S. HIROSE KODAI MATH. J. **41** (2018), 154–159

GENERATORS FOR THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE

SUSUMU HIROSE

Abstract

We show that Szepietowski's system of generators for the mapping class group of a non-orientable surface is a minimal generating set by Dehn twists and *Y*-homemorphisms.

Let N_g be a non-orientable surface which is a connected sum of g projective planes. Let $\mathcal{M}(N_g)$ be the group of isotopy classes of homeomorphisms over N_g , i.e., the mapping class group of N_g . In this paper, we assume that $q \ge 4$.

i.e., the mapping class group of N_g . In this paper, we assume that $g \ge 4$. We introduce some elements of $\mathcal{M}(N_g)$. A simple closed curve γ_1 (resp. γ_2) in N_g is two-sided (resp. one-sided) if a regular neighborhood of γ_1 (resp. γ_2) is an annulus (resp. Möbius band). For a two-sided simple closed curve γ on N_g , we denote by t_{γ} a Dehn twist about γ . We indicate the direction of a Dehn twist by an arrow beside the curve γ as shown in Figure 1. For a one-sided simple closed curve m and a two-sided simple closed curve a which intersect transversely in one point, let $K \subset N_g$ be a regular neighborhood of $m \cup a$, which is homeomorphic to the Klein bottle with one boundary component. Let M be a regular neighborhood of m. We denote by $Y_{m,a}$ a homeomorphism over N_g which is described as the result of pushing M once along a keeping the boundary of Kfixed (see Figure 2). We call $Y_{m,a}$ a Y-homeomorphism, or crosscap slide.

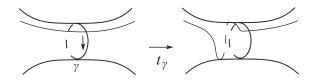


FIGURE 1. The direction of t_{γ} is indicated by an arrow beside γ .

²⁰¹⁰ Mathematics Subject Classification. 57N05, 20F05.

Key words and phrases. Mapping class group, nonorientable surfaces, generators.

This research was supported by Grant-in-Aid for Scientific Research (C) (No. 16K05156), Japan Society for the Promotion of Science.

Received December 27, 2016; revised April 10, 2017.

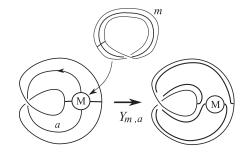


FIGURE 2. A cirlcle with "M" indicates a place where to attach a Möbius band.

Lickorish showed that $\mathcal{M}(N_g)$ is generated by Dehn twists and Y-homeomorphisms [7, Theorem 2], and that $\mathcal{M}(N_g)$ is not generated by Dehn twists [7, p. 310, Note]. Furthermore, Chillingworth [2] found a finite system of generators for $\mathcal{M}(N_g)$. Birman and Chillingworth [1] obtained a finite system of generators by using an argument on the orientable two fold covering of N_g . Szepietowski [9] reduced the system of Chillingworth's generators for $\mathcal{M}(N_g)$ and showed:

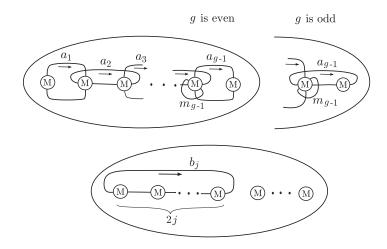


FIGURE 3. Chillingworth's generators for $\mathcal{M}(N_q)$.

THEOREM 1 ([9, Theorem 3.1]). $\mathcal{M}(N_g)$ is generated by t_{a_i} $(i = 1, \ldots, g - 1)$, t_{b_2} and $Y_{m_{g-1}, a_{g-1}}$, where a_i , m_{g-1} , b_2 are simple closed curves shown in Figure 3.

On the other hand, Lickorish [6] showed that the mapping class group $\mathcal{M}(\Sigma_g)$ of the orientable closed surface Σ_g of genus g is generated by finitely many Dehn twists, and Humphries [4] reduced the number of Dehn twists generating

SUSUMU HIROSE

 $\mathcal{M}(\Sigma_g)$ to 2g+1 and showed that this is the minimum number of Dehn twists generating $\mathcal{M}(\Sigma_g)$. We will show the analogous result for the mapping class group of the non-orientable surface.

THEOREM 2. We assume $g \ge 4$. If Dehn twists t_{c_1}, \ldots, t_{c_n} and Y-homeomorphisms Y_1, \ldots, Y_k generate $\mathcal{M}(N_g)$, then $n \ge g$ and $k \ge 1$. In particular, any proper subset of $\{t_{a_i}(i = 1, \ldots, g - 1), t_{b_2}, Y_{m_{g-1}, a_{g-1}}\}$ does not generate $\mathcal{M}(N_g)$.

Remark 3. When g = 1, $\mathcal{M}(N_g)$ is trivial. When g = 2, $\mathcal{M}(N_2) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and generated by t_{a_1} and Y_{m_1,a_1} (see [7, Lemma 5]), therefore $\{t_{a_1}, Y_{m_1,a_1}\}$ is a minimal generating set by Dehn twists and Y-homeomorphisms. When g = 3, $\mathcal{M}(N_3)$ is generated by t_{a_1} , t_{a_2} and Y_{m_2,a_2} (see [1, Theorem 3] and [9, Theorem 3.1]). If $\mathcal{M}(N_3)$ is generated by one Dehn twist t_a and one Y-homeomorphism, then the group of the action of $\mathcal{M}(N_3)$ on $H_1(N_3; \mathbb{Z}_2)$ should be isomorphic to \mathbb{Z}_2 generated by the induced isomorphism $(t_a)_*$ on $H_1(N_3; \mathbb{Z}_2)$. Nevertheless, $(t_{a_1})_*$ is not equal to $(t_{a_2})_*$. Therefore $\{t_{a_1}, t_{a_2}, Y_{m_2,a_2}\}$ is a minimal generating set by Dehn twists and Y-homeomorphisms.

Let $w_1 : H_1(N_g; \mathbb{Z}_2) \to \mathbb{Z}_2$ be the first Stiefel-Whitney class, that is to say, if $x \in H_1(N_g; \mathbb{Z}_2)$ is represented by a one-sided simple closed curve on N_g then $w_1(x) = 1$, otherwise $w_1(x) = 0$. For the basis $\{x_1, \ldots, x_g\}$ for $H_1(N_g; \mathbb{Z}_2)$ indicated in Figure 4, $w_1(x_i) = 1$. For each pair of elements x, y of $H_1(N_g; \mathbb{Z}_2)$, the \mathbb{Z}_2 -intersection form of x and y is denoted by (x, y). For the basis $\{x_1, \ldots, x_g\}$, $(x_i, x_j) = \delta_{i,j}$. Let $H_1^+(N_g; \mathbb{Z}_2)$ be the kernel of w_1 , then $\dim_{\mathbb{Z}_2} H_1^+(N_g; \mathbb{Z}_2) =$ g - 1. If a complement of a two-sided simple closed curve c on N_g is connected and non-orientable, we call c an *admissible* A-circle. For an admissible A-circle c on $N_g, N_g \setminus c$ is homeomorphic to N_{g-2} removed two 2-disks. Therefore, if c_1 and c_2 are admissible A-circles then there is $\phi \in \mathcal{M}(N_g)$ such that $\phi(c_1) = c_2$, by the change of coordinates principle in $[3, \S1.3]$.

LEMMA 4. Let c be a two-sided simple closed curves on N_g . If c is not admissible, then c represents 0 or $x_1 + \cdots + x_g$ in $H_1(N_g; \mathbb{Z}_2)$.

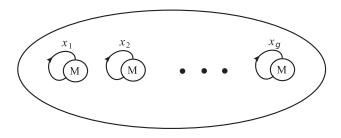


FIGURE 4. A basis for $H_1(N_q; \mathbb{Z}_2)$.

156

GENERATORS FOR THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE 157

Proof. If c is not admissible, then either $N_g \setminus c$ is not connected or $N_g \setminus c$ is connected and orientable. In the former case, c is 0 in $H_1(N_g; \mathbb{Z}_2)$. In the latter case, g is even, and there is a homeomorphism which brings c to $b_{g/2}$ in Figure 3, since their complements are homeomorphic to $\Sigma_{g/2-1}$ removed two 2-disks. The simple closed curve $b_{g/2}$ represents $x_1 + \cdots + x_g$ and the action of any homeomorphism of N_g on $H_1(N_g; \mathbb{Z}_2)$ preserves $x_1 + \cdots + x_g$. Therefore c represents $x_1 + \cdots + x_g$, which is the Poincaré dual of the first Stiefel-Whitney class of N_g .

LEMMA 5. Let c_1, \ldots, c_n be arbitrary two-sided simple closed curves such that t_{c_1}, \ldots, t_{c_n} and Y-homeomorphisms Y_1, \ldots, Y_k generate $\mathcal{M}(N_g)$. Then at least one of c_1, \ldots, c_n is admissible.

Proof. For $y \in H_1(N_g; \mathbb{Z}_2)$, we define an isomorphism τ_y of $H_1(N_g; \mathbb{Z}_2)$ by $\tau_y(x) = x + (x, y)y$. By Lemma 4 and the fact that Y-homeomorphisms act on $H_1(N_g; \mathbb{Z}_2)$ trivially [8, Theorem 5.5], if c_1, \ldots, c_n are not admissible, then the action of each elements of $\mathcal{M}(N_g)$ on $H_1(N_g; \mathbb{Z}_2)$ is a power of $\tau_{x_1+\cdots+x_g}$. On the other hand, $(t_{a_1})_* = \tau_{x_1+x_2}$ is not a power of $\tau_{x_1+\cdots+x_g}$.

LEMMA 6. If t_{c_1}, \ldots, t_{c_n} and Y-homeomorphisms Y_1, \ldots, Y_k generate $\mathcal{M}(N_g)$ then $[c_1], \ldots, [c_n]$ generate $H_1^+(N_q; \mathbb{Z}_2)$. In particular, $n \ge g - 1$.

Proof. By Lemma 5, we may assume c_1 is an admissible A-circle. For any $x \in H_1^+(N_g; \mathbb{Z}_2)$, we can write $x = x_{i_1} + x_{i_2} + \cdots + x_{i_{2k}}$. We can represent $x_{i_{2j-1}} + x_{i_{2j}}$ by an admissible A-circle γ_j as in Figure 5. Hence, x is represented by a union of admissible A-circles, that is, $x = [\gamma_1] + \cdots + [\gamma_k]$ in $H_1^+(N_g; \mathbb{Z}_2)$. For each γ_j , there is an element $\phi_j \in \mathcal{M}(N_g)$ such that $\phi_j(c_1) = \gamma_j$. By the assumption of this lemma, ϕ_j is a product of t_{c_1}, \ldots, t_{c_n} and Y_1, \ldots, Y_k . We see that Y_i acts on $H_1(N_g; \mathbb{Z}_2)$ trivially, and, for each $x \in H_1(N_g; \mathbb{Z}_2)$, $(t_{c_i})_*(x) = x + (x, [c_i])[c_i]$. Therefore, $[\gamma_j] \in H_1^+(N_g; \mathbb{Z}_2)$ is a sum of $[c_1], \ldots, [c_n]$, hence x is a sum of $[c_1], \ldots, [c_n]$. This shows that $H_1^+(N_q; \mathbb{Z}_2)$ is generated by $[c_1], \ldots, [c_n]$.

Let $2 \times : \mathbb{Z}_2 \to \mathbb{Z}_4$ be an injection defined by $2 \times ([n]) = [2n]$. A map $q: H_1(N_g; \mathbb{Z}_2) \to \mathbb{Z}_4$ is called a \mathbb{Z}_4 -quadratic form, if $q(x+y) = q(x) + q(y) + 2 \times (x, y)$ for any $x, y \in H_1(N_g; \mathbb{Z}_2)$. This map q is determined by values of q for elements in a \mathbb{Z}_2 -basis of $H_1(N_q; \mathbb{Z}_2)$. Putting x = y = 0 in the above formula,

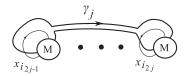


FIGURE 5. An element $x_{i_{2i-1}} + x_{i_{2i}} \in H_1(N_g; \mathbb{Z}_2)$ is represented by an admissible A-circle γ_i .

SUSUMU HIROSE

we have q(0) = 0. If $x \in H_1(N_g; \mathbb{Z}_2)$ is represented by a one-sided simple closed curve, in other word x is represented by a core of a Möbius band embedded in N_g , then (x, x) = 1. Since 2x = 0 in $H_1(N_g; \mathbb{Z}_2)$, we have $0 = q(x + x) = q(x) + q(x) + 2 \times (x, x) = 2q(x) + 2$. Therefore, we have $q(x) = \pm 1$. By the same argument, if $x \in H_1(N_g; \mathbb{Z}_2)$ is represented by a two-sided simple closed curve, then we have q(x) = 0 or 2.

LEMMA 7. There is no \mathbb{Z}_4 -quadratic form over $H_1(N_g; \mathbb{Z}_2)$ which is preserved by every non-trivial element of $\mathcal{M}(N_g)$.

Proof. For any Z₄-quadratic form q over $H_1(N_g; \mathbb{Z}_2)$, there is a non-trivial element $x \in H_1^+(N_g; \mathbb{Z}_2)$ such that q(x) = 0; even if $q([a_1]) = q([a_3]) = 2$ then $q([a_1] + [a_3]) = q([a_1]) + q([a_3]) + 2 \times ([a_1], [a_3]) = 0$. We can write $x = x_{i_1} + \cdots + x_{i_{2n}}$, let $y = x_{i_1}$, then (y, x) = 1. Let y be a simple closed curve on N_g representing x then $q \circ (t_\gamma)_*(y) = q(y + (y, x)x) = q(y) + q((y, x)x) + 2 \times (y, (y, x)x) = q(y) + q(x) + 2 = q(y) + 2 \neq q(y)$. Therefore $q \circ (t_\gamma)_* \neq q$.

LEMMA 8. Let c_1, \ldots, c_{g-1} be two-sided simple closed curves such that $[c_1], \ldots, [c_{g-1}]$ generate $H_1^+(N_g; \mathbb{Z}_2)$, then there is a \mathbb{Z}_4 -quadratic form over $H_1(N_g; \mathbb{Z}_2)$ preserved by any t_{c_i} .

Proof. Let α be a one-sided simple closed curve on N_g , then $\{[c_1], \ldots, [c_{g-1}], [\alpha]\}$ is a \mathbb{Z}_2 -basis of $H_1(N_g; \mathbb{Z}_2)$. We define a \mathbb{Z}_4 -quadratic form q over $H_1(N_g; \mathbb{Z}_2)$ by $q([c_1]) = \cdots = q([c_{g-1}]) = 2$ and $q([\alpha]) = 1$. For any $i = 1, \ldots, g-1$ and $x \in H_1(N_g; \mathbb{Z}_2)$, we see $q \circ (t_{c_i})_*(x) = q(x + (x, [c_i])[c_i]) = q(x) + q((x, [c_i])[c_i]) + 2 \times (x, (x, [c_i])[c_i])$. If $(x, [c_i]) = 0$, $q \circ (t_{c_i})_*(x) = q(x)$. If $(x, [c_i]) = 1$, $q \circ (t_{c_i})_*(x) = q(x) + q([c_i]) + 2 \times (x, [c_i]) = q(x) + 2 + 2 = q(x)$. Therefore, $q \circ (t_{c_i})_* = q$ for any $i = 1, \ldots, g-1$.

We assume that Dehn twists t_{c_1}, \ldots, t_{c_n} and Y-homeomorphisms Y_1, \ldots, Y_k generate $\mathcal{M}(N_g)$. In [7], Lickorish showed that $\mathcal{M}(N_g)$ is not generated by Dehn twists, therefore we see $k \ge 1$. By Lemma 6, $[c_1], \ldots, [c_n]$ generate $H_1^+(N_g; \mathbb{Z}_2)$, in particular $n \ge g - 1$. We assume that n = g - 1. By Lemma 8, there is a \mathbb{Z}_4 -quadratic form over $H_1(N_g; \mathbb{Z}_2)$ preserved by Dehn twists t_{c_1}, \ldots, t_{c_n} and Y-homeomorphisms Y_1, \ldots, Y_k , which contradicts Lemma 7. Hence, we see $n \ge g$. This completes the proof of Theorem 2.

Remark 9. The proof of Theorem 2 is inspired by the master thesis [5] by Shigehisa Ishimura, in which he proved Humphries' result by using \mathbb{Z}_2 -quadratic form over $H_1(\Sigma_g; \mathbb{Z}_2)$.

Acknowledgments. The author would like to thank the referee, Mustafa Korkmaz and Genki Omori for their useful comments.

GENERATORS FOR THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE 159

References

- J. S. BIRMAN AND D. R. J. CHILLINGWORTH, On the homeotopy group of a non-orientable surface, Math. Proc. Camb. Phil. Soc. 71 (1972), 437–448, Erratum: Math. Proc. Camb. Phil. Soc. 136 (2004), 441–441.
- [2] D. R. J. CHILLINGWORTH, A finite set of generators for the homeotopy group of a nonorientable surface, Math. Proc. Camb. Phil. Soc. 65 (1969), 409–430.
- [3] B. FARB AND D. MARGALIT, A primer on mapping class groups, Princeton mathematical series 49, Princeton University Press, Princeton, NJ, 2012.
- [4] S. P. HUMPHRIES, Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture notes in math. 722, Springer, Berlin, 1979, 44–47.
- [5] S. ISHIMURA, The spin structures over surfaces and the number of generators for the mapping class group, Master Thesis, Osaka City University, 2004 (in Japanese).
- W. B. R. LICKORISH, A finite set of generators for the homeotopy group of a 2-manifold, Math. Proc. Camb. Phil. Soc. 60 (1964), 769–778, Erratum: Math. Proc. Camb. Phil. Soc. 62 (1966), 679–681.
- W. B. R. LICKORISH, Homeomorphisms of non-orientable two-manifolds, Math. Proc. Camb. Phil. Soc. 59 (1963), 307–317.
- [8] B. SZEPIETOWSKI, Crosscap slides and the level 2 mapping class group of a nonorientable surface, Geom. Dedicata 160 (2012), 169–183.
- [9] B. SZEPIETOWSKI, A finite generating set for the level 2 mapping class group of a nonorientable surface, Kodai Math. J. 36 (2013), 1–14.

Susumu Hirose Department of Mathematics Faculty of Science and Technology Tokyo University of Science Noda, Chiba 278-8510 Japan E-mail: hirose_susumu@ma.noda.tus.ac.jp