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A PRIME GEODESIC THEOREM FOR HIGHER RANK BUILDINGS
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Abstract

We prove a prime geodesic theorem for compact quotients of a‰ne buildings and

apply it to get class number asymptotics for global fields of positive characteristic.
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Introduction

The prime geodesic theorem for a compact, negatively curved Riemannian
manifold M states that the number pðxÞ of prime closed geodesics of lengtha x
on M satisfies

pðxÞ@ eAx

Bx
;

where A;B > 0 are (explicit) constants depending on the manifold. It has been
applied in [14] to arithmetic quotients of symmetric spaces to derive class number
asymptotics. In case of hyperbolic spaces, remainder terms have been given, see
for instance [8, 15]. In [2] this has been extended to a case of higher rank and in
[3] to a non-compact situation. The full higher rank case has been explored in
[4, 5].

The p-adic counterpart of symmetric spaces are Bruhat-Tits buildings.
In the rank one case, these are trees. In [6] we applied the Prime Geodesic
Theorem for graphs to get class number asymptotics for orders over imaginary
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quadratic fields. See [12] for a di¤erent approach to this case. In the current
paper we derive the Prime Geodesic Theorem for quotients of buildings and we
use it for class number asymptotics for global fields of positive characteristic.
The result is an equidistribution assertion for units in orders over a given global
field, where the units are weighted by class numbers and regulators.

1. The building

In this section we recall some results of [7]. Let X be a locally finite,
simplicial, thick, a‰ne building of dimension d ¼ dim X . Recall that a type
function on a chamber is a bijection from the set vertðCÞ of vertices of C to the
set f0; 1; . . . ; dg. Further, a type function on X is a map from the set vertðX Þ
of vertices of X to f0; . . . ; dg that restricts to a type function on each chamber.

Given a chamber C the restriction defines a bijection between the set of all
type functions on X and the set of all type functions on C. An automorphism g
of X is said to be type preserving, if g preserves one (and hence any) type on X .

Let AutðXÞ denote the group of automorphisms of the building X , i.e., the
group of automorphisms of the complex mapping apartments to apartments.
The group AutðXÞ is a totally disconnected locally compact group where a basis
of unit-neighborhoods is given by the set of all pointwise stabilizers of finite sets
in X . Let

G � AutðX Þ
be an open, finite index subgroup. Note that any open subgroup is closed and
that any finite index closed subgroup is open. Let G0 � G be the subgroup of
all type preserving automorphisms in G. It is normal in G and G=G0 is a finite
group.

We assume that G0 acts strongly transitively, i.e., G0 acts transitively on the
set of all pairs ða;CÞ, where a is an apartment of X and C is a chamber in a.
See [1], Chapter 6. This is equivalent to saying that G0 acts chamber-transitively
on X and the pointwise stabilizer KC of a given chamber C acts transitively on
the set of all apartments a containing C.

Let qX be the visibility boundary of X and let C � qX be a spherical
chamber and fix an apartment a � X such that C � qa. Let P ¼ PC be the
point-wise stabilizer of C, then P is called a minimal parabolic subgroup of G.
In the boundary qa, there is a unique chamber C opposite to C. Let P denote
the corresponding parabolic and set

L ¼ P \ P:

We call L a Levi-component of P. Let M denote the point-wise stabilizer of a,
then M is normal in L and the quotient A ¼ L=M is free abelian of rank d.
(Note that in [7] we wrote ‘‘ranka d’’, this discrepancy is due to the fact that we
are now assuming G0 to act strongly transitively, which we did not assume in
[7].) The group A acts on a by translations. Let A� denote the open cone in A
of all elements translating towards a point in the open spherical chamber C.
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Fix a fundamental chamber C0 in a and let K � G denote its pointwise
stabilizer. As M � K it makes sense to write KAK for the set KLK .

Definition 1.1. Since X is a‰ne, there exists a metric d on X which is
euclidean on each apartment and G-invariant. For g A G let

dðgÞ ¼ inf
x AX

dðgx; xÞ:

As G acts cellularly, this infimum is always attained, hence a minimum. An
element g A G is called hyperbolic, if dðgÞ > 0, the minimum is attained on a
convex subset which is the union of parallel lines along which g is a translation
[7]. This set is called the minimal set of g and is written as MinðgÞ. We call g
a generic element, if the so defined element of qX is generic, i.e., is not in a
lower dimensional stratum. This implies that the minimal set MinðgÞ consists of
exactly one apartment.

2. Closed geodesics

Definition 2.1. A geodesic curve in X is a curve c : R ! X , which in the
euclidean structure of each apartment is a straight line which is parametrized at
unit speed. Two curves c, c 0 are called equivalent if there exists t0 A R such that
c 0ðtÞ ¼ cðtþ t0Þ holds for all t A R. A geodesic in X is an equivalence class of
geodesic curves.

Definition 2.2. Let G � G be a discrete, cocompact subgroup of G. By a
geodesic in GnX we understand the image of a geodesic in X . This is the proper
definition in the case when G is allowed to have torsion elements and thus the
local euclidean structure is not necessarily preserved in the quotient GnX . A
geodesic c in GnX is called a closed geodesic, if cðtþ lÞ ¼ cðtÞ holds for some
l > 0 and all t A R. A closed geodesic c in GnX thus lifts to a geodesic ~cc in X .
The forward direction of ~cc defines a point b A qX . We call c a generic geodesic,
if b is a generic point of the spherical building qX , i.e., if b is not contained in
any wall of a Weyl chamber.

For a given closed geodesic c there exists g A G closing it, i.e., if cðtþ lÞ ¼
cðtÞ for all t A R and some l > 0, then ~ccðtþ lÞ ¼ g~ccðtÞ holds for a uniquely deter-
mined g A G and all t A R. This element g is hyperbolic and ~cc lies in its minimal
set MinðgÞ.

Lemma 2.3. Let A0 ¼ A \ G0, or rather A0 ¼ L0=M, where L0 ¼ L \ G0.
(a) The group G0 is generated by the set KA0K. Likewise, it is generated by

the union of all pointwise stabilizers KC of chambers C in X.
(b) If g A G closes a generic geodesic, then g is hyperbolic and conjugate in G

to an element of KAK. In particular, g is generic (Definition 1.1).
(c) Let y : G0 ! H be a group homomorphism with yðKÞ ¼ 1. Then y1 1.
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Proof. (a) Let C0 be the fundamental chamber and let g A G0. If gC0 ¼ C0

then g lies in K already and we are done. Otherwise, we have to show that the
group H generated by KAK contains an element h such that gC0 ¼ hC0, because
then h�1g A K and (c) is proven. So we have to show that HC0 contains all
chambers of X .

We start by showing that it contains all direct neighbors C of C0. Choose a
labeling v0; . . . ; vd of the vertices of C0. Let C be a neighbor sharing the face F
with vertices v1; . . . ; vd with C0. As X is thick, there is another such neighbor D
of C0. Let a be an apartment containing C0 and D. Let s be the reflection at
F in a. Let T be the Weyl translation with Tv0 ¼ w0 ¼ sðv0Þ and let E be the
chamber TðC0Þ. The translation T extends to an element of KAK � H, so that
the group TKT�1 lies in H. This group, however, is the pointwise stabilizer KE

of the chamber E. Let now a 0 be an apartment containing E and C, then there
is k A KE � H with ka ¼ a 0, hence kC0 ¼ C as claimed. This proof can now be
iterated to show that HC0 contains the direct neighbors of direct neighbors of C0

and so on. Examining the proof, one finds that we have shown that the group
generated by all stabilizers of chambers generates G.

(b) If g closes a generic geodesic, it must be hyperbolic and its minimal set is
an apartment a 0, [7]. So g induces a translation on this apartment, which makes
it an element of K 0A 0K where K 0 is the stabilizer of a chamber in a 0. Now the
set K 0A 0K 0 is G-conjugate to KAK and the claim follows.

(c) If yðKÞ ¼ 1, then yðgKg�1Þ ¼ 1 for every g A G0, but these groups gen-
erate G0 by part (a), so y1 1. r

3. The zeta function

The zeta function SðuÞ, which is recalled in this section, is a several variable
zeta function SðuÞ constructed from geometrical data of closed geodesics and
enjoying an analytic continuation to all of Cr.

Let g A G be a generic element as in Definition 1.1. The minimal set MinðgÞ
is an apartment a. Let Ga denote the stabilizer of a in G and let Gg and Gg

denote the respective centralizers of g. Let G a denote the image of Ga in AutðaÞ
and let Ga

g � G a
g � G a denote the image of the groups Gg and Gg in G a. Then

the set G a
g =G

a
g is finite. Note that, as G0 acts strongly transitively, G a contains

the Weyl group of a.
For a measurable set M � G we set

½g : M� ¼ volðfx A G=Gg : xgx
�1 A MgÞ:

In [7] it is shown that the index ½g : KA�K � is a natural number.

Lemma 3.1. For an element g A G the following are equivalent:
(a) g is generic,
(b) g is conjugate to an element of KaK with a A A�.
In this case the element a is uniquely determined by g and the index satisfies

½g : KA�K � ¼ ½g : KaK � ¼ 1.
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Proof. If g is generic, then, as G0 acts strongly transitively, modulo conju-
gation we can assume MinðgÞ ¼ a and thus g ¼ ak for some generic a A A and
k A K . As the image of G a in AutðaÞ contains the Weyl group, we can conjugate
a into A�. This establishes (a) ) (b).

The assertion (b) ) (a) and the uniqueness of a is valid without the assump-
tion of strong transitivity and is proven in Lemma 2.3.8 of [7]. The assertion
about the index rests on strong transitivity. With the given normalizations,

½g : KaK � ¼ volðfx A G=Gg : xgx
�1 A KaKgÞ

¼ jfa A KnG=Gg : xgx
�1 A KaKgj:

So we need to show that if g, xgx�1 both lie in KaK , then x A KGg. If g; xgx�1 A
KaK , we can replace both with K-conjugates to get them into aK . This means
that gC0 ¼ xgx�1C0 ¼ aC0, so C0, aC0 lie in MinðgÞ and in Minðxgx�1Þ ¼
x MinðgÞ. That means that b ¼ MinðgÞ and xb are apartments containing C0.
By strong transitivity, K acts transitively on these apartments, therefore there are
k1; k2 A K with

a ¼ k1 MinðgÞ ¼ Minðk2gk�1
1 Þ ¼ k2x MinðgÞ ¼ Minðk2xgx�1k�1

2 Þ:

Replacing g with k1gk
�1
1 and x with k2x we can assume that g and xgx�1 preserve

a and both act as the same translation y 7! ay on a. Then a ¼ Minðxgx�1Þ ¼
x MinðgÞ ¼ xa, so x preserves a as well. As xgx�1 and g act as the same generic
translation on a, x itself acts by a translation on a. There is an element y A Gg

acting by the same translation as x, so xy�1 A K . The claim follows. r

Definition 3.2. Let Ggen denote the set of generic elements in G and let
½Ggen� denote the set of G-conjugacy classes in Ggen. Let a denote the apart-
ment used to define A. Let v0 be a special vertex in a and let C be the unique
chamber in a with vertex v0 such that the wall W of C which is opposite to v0,
faces C. Let v1; . . . ; vd denote the remaining vertices of C. The map vj 7! j
extends in a unique way to a map from the set VðXÞ of vertices of X to
f0; 1; . . . ; dg which is injective on the set VðDÞ of vertices of any given chamber
D. The image of a vertex is called the type of the vertex. Then all vertices of
type zero are special vertices.

Using v0 as origin we give a the structure of a real vector spaces and
v1; . . . ; vd is a basis. Let ej ¼ rjvj, where rj > 0 is the smallest rational number
such that all vertices of type zero are contained in

Z ¼ Ze1 l � � �lZed :

A given a A A acts on a by translation ax ¼ xþ va where

va ¼ l1ðaÞe1 þ � � � þ ldðaÞed
is the translation vector. Since this translation respects the simplicial structure,
the numbers l1ðaÞ; . . . ; ldðaÞ are integers. Indeed, the map
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l : A 7! Zd ;

a 7! ðl1ðaÞ; . . . ; ldðaÞÞ

is an isomorphism of the group A to a lattice L ¼ LA � Zd , which maps the
cone A� to the cone

Lþ ¼ fl A L : l1; . . . ; ld > 0g:

Definition 3.3. For u A Cd and a A A� we write

ua ¼ u
l1ðaÞ
1 � � � uld ðaÞ

d ;

and define the several variable zeta function

SðuÞ ¼
X

½g� A ½Ggen�
jG a

g =G
a
g juag ;

where ag A A� is the unique element such that g is G-conjugate to an element
of KagK . Theorem 2.4.2 of [7] states that the series SðuÞ converges for small u
to a rational function. More precisely, there exists a finite set E � A, elements
a1; . . . ; ad A A� and quasi-characters h1; . . . ; hr : A ! C� [ 0 such that

SðuÞ ¼
Xr
j¼1

X
e AE

hjðeÞue

ð1� hjða1Þua1Þ � � � ð1� hjðadÞuad Þ :

Moreover, the space LðGnGÞK GL2ðGnG=KÞ has a basis f1; . . . ; fr such that all
Rð1KaKÞ with a A A� are in Jordan normal form with respect to this basis. In
particular,

Rð1KaKÞfj � hjðaÞfj A spanðf1; . . . ; fj�1Þ

holds for every j and all a A A� and this equation defines the quasi-character hj.
Here R is the right translation representation of G on L2ðGnGÞ, so RðyÞfðxÞ ¼
fðxyÞ, x; y A G and for a function f on G (like f ¼ 1KaK ) we define Rð f Þ by
integration:

Rð f ÞfðxÞ ¼
ð
G

f ðyÞfðxyÞ dy:

Note that the space L2ðGnGÞK contains the constant function f1 1. Then

Rð1KaKÞfðxÞ ¼
ð
G

1KaKðyÞfðxyÞ dy ¼ volðKaKÞ ¼ jKaK=K j;

since we normalize the Haar measure by giving the compact open subgroup K
volume 1. We can assume f1 1 1.

At this point we note that we have a certain amount of freedom in choosing
the group G � AutðXÞ. By changing G if necessary, we can assume that G is
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generated by G0 together with G. Since G and G0 are subgroups and G0 is a
normal subgroup, this means that we have

G ¼ GG0;

i.e., every g A G can be written as a product g ¼ gg0 of some g A G and an
element g0 of G0.

Lemma 3.4. For j ¼ 1; . . . ; r we have

jhjðaÞja jKaK=K j; a A A�:

For every jb 2 there exists a A A� with

jhjðaÞj < jKaK=K j:

Proof. For 1a ja r we have

jRð1KaKÞfðxÞja
ð
KaK

jfðxyÞj dya jKaK=K j kfkGnG;

where kfkGnG ¼ supx AGnGjfðxÞj. Suppose that Rð1KaKÞf ¼ hðaÞf holds for every
a A A�, then, taking supremum over x yields

jhðaÞj kfkGnG a jKaK=K j kfkGnG:

For the second assertion assume additionally jhðaÞj ¼ jKaK=K j ¼ h1ðaÞ for every
a A A�. We have to show that f is constant. Let a A A� and write KaK ¼Fs

j¼1 kjaK , then s ¼ jKaK=K j ¼ h1ðaÞ and

Rð1KaKÞf ¼
Xs
j¼1

RðkjÞRðaÞf:

For the L2-norm we have, since RðkjÞRðaÞ is unitary,

skfk2 ¼ jhðaÞj kfk2 ¼
Xs
j¼1

RðkjÞRðaÞf
�����

�����
2

a
Xs
j¼1

kfk2 ¼ skfk2:

We get equality everywhere, but this can only happen if the RðkjÞRðaÞf are all
Rþ-collinear and by unitarity this means that RðkjÞRðaÞf ¼ RðaÞf for every j.
Since s ¼ h1ðaÞ, follows

RðaÞf ¼ hðaÞ
h1ðaÞ

f:
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As f is K-invariant, we have for k1; k2 A K ,

Rðk1ak2Þf ¼ Rðk1ÞRðaÞRðk2Þf ¼ Rðk1ÞRðaÞf ¼ hðaÞ
h1ðaÞ

Rðk1Þf ¼ hðaÞ
h1ðaÞ

f:

Since R is a representation, the map y ¼ h

h1
therefore extends to a character

on the group generated by KA�K , which contains G0. By Lemma 2.3 we get
yðG0Þ ¼ 1, so for every g0 A G0 we have

fðg0Þ ¼ Rðg0Þfð1Þ ¼ yðg0Þfð1Þ ¼ fð1Þ:

Finally, as G ¼ GG0 we write any given g A G as g ¼ gg0 accordingly and we get

fðgÞ ¼ fðgg0Þ ¼ fðg0Þ ¼ fð1Þ:

So f is constant, as claimed. r

4. The prime geodesic theorem

Definition 4.1. For g A Ggen we write IndðgÞ ¼ jGa
g =G

a
g j, where a ¼ MinðgÞ.

For k A Nd let

NðkÞ ¼
X

½g�:lðagÞ¼k

IndðgÞ;

where the sum runs over all conjugacy classes ½g� in Ggen such that lðagÞ ¼ k. So
NðkÞ ¼ 0 if k B L, the lattice of Definition 3.2.

In the following, for k A Nd and c A Rd we write

ck ¼ ck11 � � � ckdd :

Theorem 4.2 (Prime Geodesic Theorem). Let L � Zd be the lattice of
Definition 3.2. There exists a sub-lattice L0 � L and a function CL=L0 : L=L0 !
ð0;yÞ, and constants c1; . . . ; cd > 1 such that for kj ! y independently, we have

NðkÞ@ 1LðkÞCL=L0 ðkÞck:

Explicit formulae for the constants and the function CL=L0 , are given below.

Proof. We have

SðuÞ ¼
X
k AN d

NðkÞuk

¼
Xr
j¼1

X
e AE

X
m AN d

0

hjðeÞhjða1Þ
m1 � � � hjðadÞ

md ulðm�aþeÞ;
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where m � a stands for m1a1 þ � � � þmdad . This implies

NðkÞ ¼
Xr
j¼1

X
e AE
m AN d

lða�mþeÞ¼k

hjðeÞhjða1Þ
m1 � � � hjðadÞ

md

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:NjðkÞ

:

We shall show that the term N1ðkÞ dominates as k ! y. To simplify the
notation we write hðxÞ ¼ h1ðxÞ ¼ jKxK=K j. The proof of Lemma 2.4.4 in [7]
reveals that each aj is a multiple of vj and hence the equation lða �mþ eÞ ¼ k
implies lnðanÞmn þ lnðeÞ ¼ kn, n ¼ 1; . . . ; d, so that

mn ¼
kn � lnðeÞ
lnðanÞ

:

Let L0 be the sub-lattice of L generated by lða1Þ; . . . ; lðadÞ. For each k A Nd

there is at most one e A E with lða �mþ eÞ ¼ k. This element e only depends
on k up to L0. We get

N1ðkÞ ¼ hða1Þk1=l1ða1Þ � � � hðadÞkd=l1ðad Þ
X
e AE
m AN d

lða�mþeÞ¼k

hðeÞhða1Þl1ðeÞ=l1ða1Þ � � � hðadÞld ðeÞ=ld ðad Þ:

The sum

CL=L0 ðkÞ ¼
X
e AE
m AN d

lða�mþeÞ¼k

hðeÞhða1Þl1ðeÞ=l1ða1Þ � � � hðadÞld ðeÞ=ld ðad Þ

has at most one summand and depends on k only up to L0 and is non-zero if and

only if k A L. Setting cn ¼ hðanÞ1=lnðanÞ we get the desired asymptotic for N1ðkÞ
instead of NðkÞ.

By Lemma 3.4, for each j ¼ 2; . . . ; r there exists nð jÞ such that jhjðanð jÞÞj <
hðanð jÞÞ. Set

y ¼ max
jb2

jhjðanð jÞÞj
hðanð jÞÞ

< 1:

It then follows that

jN2ðkÞ þ � � � þNrðkÞja
Xr
j¼2

yknð jÞ

 !
N1ðkÞ:

This implies that N1ðkÞ dominates the asymptotic and thus we get the claim for
NðkÞ. r
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5. Division algebras

Let R be an integral domain and K its field of fractions. Let A be a finite-
dimensional K-algebra with unit. An R-order in A is an R-sub-algebra L of A,
which is finitely generated as R-module and spans the K-vector space A, i.e.,
KL ¼ A.

Now assume that K is a global field of positive characteristic and R � K
is a Dedekind domain with fraction field K . Then K is the function field of a
curve C over a finite field k. An example of a possible ring R would be the
coordinate ring of the a‰ne curve Cnfyg, where y A C is a rational closed
point.

If the K-algebra A is a global field F over K and O is an R-order in F , let
IðOÞ denote the set of all finitely generated O-submodules of F . By the Jordan-
Zassenhaus Theorem [13], the set ½IðOÞ� of isomorphism classes of elements
of IðOÞ is finite. Let hðOÞ be its cardinality, called the class number of the
order O.

If F is a global field over K , there is a maximal R-order OF , which is the
integral closure of R in F , and which contains any other order in F . The same
applies in the local situation, if F is a finite extension of Kv for a place v, the
integral closure OF of Rv is a maximal Rv-order containing every other order.
We say that an R-order O of F is maximal at v, if OnR Rv is the maximal order
of Fv.

Let d A N be such that d þ 1 is a prime number and let D denote a division
algebra over K [11] of dimension ðd þ 1Þ2. Let DðRÞ denote a fixed maximal
R-order in D. Note that all maximal orders in D are conjugate [13]. For any
R-algebra A we define

DðAÞ ¼ DðRÞnR A:

Then DðKÞ is canonically isomorphic to D. For almost all places v, one has
DðKvÞGMdðKvÞ, where MdðEÞ denotes the algebra of d � d-matrices over a field
E, [11]. If DðKvÞGMdðKvÞ, we say that D splits at p. If D doesn’t split at p,
then DðKvÞ is a division algebra over Kv. This latter fact rests on the choice of
the degree d to be a prime.

Let S be the finite set of all places, at which D doesn’t split.

Lemma 5.1. Let A � D be a K-subalgebra. Then the dimension of A is 1, d
or d 2. In the first case A ¼ K , in the last A ¼ D. In the remaining case A is a
field extension of K of degree d, such that every place v A S is non-decomposed
in A, i.e., there is only one place of A above v. Every field of degree d over K ,
satisfying these conditions occurs as a subalgebra of D.

Proof. This lemma is standard. It can be pieced together from the infor-
mation in Pierce’s book [11]. r
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Let v be a place not in S. Let F=K be a field extension of degree d which
embeds into DðKÞ. Then for any embedding s : F ,! DðKÞ the set

Os ¼ s�1ðDðRÞÞ
is an R-order in F .

Lemma 5.2. Let v be a place not in S. Let s : F ,! DðKÞ be a
K-embedding of the degree d field F=K. Then for any w A S, the order Os;w ¼
Os nR Rw is maximal in the local field Fw. Conversely, let O � F be an R-order
such that for any w A S the order Ow is maximal, then there exists an embedding s
such that O ¼ Os.

Proof. Analogous to the proof of Lemma 2.2 of [2]. r

For a given degree d field extension F=K which embeds into DðKÞ, let
SinertðFÞ be the set of all w A S which are inert in F . Define the S-inertia degree
by

fSðF Þ ¼
Y
w AS

fwðFÞ ¼ d jSinertðF Þj;

where fwðF Þ is the inertia degree of w in F . For any order O of F let

fSðOÞ ¼ fSðF Þ:

Let O be a R-order in F , which is maximal at all w A S. By Lemma 5.2 there
exists an embedding s : F ! DðKÞ such that O ¼ Os. Let u A DðRÞ� and let us
be the embedding given by usðxÞ ¼ usðxÞu�1. Then Ous ¼ Os, so the group
DðRÞ� acts on the set SðOÞ of all s with Os ¼ O.

Lemma 5.3. The quotient SðOÞ=DðRÞ� is finite and has cardinality

jSðOÞ=DðRÞ�j ¼ fSðOÞhðOÞ:

Compare Lemma 2.3 in [2].

Proof. Fix an embedding F ,! DðKÞ and consider F as a subfield of DðKÞ
such that O ¼ F \DðRÞ. For u A DðKÞ� let

Ou ¼ F \ u�1DðRÞu:
Let U be the set of all u A DðKÞ� such that Ou ¼ O, i.e.,

F \DðRÞ ¼ F \ u�1DðRÞu:
Then F � acts on U by multiplication from the right and DðRÞ� acts by multi-
plication from the left. One has

jDðRÞ�nU=F �j ¼ jDðRÞ�nSðOÞj:
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So we have to show that the left hand side equals fSðOÞhðOÞ. For u A U
let

Iu ¼ F \DðRÞu:

Then Iu is a finitely generated O-module in F . We claim that the map

c : DðRÞ�nU=F � ! IðOÞ=F �;

u 7! Iu

is surjective and hðOÞ to one. We show this by localization and strong approx-
imation. For any place w0 v let Uw be the set of all uw A DðKwÞ such that
Ow ¼ Fw \DðRwÞ ¼ Fw \ u�1

w DðRwÞuw. We have to show the following:
(a) For w B S, the localized map cw : DðRwÞ�nUw=F

�
w ! IðOwÞ=F �

w is
injective,

(b) for w A S, the map cw is fwðFÞ to one,
(c) the map c is surjective.
For (a) let w B S, uw; vw A Uw and assume

Fw \DðRwÞuw ¼ Fw \DðRwÞvw:
Let zw ¼ vwu

�1
w . Elementary divisor theory implies that there exist x; y A DðRwÞ�

¼ MdðRwÞ� such that

zw ¼ x diagðpk1 ; pk2Þy
holds, where k1 a k2 and p is a uniformizer for w. Replacing uw by yuw and vw
by x�1vw we may assume that zw equals the diagonal matrix. The assumptions
then imply k1 ¼ 0 ¼ k2, which gives the first claim. For (b) let w A S and recall
that Fw is a local field, so hðOwÞ ¼ 1. Hence the claim is equivalent to

jDðRwÞ�nDðKwÞ�=F �
w j ¼ fwðF Þ:

Taking the valuation w of the reduced norm, one sees that the left hand side
equals d if Fw is unramified over Kw and 1 otherwise, i.e., it equals the inertia
degree fwðFÞ as claimed.

Finally, for the surjectivity of c let I � O be an ideal. We show that there
is u A DðKÞ� such that

F \ u�1DðRÞu ¼ F \DðRÞ
and

I ¼ Iu ¼ F \DðRÞu:
We do this locally. First note that, since I is finitely generated, there is a finite
set T of places with T \ S ¼ j and v B T such that for any w B T [ S the comple-
tion Iw equals Ow which is the maximal order of Fw. For these w set ~uuw ¼ 1.
Next let w A S and write vw for the unique place of F over w. Then Ow is
maximal, so is the valuation ring to vw and Iw ¼ pk

wOw for some kb 0, where pw
is a uniformizer at vw. In this case set ~uuw ¼ pk

w.
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Next let w A T . Then DðRwÞ ¼ MdðRwÞ. Let Ow ¼ Ow=pwOw and Iw ¼
Iw=pwIw. Then Ow is a commutative algebra over the field Fw ¼ Rw=pwRw,
which implies that Ow G0 s

i¼1
Fi, where each Fi is a finite field extension of Fw.

Let ni be its degree. Then there is an embedding Ow ,! MdðFwÞ whose image lies
in Mn1ðFwÞ � � � � �MnsðFwÞ. By the Skolem-Noether Theorem there is a matrix
S A GLdðFwÞ such that SOwS

�1 � Mn1ðFwÞ � � � � �MnsðFwÞ. The Ow-ideal Iw
must be of the form

Iw ¼ 0
s

i¼1

eiFi;

where ei A f0; 1g. Let S be a matrix in GLdðRwÞ which reduces to S modulo pw
and let ~uuw ¼ S�1ðl e1 Idn1 � � � � � l ns IdnsÞS in MdðRwÞ. By abuse of notation we
also write ~uuw for its reduction modulo l. Then we have

Iw ¼ Ow \MdðFwÞ~uuw:
Let

I~uuw ¼ F \DðRwÞ~uuw:
Then it follows that

Iw G I~uuw ¼ I~uuw=pwI~uuw

and by Theorem 18.6 of [11] we get that Iw G I~uuw , which implies that there is
some l A Fw with Iw ¼ I~uuwl. Replacing ~uuw by ~uuwl and setting ~uu ¼ ð~uuwÞw A DðAfinÞ
we get

I ¼ F \DðRÞ~uu:

By strong approximation there is an element u A DðKÞ� such that DðR̂RÞu ¼
DðR̂RÞ~uu and therefore I ¼ Iu. r

6. Class numbers

For any ring R we write det : DðRÞ ! R for the reduced norm. Note that
this convention is compatible with the determinant, as for every field F , over
which D splits, the reduced norm equals the determinant. We want to construct
a group scheme G over R such that GðFÞ ¼ DðFÞ�=F � holds for every field.
Note that DðRÞ is a free R-module of rank d 2. Let v1; . . . vd 2 be a basis and note
that the reduced norm detðX1v1 þ � � � þ Xd 2vd 2Þ is a homogeneous polynomial of
degree d in the variables X1; . . . ;Xd 2 . The group scheme D� is given by the
coordinate ring

OD� ¼ R½X1; . . . ;Xd 2 ;Y �=ðdetðX1v1 þ � � � þ Xd 2vd 2ÞY � 1Þ:

Now GL1 acts on OD� by

af ðX1; . . . ;Xd 2 ;Y Þ ¼ f ðaX1; aX2; . . . ; aXd 2 ; a�dYÞ
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and the coordinate ring we need is the ring of invariants

OG ¼ ðOD�ÞGL1 ;

which is the subring generated by the elements Xi1Xi2 � � �XidY with 1a in a d 2.

Lemma 6.1. The ring OG is the coordinate ring of an a‰ne group scheme G
over R such that for every factorial ring S=R one has

GðSÞ ¼ DðSÞ�=S�:

Proof. The first claim is clear. We prove the second first in case of a field.
Consider the exact sequence of group schemes

1 ! GL1 ! D� ! G ! 1:

For any field K this gives an exact sequence of groups

1 ! GL1ðKÞ ! DðKÞ� ! GðKÞ ! H 1ðK ;GL1Þ;

where the last item is the Galois-cohomology, which vanishes by Hilbert’s
Theorem 90. This implies the claim for fields. Now let R be a factorial
ring, so R is integral and has unique factorization. Write K for its quotient
field and let w A GðRÞ, so w is a ring homomorphism from OG to R. By the
first part of the proof, w extends to a ring homomorphism ~ww : OD� ! K . We
show that this lift can be modified so as to have values in R. For 1a ia d 2 we
have

~wwðXiÞd ~wwðY Þ ¼ wðX d
i YÞ A R:

If p is an irreducible element of R which divides the denominator of any of the

wðXiÞ, we replace any ~wwðXjÞ by p~wwðXjÞ and ~wwðYÞ by
1

pd
~wwðY Þ without changing w,

so we can assume each ~wwðXiÞ to lie in R. Now if ~wwðYÞ does not lie in R there
must be an irreducible p dividing its denominator. But as the product is in R, p

also divides ~wwðXiÞd hence ~wwðXiÞ. We therefore can replace ~wwðXiÞ by
1

p
~wwðXiÞ and

~wwðY Þ by pd ~wwðYÞ and by repeating this procedure we arrive at ~wwðXiÞ and ~wwðY Þ
both lying in R. r

We set G ¼ GðRÞ. By Theorem 3.2.4 in [9], the group G is a uniform lattice
in G ¼ GðKvÞGPGL2ðKvÞ, i.e., G is a discrete subgroup of G such that GnG is
compact.

Let v1; . . . ; vd denote the standard basis of Rd .

Theorem 6.2. Let S be a set of places of K with jSjb 2. Let FðSÞ denote
the set of field extensions F=K such that every place v A S is non-decomposed in
F. Let OðSÞ denote the set of all orders O � F where F A FðSÞ such that O is
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maximal at every v A S. For O A OðSÞ let RðOÞ be its regulator. Then the sum

NðkÞ ¼
X

O AOðSÞ
g AO�

lðagÞ¼k

RðOÞhðOÞ fSðOÞ; k A Nd ;

satisfies

NðkÞ@ 1LðkÞCL=L0 ðkÞck

for kj ! y for every j ¼ 1; . . . ; d independently. Here we have

cj ¼
Yj�1

n¼0

qdþ1 � qn

q j � qn

 !dþ1

; j ¼ 1; . . . ; d;

where q is the residue cardinality of Rv. Further CL=L0 : L=L0 ! ð0;yÞ. The
lattice L � Rd is generated by

f0 ¼
2

d
ðv1 þ � � � þ vdÞ; fj ¼ f0 � 2

d þ 1

d
vj ;

where j ¼ 1; . . . ; d and L0 � L is the sub-lattice generated by 2v1; . . . ; 2vd .

Proof. The group Gg equals F �
g , where Fg is the field extension given by

the centralizer of g. Therefore one sees that jG a
g =G

a
g j equals the regulator of the

order Og. The theorem now follows from the Prime Geodesic Theorem 4.2
together with Lemma 5.2 and Lemma 5.3.

The computation of the cj follows their definition in [7], they are given as
cj ¼ jKajK=Kj. For this computation one can assume that K ¼ SLdþ1ðRvÞ. Let
mj be the diagonal matrix with entries ðp�1; . . . ; p�1; 1; . . . ; 1Þ with j-times p�1,
where p is a uniformizer of the discrete valuation ring Rv. Then two elements b,
b 0 of KmjK lie in the same K-coset if and only if the Rv-span of be1; . . . ; bedþ1

equals the Rv-span of b 0e1; . . . ; b
0edþ1, where e1; . . . ; edþ1 is the standard basis of

Kdþ1
v . Taking this modulo the Rv-submodule spanned by e1; . . . ; edþ1 we end up

determining the number of j-dimensional Fq sub vector spaces of Fdþ1
q , which isQ j�1

n¼0

qdþ1 � qn

q j � qn
(The enumerator gives the number of bases and the denominator

the number of invertible matrices for a given bases.) This number is jKmjK=K j.
But now aj ¼ mdþ1

j and the map a 7! jKaK=K j is a quasi-character on A�, see
Lemma 2.4.5 of [7]. This concludes the computation of cj and finishes the proof
of the theorem. r
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