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A PRIME GEODESIC THEOREM FOR HIGHER RANK BUILDINGS
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Abstract

We prove a prime geodesic theorem for compact quotients of affine buildings and
apply it to get class number asymptotics for global fields of positive characteristic.
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Introduction

The prime geodesic theorem for a compact, negatively curved Riemannian
manifold M states that the number 7(x) of prime closed geodesics of length < x
on M satisfies

eAx

n(x) ~ 57

where A, B > 0 are (explicit) constants depending on the manifold. It has been
applied in [14] to arithmetic quotients of symmetric spaces to derive class number
asymptotics. In case of hyperbolic spaces, remainder terms have been given, see
for instance [8, 15]. In [2] this has been extended to a case of higher rank and in
[3] to a non-compact situation. The full higher rank case has been explored in
[4, 5].

The p-adic counterpart of symmetric spaces are Bruhat-Tits buildings.
In the rank one case, these are trees. In [6] we applied the Prime Geodesic
Theorem for graphs to get class number asymptotics for orders over imaginary
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quadratic fields. See [12] for a different approach to this case. In the current
paper we derive the Prime Geodesic Theorem for quotients of buildings and we
use it for class number asymptotics for global fields of positive characteristic.
The result is an equidistribution assertion for units in orders over a given global
field, where the units are weighted by class numbers and regulators.

1. The building

In this section we recall some results of [7]. Let X be a locally finite,
simplicial, thick, affine building of dimension d = dim X. Recall that a zype
function on a chamber is a bijection from the set vert(C) of vertices of C to the
set {0,1,...,d}. Further, a type function on X is a map from the set vert(X)
of vertices of X to {0,...,d} that restricts to a type function on each chamber.

Given a chamber C the restriction defines a bijection between the set of all
type functions on X and the set of all type functions on C. An automorphism g
of X is said to be fype preserving, if g preserves one (and hence any) type on X.

Let Aut(X) denote the group of automorphisms of the building X, i.e., the
group of automorphisms of the complex mapping apartments to apartments.
The group Aut(X) is a totally disconnected locally compact group where a basis
of unit-neighborhoods is given by the set of all pointwise stabilizers of finite sets
in X. Let

G C Aut(X)

be an open, finite index subgroup. Note that any open subgroup is closed and
that any finite index closed subgroup is open. Let G° C G be the subgroup of
all type preserving automorphisms in G. It is normal in G and G/G is a finite
group.

We assume that G° acts strongly transitively, i.e., G° acts transitively on the
set of all pairs (a,C), where a is an apartment of X and C is a chamber in a.
See [1], Chapter 6. This is equivalent to saying that G° acts chamber-transitively
on X and the pointwise stabilizer K¢ of a given chamber C acts transitively on
the set of all apartments a containing C.

Let 0X be the visibility boundary of X and let ¥ C 0X be a spherical
chamber and fix an apartment a C X such that ¥ C da. Let P= P4 be the
point-wise stabilizer of %, then P is called a minimal parabolic subgroup of G.
In the boundary da, there is a unique chamber % opposite to ¥. Let P denote
the corresponding parabolic and set

L=PnNP.

We call L a Levi-component of P. Let M denote the point-wise stabilizer of a,
then M is normal in L and the quotient 4 = L/M is free abelian of rank d.
(Note that in [7] we wrote “rank < d”, this discrepancy is due to the fact that we
are now assuming G to act strongly transitively, which we did not assume in
[7].) The group 4 acts on a by translations. Let 4~ denote the open cone in 4

of all elements translating towards a point in the open spherical chamber .
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Fix a fundamental chamber Cj in a and let K C G denote its pointwise
stabilizer. As M C K it makes sense to write KAK for the set KLK.

DEerINITION 1.1. Since X is affine, there exists a metric d on X which is
euclidean on each apartment and G-invariant. For ge G let

d(g) = ing( d(gx, x).

As G acts cellularly, this infimum is always attained, hence a minimum. An
element g € G is called hyperbolic, if d(g) > 0, the minimum is attained on a
convex subset which is the union of parallel lines along which ¢ is a translation
[7]. This set is called the minimal set of g and is written as Min(g). We call ¢
a generic element, if the so defined element of dX is generic, i.e., is not in a
lower dimensional stratum. This implies that the minimal set Min(g) consists of
exactly one apartment.

2. Closed geodesics

DEeFINITION 2.1. A geodesic curve in X is a curve ¢ : R — X, which in the
euclidean structure of each apartment is a straight line which is parametrized at
unit speed. Two curves ¢, ¢’ are called equivalent if there exists 7y € R such that
c'(t) =c(t+ 1) holds for all teR. A geodesic in X is an equivalence class of
geodesic curves.

DerFmNITION 2.2, Let I' C G be a discrete, cocompact subgroup of G. By a
geodesic in T\ X we understand the image of a geodesic in X. This is the proper
definition in the case when I' is allowed to have torsion elements and thus the
local euclidean structure is not necessarily preserved in the quotient T'\X. A
geodesic ¢ in T'\X is called a closed geodesic, if c¢(t+ 1) = ¢(t) holds for some
/>0 and all reR. A closed geodesic ¢ in ['\X thus lifts to a geodesic ¢ in X.
The forward direction of ¢ defines a point b € 0X. We call ¢ a generic geodesic,
if b is a generic point of the spherical building 0X, i.e., if b is not contained in
any wall of a Weyl chamber.

For a given closed geodesic ¢ there exists y € I' closing it, i.e., if c(t+1) =
¢(t) for all 7€ R and some / > 0, then ¢(7 + /) = yé(r) holds for a uniquely deter-
mined y e I' and all e R. This element y is hyperbolic and ¢ lies in its minimal
set Min(y).

Lemma 2.3. Let A°=ANG°, or rather A° = L°/M, where L° = LN G°.

(a) The group G° is generated by the set KA°K. Likewise, it is generated by
the union of all pointwise stabilizers K¢ of chambers C in X.

(b) If y e T closes a generic geodesic, then y is hyperbolic and conjugate in G
to an element of KAK. In particular, vy is generic (Definition 1.1).

(c) Let 0:G° — H be a group homomorphism with O(K) =1. Then 0 = 1.
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Proof. (a) Let Cp be the fundamental chamber and let g € G°. If gCy = Cy
then ¢ lies in K already and we are done. Otherwise, we have to show that the
group H generated by KAK contains an element / such that gCy = hCy, because
then #~'ge K and (c) is proven. So we have to show that HC, contains all
chambers of X.

We start by showing that it contains all direct neighbors C of Cy. Choose a
labeling vy, ...,v, of the vertices of Cy. Let C be a neighbor sharing the face F
with vertices vy, ...,vy; with Cy. As X is thick, there is another such neighbor D
of Cy. Let a be an apartment containing Cy and D. Let s be the reflection at
F in a. Let T be the Weyl translation with Tvy = wy = s(v9) and let E be the
chamber T(Cp). The translation T extends to an element of KAK C H, so that
the group TKT ! lies in H. This group, however, is the pointwise stabilizer Kx
of the chamber E. Let now a’ be an apartment containing £ and C, then there
is k € Kp C H with ka = a’, hence kCy = C as claimed. This proof can now be
iterated to show that HC; contains the direct neighbors of direct neighbors of Cy
and so on. Examining the proof, one finds that we have shown that the group
generated by all stabilizers of chambers generates G.

(b) If y closes a generic geodesic, it must be hyperbolic and its minimal set is
an apartment a’, [7]. So y induces a translation on this apartment, which makes
it an element of K’4’K where K’ is the stabilizer of a chamber in a’. Now the
set K'A’K’ is G-conjugate to KAK and the claim follows.

(c) If O(K) =1, then O(gKg~') =1 for every g e G°, but these groups gen-
erate G by part (a), so 0= 1. O

3. The zeta function

The zeta function S(u), which is recalled in this section, is a several variable
zeta function S(u) constructed from geometrical data of closed geodesics and
enjoying an analytic continuation to all of C.

Let y e " be a generic element as in Definition 1.1. The minimal set Min(y)
is an apartment a. Let G, denote the stabilizer of a in G and let G, and T,
denote the respective centralizers of y. Let G° denote the image of G, in Aut(a)
and let T’ ;‘ C G C G" denote the image of the groups I', and G, in G". Then
the set G/I"} is finite. Note that, as G° acts strongly transitively, G® contains
the Weyl group of a.

For a measurable set M C G we set

[y: M] =vol({xe G/G, : xyx ' € M}).
In [7] it is shown that the index [y: KA~ K] is a natural number.

LemMma 3.1. For an element y e G the following are equivalent:

(@) y is generic,

(b) y is conjugate to an element of KaK with ae A~.

In this case the element a is uniquely determined by y and the index satisfies
[y: KA“K] =[y: KaK] = 1.
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Proof. If y is generic, then, as G° acts strongly transitively, modulo conju-
gation we can assume Min(y) = a and thus y = ak for some generic a € A and
ke K. Asthe image of G® in Aut(a) contains the Weyl group, we can conjugate
a into A-. This establishes (a) = (b).

The assertion (b) = (a) and the uniqueness of « is valid without the assump-
tion of strong transitivity and is proven in Lemma 2.3.8 of [7]. The assertion
about the index rests on strong transitivity. With the given normalizations,

[y : KaK] = vol({x € G/G, : xyx~' € KaK?})

= |{a e K\G/G, : xyx~' € KaK}|.
So we need to show that if y, xyx~! both lie in KaK, then x € KG,. If y,xpx~'e
KaK, we can replace both with K-conjugates to get them into aK. This means
that yCy = xyx~'Cy = aCy, so Cp, aCy lie in Min(y) and in Min(xyx~!) =
x Min(y). That means that b = Min(y) and xb are apartments containing Cj.

By strong transitivity, K acts transitively on these apartments, therefore there are
ki,k, € K with

a = ki Min(y) = Min(kapk; ') = kax Min(y) = Min(kpxyx 'k, ).

Replacing y with k;pk; ! and x with k,x we can assume that y and xyx~! preserve
a and both act as the same translation y +— ay on a. Then a = Min(xyx~!) =
x Min(y) = xa, so x preserves a as well. As xyx~! and y act as the same generic
translation on a, x itself acts by a translation on a. There is an element y € G,
acting by the same translation as x, so xy~' € K. The claim follows. O

DErFINITION 3.2. Let I'®" denote the set of generic elements in I" and let
[[®"] denote the set of I'-conjugacy classes in I'*". Let a denote the apart-
ment used to define 4. Let vy be a special vertex in a and let C be the unique
chamber in a with vertex vy such that the wall W of C which is opposite to vy,

faces 4. Let vy,...,v; denote the remaining vertices of C. The map v; — j
extends in a unique way to a map from the set V' (X) of vertices of X to
{0,1,...,d} which is injective on the set V(D) of vertices of any given chamber

D. The image of a vertex is called the type of the vertex. Then all vertices of
type zero are special vertices.

Using vy as origin we give a the structure of a real vector spaces and
v1,...,Uq 18 a basis. Let e; = r;v;, where r; > 0 is the smallest rational number
such that all vertices of type zero are contained in

Z=2e @ -- D Zey,.
A given a € A acts on a by translation ax = x + v, where
v, = Mi(a)er + - -+ dg(a)eq

is the translation vector. Since this translation respects the simplicial structure,
the numbers 4;(a),...,As(a) are integers. Indeed, the map
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JiA— 29,
a (a(a),. ., ()

is an isomorphism of the group A4 to a lattice A = A, C Z?, which maps the
cone A~ to the cone

+={)~€A:ll,...,ld>0}.

DEerFINITION 3.3. For ue C? and ae A~ we write

a _ Jia) Za(a)
u =u" Y,

and define the several variable zeta function
Sw = Y |G/Tu,
[y e [T

where a, € A~ is the unique element such that y is G-conjugate to an element
of Ka,K. Theorem 2.4.2 of [7] states that the series S(u) converges for small u
to a rational function. More precisely, there exists a finite set £ C A4, elements

ai,...,a; € A~ and quasi-characters #,,...,7,: A — C* U0 such that
D T et
2 2 (= nyfanum) (1= {ag)u)

Moreover, the space L(I'\G)* =~ LZ(F\G/K) has a basis ¢, ..., ¢, such that all
R(1g.x) with a e A~ are in Jordan normal form with respect to this basis. In
particular,

R(1kax)9; — n;(a)¢; € span(éy, ..., ¢;_;)

holds for every j and all e 4~ and this equation defines the quasi-character 7;.
Here R is the right translation representation of G on L*(I'\G), so R(y)¢(x) =
#(xy), x,ye G and for a function f on G (like f = 1g,x) we define R(f) by
integration:

R )H(x) = j F()b(xy) dy.

Note that the space L*(I'\G)* contains the constant function ¢ = 1. Then
R(L)4() = | Tra(2)9(x0) dy = vol(Kak) = [Kak /K]
G

since we normalize the Haar measure by giving the compact open subgroup K
volume 1. We can assume ¢, = 1.

At this point we note that we have a certain amount of freedom in choosing
the group G C Aut(X). By changing G if necessary, we can assume that G is
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generated by G° together with I'. Since I and G° are subgroups and G° is a
normal subgroup, this means that we have

G=TG",

ie., every ge G can be written as a product g = y¢9° of some yeI and an
element ¢° of G°.

Lemma 3.4. For j=1,...,r we have
In;(a)| < |KaK /K|, aeA".
For every j =2 there exists ae A~ with

|7],(a)| < |KaK/K].

Proof. For 1 < j<r we have
[R(1kar ) $(x)| < JKK |p(xy)| dy < |[KaK/K|[|f]lr\6:

where [|4[|r g = supyer\gl¢(x)[.  Suppose that R(1x.k)¢ = n(a)¢ holds for every
a e A~, then, taking supremum over x yields

(@) 1¢llr¢ < |KaK /K[ [[4]lr\g-

For the second assertion assume additionally |1#(a)| = |[KaK/K| = 5, (a) for every
ac A-. We have to show that ¢ is constant. Let ae A~ and write KaK =
i kjaK, then s = |KaK/K|=1,(a) and

R(lxa)d = 3 R(k)R(a)s.
Jj=1

For the L?-norm we have, since R(k;)R(a) is unitary,

S

> R(k)R(a)

Jj=1

< 31141, = sllgl,.
j=1

sliglly = (@)l 4]l =

2

We get equality everywhere, but this can only happen if the R(k;)R(a)¢ are all
R -collinear and by unitarity this means that R(k;)R(a)¢ = R(a)¢ for every j.
Since s =#,(a), follows
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As ¢ is K-invariant, we have for ki, k; € K,

R(kiaks)¢ = R(ki)R(a)R(k>)p = R(ky)R(a)$ — ’;71((62) R(ky)g = ’;71((62) $.

Since R is a representation, the map 0 =" therefore extends to a character
n

1
on the group generated by K4~ K, which contains G°. By Lemma 2.3 we get
0(G°) =1, so for every ¢° e G° we have

#(9") = R(go)¢(1) = 0(go)h(1) = ¢(1).

Finally, as G = I'G® we write any given g € G as g = 7¢° accordingly and we get

#(9) = d(r9") = #(g°) = $(1).

So ¢ is constant, as claimed. O

4. The prime geodesic theorem

DerFINITION 4.1, For y € I'**" we write Ind(y) = |G}'/T"}|, where a = Min(y).
For ke N let

N(k)y= Y Ind(y),

[:(a)=k

where the sum runs over all conjugacy classes [y] in I'**" such that A(a,) = k. So
N(k)=0 if k¢ A, the lattice of Definition 3.2.

In the following, for k€ N? and ¢ € R? we write
ok = C{CI . “Ccll'(d'

THEOREM 4.2 (Prime Geodesic Theorem). Let A C Z¢ be the lattice of
Definition 3.2.  There exists a sub-lattice A' C A and a function C, N AN —
(0,00), and constants ci,...,cq > 1 such that for kj — oo independently, we have

N(k) ~ 15(k)Cpjp ()"

Explicit formulae for the constants and the function Cp,n, are given below.
Proof. We have
S(u) = Z N (k)uk

keN?

= ZZ Z ﬂj(e)nj(al)ml "'”j(ad)mdu;'<'”'a+e),

Jj=1 @eEmeN(ﬁi
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where m - a stands for myja; + - -+ + mgay. This implies

_ m my
Nky=> > mlema)™ - nlan)™ .
j=1 eckE
meN?
Ma-m+e)=k

=:N; (k)

We shall show that the term N;(k) dominates as k — oo. To simplify the
notation we write #(x) =#,(x) = |KxK/K|. The proof of Lemma 2.4.4 in [7]
reveals that each a; is a multiple of v; and hence the equation A(a-m+e) =k
implies A,(a,)m, + A,(e) =k,, v=1,...,d, so that

ky, — Ay(e)

=@

Let A’ be the sub-lattice of A generated by A(aj),...,A(ag). For each k e N¢
there is at most one e € E with A(a-m+e) =k. This element e only depends
on k up to A'. We get

Ny (k) = ”(al)kl/h(al) .. .n(ad)kd/il(ud) Z n(e)”(al)il(e)/il(m) .. ,ﬂ(ad);'fl(e)/)~d(“rl).

eckE
meN?
Ma-m+e)=k

The sum

CA/A' (k) = Z ”(e)’?(al);ﬂ (é’)/ll(m) . ”(ad)24<€)/ﬂ(;(a(,)
ecE

meN?
Ma-m+e)=k
has at most one summand and depends on k only up to A’ and is non-zero if and
only if ke A. Setting ¢, = n(av)l/ #(@) we get the desired asymptotic for N (k)
instead of N (k).
By Lemma 3.4, for each j=2,...,r there exists v(j) such that [r;(a,;)| <
77((11,(_1')). Set

) )

<1.
iz2 n(ay )

It then follows that
IN2(k) + -+ Nu(k)| < (Z Hkv<j>>N1(k).
=2

This implies that N, (k) dominates the asymptotic and thus we get the claim for
N(k). O
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5. Division algebras

Let R be an integral domain and K its field of fractions. Let 4 be a finite-
dimensional K-algebra with unit. An R-order in A is an R-sub-algebra A of 4,
which is finitely generated as R-module and spans the K-vector space A4, i.c.,
KA = A.

Now assume that K is a global field of positive characteristic and R C K
is a Dedekind domain with fraction field K. Then K is the function field of a
curve € over a finite field k. An example of a possible ring R would be the
coordinate ring of the affine curve #\{oo}, where oo € % is a rational closed
point.

If the K-algebra A is a global field F over K and @ is an R-order in F, let
I(0) denote the set of all finitely generated (-submodules of F. By the Jordan-
Zassenhaus Theorem [13], the set [/(¢)] of isomorphism classes of elements
of I(0) is finite. Let k() be its cardinality, called the class number of the
order (.

If F is a global field over K, there is a maximal R-order O, which is the
integral closure of R in F, and which contains any other order in F. The same
applies in the local situation, if F is a finite extension of K, for a place v, the
integral closure O of R, is a maximal R,-order containing every other order.
We say that an R-order @ of F is maximal at v, if O ®gx R, is the maximal order
of F,.

Let d € N be such that d + 1 is a prime number and let D denote a division
algebra over K [11] of dimension (d+ 1)?. Let D(R) denote a fixed maximal
R-order in D. Note that all maximal orders in D are conjugate [13]. For any
R-algebra 4 we define

D(4) = D(R) ®g 4.

Then D(K) is canonically isomorphic to D. For almost all places v, one has
D(K,) = My(K,), where M, (E) denotes the algebra of d x d-matrices over a field
E, [11]. If D(K,) =~ My(K,), we say that D splits at p. 1If D doesn’t split at p,
then D(K,) is a division algebra over K,. This latter fact rests on the choice of
the degree d to be a prime.

Let S be the finite set of all places, at which D doesn’t split.

Lemma 5.1. Let A C D be a K-subalgebra. Then the dimension of A is 1, d
or d*. In the first case A =K, in the last A= D. In the remaining case A is a
field extension of K of degree d, such that every place v e S is non-decomposed
in A, ie., there is only one place of A above v. Every field of degree d over K,
satisfying these conditions occurs as a subalgebra of D.

Proof. This lemma is standard. It can be pieced together from the infor-
mation in Pierce’s book [11]. O
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Let v be a place not in S. Let F/K be a field extension of degree d which
embeds into D(K). Then for any embedding ¢ : F — D(K) the set

O =o' (D(R))
is an R-order in F.
Lemma 5.2. Let v be a place not in S. Let o:F — D(K) be a
K-embedding of the degree d field F/K. Then for any weS, the order O, =
O ®r R, is maximal in the local field F,. Conversely, let O C F be an R-order

such that for any w e S the order O, is maximal, then there exists an embedding o
such that O = O,.

Proof. Analogous to the proof of Lemma 2.2 of [2]. O

For a given degree d field extension F/K which embeds into D(K), let
Sinert(F) be the set of all w e S which are inert in F. Define the S-inertia degree

by
fs(F) = H fiu(F) = d'Smen (Pl

wesS
where f,,(F) is the inertia degree of w in F. For any order @ of F let

Is(0) = fs(F).
Let O be a R-order in F, which is maximal at all we S. By Lemma 5.2 there
exists an embedding ¢ : F — D(K) such that 0 = (,. Let ue D(R)™ and let “o
be the embedding given by “o(x) =uc(x)u~!. Then (., = 0,, so the group
D(R)™ acts on the set X(O) of all ¢ with ¢, = C.

LEmMMA 5.3. The quotient £(0)/D(R)™ is finite and has cardinality

Z(0)/D(R)"| = fs(O)h(0).
Compare Lemma 2.3 in [2].
Proof. Fix an embedding F — D(K) and consider F as a subfield of D(K)
such that ® = FND(R). For ue D(K)” let
O, = FNu'D(R)u.
Let U be the set of all ue D(K)™ such that ¢, = 0, i.e.,
FND(R)=FnNu'D(R)u.

Then F* acts on U by multiplication from the right and D(R)™ acts by multi-
plication from the left. One has

ID(R)"\U/F*| = |D(R)"\Z(0)|.
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So we have to show that the left hand side equals fs(0)h(0®). For ueU
let

I, = FN D(R)u.
Then I, is a finitely generated (-module in F. We claim that the map
Y : D(R)\U/F* — I(0)/F”,
u— I,

is surjective and /() to one. We show this by localization and strong approx-
imation. For any place w # v let U, be the set of all u, € D(K,) such that
O, = F,ND(R,) = F,Nu,;'D(R,)u,,. We have to show the following:

(a) For w¢sS, the localized map v, : D(R,) \U,/F* — I1(0,)/F) is

injective,

(b) for we S, the map y,, is f,(F) to one,

(c) the map ¥ is surjective.

For (a) let w¢ S, uy,v, € U, and assume

F, N D(R,)u, = F,, N D(R,,)vy.

Let z, = v,u,'. Elementary divisor theory implies that there exist x, y € D(R,,)~

w

= My(R,)”™ such that
2 = x diag(z™, 7*)y

holds, where k; < k; and = is a uniformizer for w. Replacing u,, by yu, and v,
by x~'v,, we may assume that z,, equals the diagonal matrix. The assumptions
then imply k; = 0 = k,, which gives the first claim. For (b) let w € S and recall
that F,, is a local field, so /#((,) = 1. Hence the claim is equivalent to

ID(R)“\D(Ky)" /F[| = fu(F).

Taking the valuation w of the reduced norm, one sees that the left hand side
equals d if F,, is unramified over K,, and 1 otherwise, i.e., it equals the inertia
degree f,,(F) as claimed.

Finally, for the surjectivity of s let I C @ be an ideal. We show that there
is ue D(K)™ such that

FNu'D(R)u=FnD(R)
and
I=1,=FnND(Ru.

We do this locally. First note that, since 7 is finitely generated, there is a finite
set T of places with 7N.S =0 and v ¢ T such that for any w¢ T U S the comple-
tion I,, equals ¢, which is the maximal order of F,,. For these w set %, = 1.
Next let we S and write v, for the unique place of F over w. Then @), is
maximal, so is the valuation ring to v,, and I, = n{ﬁ@w for some k& > 0, where 7,
is a uniformizer at v,. In this case set @, = .
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Next let we T. Then D(R,) = My(R,). Let O, = 0,/n,0, and I, =
I,/m,1,. Then (), is a commutative algebra over the field F, = R,/n,R,,
which implies that 0, = @P;,_, Fi, where each F; is a finite field extension of F,,.
Let n; be its degree. Then there is an embedding ¢, — M,(F,,) whose image lies
in M, (F,) x --- x M, (F,). By the Skolem-Noether Theorem there is a matrix

S € GLy(F,) such that S0, S~'c M, (F,) x - xM,(F,). The O,-ideal I,
must be of the form

. N

I, = @ 8[E7

i=1

where ¢ € {0,1}. Let S be a matrix in GL,(R,,) which reduces to S modulo 7,
and let @, = S~ (/» Id,, x --- x /™ 1d,)S in Myz(R,). By abuse of notation we
also write u, for its reduction modulo /. Then we have

I, = 0, N My(F,)i,.
Let

I, = F 0 D(R,,)ily.
Then it follows that

I,=I; =1; /n,.I;,

and by Theorem 18.6 of [11] we get that [, = I; , which implies that there is
some /A € F,, with I, = I; 2. Replacing #, by #,4 and setting & = (#,,),, € D(Agn)
we get

w

I =FnD(R)

By strong approximation there is an element u e D(K)”* such that D(R)u =

D(R)ii and therefore I = 1I,. O

6. Class numbers

For any ring R we write det : D(R) — R for the reduced norm. Note that
this convention is compatible with the determinant, as for every field F, over
which D splits, the reduced norm equals the determinant. We want to construct
a group scheme ¥ over R such that %(F) = D(F)™/F* holds for every field.
Note that D(R) is a free R-module of rank d>. Let vy,...v,2 be a basis and note
that the reduced norm det(Xjv; + - - + X;2v,2) is a homogeneous polynomial of
degree d in the variables Xi,...,X,;2. The group scheme D* is given by the
coordinate ring

Opx = R[Xl,...,Xdz, Y]/(det(XllJl + - "‘erzl)dz)Y — 1)
Now GL; acts on (Op~ by
af (X1,..., X2, Y) = f(aXy,0Xs,... 0Kz, 0 0Y)
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and the coordinate ring we need is the ring of invariants
@{9’ — (@ >()GLI’
which is the subring generated by the elements X; X, --- X;, Y with 1 <i, < d>.
LEMMA 6.1. The ring Oy is the coordinate ring of an affine group scheme %
over R such that for every factorial ring S/R one has
4(S)=D(S)"/S™.

Proof. The first claim is clear. We prove the second first in case of a field.
Consider the exact sequence of group schemes

l1-GL, - D" —=%—1.
For any field K this gives an exact sequence of groups
1 — GL{(K) — D(K)* — 9(K) — H'(K,GL,),

where the last item is the Galois-cohomology, which vanishes by Hilbert’s
Theorem 90. This implies the claim for fields. Now let R be a factorial
ring, so R is integral and has unique factorization. Write K for its quotient
field and let y € 4(R), so y is a ring homomorphism from ¢y to R. By the
first part of the proof, y extends to a ring homomorphism y: Op — K. We
show that this lift can be modified so as to have values in R. For 1 <i < d* we
have

HX)H(Y) = 2(XY) e R,

If p is an irreducible element of R which divides the denominator of any of the
1

2(Xi), we replace any 4(X;) by pz(X;) and 3(Y) by 17)2( Y) without changing y,

so we can assume each y(X;) to lie in R. Now if %(Y) does not lie in R there
must be an irreducible p dividing its denominator. But as the product is in R, p

also divides 7(X;) hence 7(X;). We therefore can replace 7(X;) by }) 7(X;) and

#(Y) by p97(Y) and by repeating this procedure we arrive at 3(X;) and z(Y)
both lying in R. O

We set ' = 4(R). By Theorem 3.2.4 in [9], the group I is a uniform lattice
in G =9%(K,) =~ PGL,(K,), i.e., T is a discrete subgroup of G such that T'\G is
compact.

Let vy,...,vy denote the standard basis of RY.

THEOREM 6.2. Let S be a set of places of K with |S| = 2. Let F(S) denote
the set of field extensions F/K such that every place ve S is non-decomposed in
F. Let O(S) denote the set of all orders O C F where F € 7 (S) such that O is
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maximal at every ve S. For 0 € O(S) let R(0O) be its regulator. Then the sum

N(k)y= > R(O)(O)[fs(0), keN,

0e0(S)
ye@*
May)=k
satisfies
N (k) ~ 1a(k)Cpynr (k)
for kj — oo for every j=1,...,d independently. Here we have
g\
q — 4 .
¢ = — , j=1,...,d,
()

where q is the residue cardinality of R,. Further Cpjp: AJA — (0,00). The
lattice A C R is generated by

2 d+1
fo=Z(it o), fi=fo—2——u,
where j=1,...,d and N C A is the sub-lattice generated by 2vi,...,2v,.

Proof.  The group G, equals F*, where F, is the field extension given by
the centralizer of y. Therefore one sees that [G/I'}| equals the regulator of the
order (,. The theorem now follows from the Prime Geodesic Theorem 4.2
together with Lemma 5.2 and Lemma 5.3.

The computation of the ¢; follows their definition in [7], they are given as
¢; = |Ka;K/K|. For this computation one can assume that K = SLy(R,). Let
m; be the diagonal matrix with entries (z~',..., 27!, 1,...,1) with j-times 7!,
where 7 is a uniformizer of the discrete valuation ring R,. Then two clements b,
b’ of Km;K lie in the same K-coset if and only if the R,-span of bey, ..., bes1
equals the R,-span of bey,...,b'e;y1, where ey,...,e .1 is the standard basis of
K;’“. Taking this modulo the R,-submodule spanned by ey, ...,esy; we end up
determining the number of j-dimensional F, sub vector spaces of Fg“, which is
H_/—é qd-ﬁ'—l _ qv

=g
the number of invertible matrices for a given bases.) This number is |Km;K/K|.
But now @; = m¢*! and the map a — |KaK/K| is a quasi-character on 47, see
Lemma 2.4.5 of [7]. This concludes the computation of ¢; and finishes the proof
of the theorem. O

(The enumerator gives the number of bases and the denominator
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