V1:∞ is proper. That is, for every i ≥ 1,
Vτi−1+1:τi

= vj ∈ W l
(l)(Xτi−1+1:τi

) for some j ≥ i. Hence, for every i ≥ 1, the alignments up to
τi and after τi are independent and Vτi+1:∞ agrees with Vτ1+1:∞ in distribution. Regenerativity
of Z with respect to (τi)i≥0 follows straightforwardly and we refer to the formal proof of [5],
Theorem 2, for details.

Theorem 4.1. If X satisfies the assumptions of Lemma 3.1, then there exist probability mea-
sures Ql(ψ), l ∈ S, such that Q̂n

l (ψ,X1:n)⇒n→∞ Ql(ψ) and P̂ n
l (ψ,X1:n)⇒n→∞ Ql(ψ) al-

most surely.

Proof. The proof below uses regenerativity of Z in a standard way. For every n ≥ τ0, A ∈ B and
l ∈ S, we have

1

n

n∑
i=1

IA×{l}(Zi) = 1

n

τo∑
i=1

IA×{l}(Zi) + 1

n

τk(n)∑
i=τ0+1

IA×{l}(Zi) + 1

n

n∑
i=τk(n)+1

IA×{l}(Zi), (4.3)
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where k(n) = max{k : τk ≤ n} is also a renewal process. Now, since τ0 < ∞ a.s., we have

1

n

τ0∑
i=1

IA×{l}(Zi) ≤ τ0

n
−→
n→∞ 0, a.s.

Let M def= ET1, which is finite by Proposition 4.1. Then, (n − τk(n))/n ≤ Tk(n)+1/n → 0, a.s.
Finally, since Z is regenerative with respect to τ0, τ1, . . . , we have

1

n

τk(n)∑
i=τ0+1

IA×{l}(Zi) = k(n)

n

1

k(n)

k(n)∑
k=1

ξk, where ξk
def=

τk∑
i=τk−1+1

IA×{l}(Zi), k ≥ 1,

and are i.i.d. Let ml(A;ψ)
def= Eξk . Since ml(A;ψ) ≤ M< ∞, it holds that, as n → ∞,

n

k(n)
→ M and

1

k(n)

k(n)∑
k=1

ξk → ml(A;ψ) a.s.,

implying that (4.3) tends to ml(A;ψ)/M a.s. Similarly,

1

n

n∑
i=1

I{l}(Vi) → wl

M ≤ 1 a.s., where wl(ψ)
def= E

(
τk∑

i=τk−1+1

I{l}(Vi)

)
.

Hence, we have shown that for each l ∈ S and every A ∈ B,

Q̂n
l (A;Z1:n) −→

n→∞Ql(A;ψ), a.s., where Ql(A;ψ)
def= ml(A;ψ)/wl.

It is easy to note that A 
→ ml(A;ψ) is a measure and that ml(X ;ψ) = wl(ψ). Hence, every
Ql(ψ) (l ∈ S) is a probability measure. Recalling that X is a separable metric space and invoking
the theory of weak convergence of measures now establishes that Q̂n

l (Z1:n) ⇒
n→∞Ql(ψ) almost

surely. It remains to show that for all l ∈ S and A ∈ B,

P̂ n
l (A;ψ,X1:n) −→

n→∞Ql(A;ψ), a.s. (4.4)

To see this, consider
∑n

i=1 IA×{l}(Xi,V
′
i ). Since V ′

i = Vi for i ≤ τk(n), we obtain

1

n

n∑
i=1

IA×{l}(Xi,V
′
i )

= 1

n

τ0∑
i=1

IA×{l}(Zi) + 1

n

τk(n)∑
i=τ0+1

IA×{l}(Zi) + 1

n

n∑
i=τk(n)+1

IA×{l}(Xi,V
′
i )

a.s.−→
n→∞ml(A;ψ)/M.
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Similarly, 1
n

∑n
i=1 I{l}(V ′

i ) −→
n→∞wl/M almost surely. �

Corollary 4.1. If X1:∞ satisfies the assumptions of Lemma 3.1, then, for every l ∈ S,
there exists a probability measure ql1, . . . , qlK on S such that p̂n

lj (ψ;X1:n) −→
n→∞qlj (ψ) and

q̂n
lj (Z1:n) −→

n→∞qlj (ψ) almost surely.

Proof. The proof is the same as that of Theorem 4.1, with

qlj (ψ)
def= wlj (ψ)

wl(ψ)
, wlj (ψ)

def= E

(
τ2∑

i=τ1+1

I{l}(Vi)I{j}(Vi+1)

)
.

�

5. Conclusion

We have proposed, in [27], [24] and in this work, to improve the precision of the VT estima-
tion by enabling the estimation algorithm to asymptotically confirm the true parameters. In this
work, we have developed the central theoretical component of the above methodology. Namely,
we have constructed a suitable infinite Viterbi decoding process and have used it to prove the
existence of the limiting distributions responsible for the ‘fixed point bias’ in a very general class
of HMMs. General approaches to the efficient computing of the correction functions have been
recently proposed in [24]. Model-specific implementations of these approaches are a subject of
the authors’ continuing investigation.
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