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AN ISOPERIMETRIC INEQUALITY FOR DIFFUSED SURFACES

Ulrich Menne and Christian Scharrer

Abstract

For general varifolds in Euclidean space, we prove an isoperimetric inequality,

adapt the basic theory of generalised weakly di¤erentiable functions, and obtain several

Sobolev type inequalities. We thereby intend to facilitate the use of varifold theory in

the study of di¤used surfaces.

1. Introduction

General aim. The isoperimetric inequality is well established in the context
of sharp surfaces (e.g., integral currents, sets, or integral varifolds) in Euclidean
space, but little appears to be known for di¤used surfaces (i.e., for surfaces that
are not concentrated on a set of the their own dimension). General varifolds
form a very flexible model for the latter case; in fact, for equations of Allen-Cahn
type, their utility was established by Ilmanen, Padilla, and Tonegawa (see [6] and
[12]) and, for discrete and computational geometry, their unifying use has been
recently suggested by Buet, Leonardi, and Masnou (see [3]). The present paper
shall contribute to this proposed development by adapting several core tools to
the possibly non-rectifiable case. To outline these results, suppose m and n are
positive integers, ma n, V is an m dimensional varifold in Rn, and, to avoid case
distinctions, also m > 1; see Section 2 for the notation.

Isoperimetric inequality, see Section 3. The best result up to now (see the
second author [13, 6.11]) did apply to general varifolds, but controlled only their
rectifiable parts: If kVkðRnÞ < y, then

kVkfx : YmðkVk; xÞb dgaGd�1=mkVkðRnÞ1=mkdVkðRnÞ for 0 < d < y;

where G is a positive, finite number determined by m. Following the first author
(see [7, 2.2]), it unified the approach of Allard in [2, 7.1] and Michael and Simon
in [11, 2.1]. Clearly, if 0 < d < y, and YmðkVk; xÞb d for kVk almost all x,
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the result implies

kVkðfx : YmðkVk; xÞb dgÞ1�1=m
aGd�1=mkdVkðRnÞ:

We notice that kdVk encodes both, the total mass of the variational boundary
and the integral of the modulus of the generalised mean curvature of the varifold,
see Allard [2, 4.3]; in particular, a more classical form results for varifolds with
vanishing mean curvature (i.e., generalised minimal surfaces) and, by Allard [2, 4.8
(4)], the isoperimetric inequality for integral currents with non-optimal constant is
a special case. In 3.5 and 3.7, we establish that, if kVkðRnÞ < y, then

kVkðAðdÞÞ1�1=m
a gðmÞd�1=mkdVkðRnÞ for 0 < d < y;

where AðdÞ ¼ fx : kVkBðx; rÞb daðmÞrm for some 0 < r < yg:

By homogeneity considerations, one may not replace ðAðdÞ; d�1=mÞ by ðRn; 1Þ.
The sets AðdÞ, for suitable d, naturally describe the region, where the behaviour
of the di¤used surface resembles the behaviour of an m dimensional sharp
surface.

Generalised weakly di¤erentiable functions, see Section 4. We extend the
basic theory of generalised weakly di¤erentiable functions (see the first author
[9, §§8–9] and [10, 4.1, 2]) from rectifiable varifolds to general varifolds. This
theory includes the study of closedness properties (under convergence, compo-
sition, addition, and multiplication) and a coarea formula in functional analytic
form. The main di¤erences lie in the possible non-existence of decompositions
(see 4.12) and the ine¤ectiveness of ðkVk;mÞ approximate di¤erentials (see 4.7).
This development allows us to state the Sobolev inequalities in their natural
framework, but goes beyond that purpose.

Sobolev inequalities, see Section 5. In view of 4.11, 4.18, and [9, 8.16, 9.2], a
version of our Sobolev inequality in 5.6 may be stated as follows, employing (see
4.2) the space of Y valued generalised weakly di¤erentiable functions TðV ;Y Þ
and the derivative VDf associated to functions f in that space: If kdVk is a
Radon measure, Y is a finite dimensional normed vector space, f A TðV ;Y Þ,
kVkfx : j f ðxÞj > 0g < y, 0 < r < y, and g : Rn ! R satisfies

gðaÞ ¼ supfy : kVkðBða; rÞ \ fx : j f ðxÞja ygÞa 2�1kVkBða; rÞg
for a A Rn, then, for 0 < d < y, there holdsð

BðdÞ
gm=ðm�1Þ dkVk

 !1�1=m

aGd�1=m

ð
j f j dkdVk þ

ð
kVDf k dkVk

� �
;

where BðdÞ ¼ fx : kVkBðx; rÞb daðmÞrmg, and G ¼ 2bðnÞgðmÞ. In this theorem,
the number r acts as a scale on which both the lower density ratio bound and
the averaging process by medians occur; in fact, the width of a di¤used surface
could be a natural choice for such a scale. More generally, in 5.6, we replace r
by a kVk measurable function. Simple examples show that one may not replace
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ðg;BðdÞÞ by ð f ;AðdÞÞ, see 5.7. Finally, the special case 0a f A DðRn;RÞ of the
preceding theorem could be derived replacing the use of 4.17 and the coarea
formula for generalised weakly di¤erentiable functions (see 4.11 and [9, 8.5, 30])
by Allard’s more basic result [2, 4.10].

Acknowledgements. We would like to thank Dr Blanche Buet, Professor
Guido De Philippis, and Professor Yoshihiro Tonegawa for conversations on the
subject of this paper. The paper was written while both authors worked at the
Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and
the University of Potsdam.

2. Notation

Generally, the notation of [9, §1] is employed; the only exception is the usage
of gðmÞ, see 3.7 and 3.9. In particular, our notation is largely consistent with
that of Federer [5, pp. 669–671] and Allard [2]. While we do not duplicate each
definition from [9, §1], for the convenience of the reader, we recall some less
commonly used symbols and conventions below.

The di¤erence of sets A and B is denoted by A@B. Whenever f is a linear
map and v belongs to its domain, the expression hv; f i is synonymously used
with f ðvÞ. The inner product of v and w, by contrast, is denoted by v � w. The
symbol P\ denotes the symmetric linear homomorphism of Rn whose image is
P and whose restriction to P is the identity map of P, whenever P is a linear
subspace of Rn. If X is a locally compact Hausdor¤ space, then KðXÞ denotes
the vector space of continuous real valued functions on X with compact support.
Whenever f measures X , Y is a separable Banach space, f is a f measurable Y
valued function, and 1a pay, the value of the Lebesgue seminorm fðpÞ at f
satisfies

fðpÞð f Þ ¼
ð
j f jp df

� �1=p
if p < y;

fðpÞð f Þ ¼ inffs : sb 0; ffx : j f ðxÞj > sg ¼ 0g if p ¼ y:

Whenever U is an open subset of a finite dimensional normed space, and Y is a
separable Banach space, EðU ;YÞ denotes the space of all functions from U into
Y , that are continuously di¤erentiable of every positive integer order, DðU ;Y Þ
denotes the subspace of those functions in EðU ;Y Þ with compact support, and
D 0ðU ;YÞ is the space of distributions in U of type Y . Whenever T A D 0ðU ;YÞ,
the symbol kTk denotes the largest Borel regular measure over U such that

kTkðAÞ ¼ supfTðyÞ : y A DðU ;YÞ with spt y � A and jyðxÞja 1 for x A Ug

whenever A is an open subset of U . In case such T is representable by integra-
tion (equivalently, if kTk is a Radon measure), TðyÞ denotes the value of the
unique kTkð1Þ continuous extension of T to L1ðkTk;Y Þ at y A L1ðkTk;Y Þ, and
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T OA denotes the restriction of T to A, whenever A is kTk measurable (i.e., we
have ðT OAÞðyÞ ¼ TðyAÞ whenever y A DðU ;YÞ, where yAðxÞ ¼ yðxÞ for x A A
and yAðxÞ ¼ 0 for x A U @A). Finally, if V is an m dimensional varifold in
an open subset U of Rn, kdVk is a Radon measure, and E is an kVk þ kdVk
measurable set, then the distributional boundary VqE satisfies

VqE ¼ ðdVÞ OE � dðV OE �Gðn;mÞÞ A D 0ðU ;RnÞ:

3. General isoperimetric inequality

In this section, we prove a general isoperimetric inequality in 3.5. It
involves a maximal-type function corresponding to the density defined in 3.1.
Additionally, its proof relies on a simple iteration lemma (see 3.2) and a variant
of the ‘‘calculus lemma’’ used by Simon (see 3.3 and 3.4). Finally, in 3.10 and
3.12, we state a version of the isoperimetric inequality in case the varifold is
contained in a ball and a version involving the size of the varifold.

3.1 (Maximal-type function). Suppose m and n are positive integers, ma n,
V A VmðRnÞ, and the function M : Rn ! R satisfies

MðxÞ ¼ sup
kVkBða; sÞ
aðmÞsm : a A Rn; 0 < s < y; and x A Bða; sÞ

� �

for x A Rn. Clearly, if a A Rn, 0 < s < y, 0 < d < y, and kVkBða; sÞb daðmÞsm,
then Bða; sÞ � fx : MðxÞb dg.

Lemma 3.2 (Iteration lemma). Suppose 0a k < y, 0 < l < 1, 0 < m < 1,
the function a : fd : 0 < d < yg ! R is nonnegative, lim supd!0þ aðdÞ < y, and

aðdÞa kd�maðldÞm for 0 < d < y:

Then, aðdÞ1�m
a kd�mð1=lÞm

2=ð1�mÞ
for 0 < d < y.

Proof. Assume k > 0. Then, induction yields that log aðdÞ does not exceed

ðlogðkÞ þ m logð1=dÞÞ
Xj�1

i¼0

m i

 !
þ logð1=lÞ

Xj�1

i¼1

im iþ1

 !
þ m j log aðl jdÞ

whenever 0 < d < y and j is a positive integer; here
P0

i¼1 im
iþ1 ¼ 0. r

Lemma 3.3 (Calculus lemma). Suppose 0 < s < y, f : ft : sa t < yg ! R
is a nonnegative, nondecreasing function, 0 < m < y, s�mf ðsÞb 3=4,

r ¼ supft : sa t < y and t�mf ðtÞb 1=3g < y;

g : ft : sa ta rg ! R is a nonnegative, L1
O ft : sa ta rg measurable function,

and t�mf ðtÞa r�mf ðrÞ þ
Ð r
t
u�mgðuÞ dL1u whenever sa ta r.
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Then, there exists t satisfying

sa ta r and f ð5tÞa 5mrgðtÞ:

Proof. Abbreviating k ¼ supft�mf ðtÞ : sa ta rg, we note that

s < r; 3=4a k < y; supft�mf ðtÞ : ra t < yga 1=3;ð r
s

t�mf ðtÞ dL1ta kr;

ð5r
r

t�mf ðtÞ dL1ta
4r

3
:

Therefore, if the conclusion were false, we could estimateð r
s

t�mgðtÞ dL1t < r�1

ð r
s

ð5tÞ�m
f ð5tÞ dL1t ¼ 1

5r

ð 5r
5s

t�mf ðtÞ dL1ta
k

5
þ 4

15
;

ka r�mf ðrÞ þ
ð r
s

t�mgðtÞ dL1t <
3

5
þ k

5
;

whence, as 3=4a k < y, it would follow 3=5a 4k=5 < 3=5, a contradiction.
r

Remark 3.4. The previous lemma and its proof are adapted from [14, 18.7].

Theorem 3.5 (General isoperimetric inequality). Suppose m, n, V , and M
are as in 3.1, and kVkðRnÞ < y. Then,

kVkðfx : MðxÞb dgÞ1�1=m
aGd�1=mkdVkðRnÞ for 0 < d < y;

where G ¼ 2�1 if m ¼ 1, G ¼ 5m31=ðm�1ÞaðmÞ�1=m
if m > 1, and 00 ¼ 0.

Proof. Assume kdVkðRnÞ < y. In view of [9, 4.8 (1)], we may assume
that m > 1. We abbreviate k ¼ 5m31=maðmÞ�1=mkdVkðRnÞ. By 3.2 applied with
l, m, and aðdÞ replaced by 1=3, 1=m, and kVkfx : MðxÞb dg, respectively, it is
su‰cient to prove

kVkfx : MðxÞb dga kd�1=mkVkðfx : MðxÞb d=3gÞ1=m for 0 < d < y:

For this purpose we define

r ¼ supfs : a A Rn; 0 < s < y; and kVkBða; sÞb ðd=3ÞaðmÞsmg
and note that ra 31=md�1=maðmÞ�1=mkVkðfx : MðxÞb d=3gÞ1=m < y by 3.1.
Moreover, whenever x A Rn and MðxÞb d, there exist a A Rn and 0 < ta r
satisfying

x A Bða; tÞ; kVkBða; 5tÞa 5mrkdVkBða; tÞ;
in fact, taking a A Rn and 0 < s < y satisfying the conditions x A Bða; sÞ
and kVkBða; sÞb ð3d=4ÞaðmÞsm, in view of [9, 4.5, 6], one may apply 3.3

with f ðtÞ and gðtÞ replaced by d�1aðmÞ�1kVkBða; tÞ and d�1aðmÞ�1kdVkBða; tÞ,
respectively. Finally, Vitali’s covering theorem (see [5, 2.8.5, 8]) yields the
conclusion. r
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Remark 3.6. Apart of a possibly unnecessarily large number G, the pre-
ceding isoperimetric inequality comprises, firstly, that of Allard in [2, 7.1],
secondly, that of the first author in [7, 2.2], and, thirdly, those of the second
author in [13, 6.5, 11]. The last two items as well as the present inequality
employ the strategy introduced by Michael and Simon in [11, 2.1] (see also Simon
[14, 18.6]) in the context of Sobolev inequalities.

Definition 3.7 (Best isoperimetric constant). Whenever m is a positive
integer, we denote by gðmÞ the smallest nonnegative real number with the follow-
ing property: if n, V , and M are related to m as in 3.1, and kVkðRnÞ < y, then

kVkðfx : MðxÞb dgÞ1�1=m
a gðmÞd�1=mkdVkðRnÞ for 0 < d < y;

here 00 ¼ 0.

Remark 3.8. Considering a unit disc, we notice aðmÞ�1=m=ma gðmÞ; in
particular, gð1Þ ¼ 2�1 by 3.5. Also, if m > 1, then gðmÞa 5m31=ðm�1ÞaðmÞ�1=m

by 3.5, but the precise value of gðmÞ is unknown.

Remark 3.9. Notice that gðmÞ is greater or equal to the number bearing
that name in [9, §1]; if m > 1, it is unknown whether these numbers agree.

Corollary 3.10 (General isoperimetric inequality in a ball). Suppose m
and n are positive integers, ma n, V A VmðRnÞ, kdVk is a Radon measure, a A Rn,
0 < r < y, and sptkVk � Bða; rÞ.

Then,

aðmÞ�1=m
r�1kVkðRnÞa gðmÞkdVkðRnÞ:

Proof. Letting d ¼ aðmÞ�1
r�mkVkðRnÞ and assuming d > 0, it is su‰cient

to apply 3.7, since MðxÞb d for x A Bða; rÞ, see 3.1. r

3.11 (Embeddings of weak Lebesgue spaces). If f measures X , f is a f
measurable ft : 0a tayg valued function, ffx : f ðxÞ > 0g < y, 1a q < p <
y, and

k ¼ supfdfðfx : f ðxÞb dgÞ1=p : 0 < d < yg < y;

then we have fðqÞð f Þa ð1� q=pÞ�1=qfðfx : f ðxÞ > 0gÞ1=q�1=pk.

Corollary 3.12 (General isoperimetric inequality with size). Suppose m
and n are positive integers, 2ama n, V A VmðRnÞ, and ðkVk þ kdVkÞðRnÞ < y.

Then,

dHmðfx : YmðkVk; xÞb dgÞ1�1=m
a gðmÞkdVkðRnÞ for 0 < d < y;

in particular, if V A RVmðRnÞ and Hmfx : YmðkVk; xÞ > 0g < y, then

kVkðRnÞamgðmÞHmðfx : YmðkVk; xÞ > 0gÞ1=mkdVkðRnÞ:
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Proof. The principal conclusion is a consequence of 3.7, as [5, 2.10.19 (3)]
yields

Hmfx : YmðkVk; xÞb dga d�1kVkfx : MðxÞb dg:

The postscript follows from [2, 3.5 (1b)] and 3.11 with p ¼ m

m� 1
and q ¼ 1.

r

4. Generalised weakly di¤erentiable functions

This section extends the basic theory of generalised weakly di¤erentiable
functions on rectifiable varifolds (see [9, §§8–9] and [10, 4.1, 2]) to general vari-
folds. In fact, most of it extends almost verbatim (see 4.4, 4.10, 4.11, 4.18, and
4.20) once suitable approximation procedures for Lipschitzian functions (see 4.6
and 4.19) are available to replace the usages of the ðkVk;mÞ approximate di¤er-
ential in [9, §§8–9]. It is unknown (see 4.8), whether the role of that approximate
di¤erential could be taken, for Lipschitzian functions, by the notion of di¤er-
entiability introduced by Alberti and Marchese in [1].

A part that does not extend is the existence of decompositions (see 4.12),
hence the same holds for the characterisation of functions with vanishing deriva-
tive (see 4.13). Nevertheless, a generalised weakly di¤erentiable function may,
under the natural summability hypothesis, be defined using a partition of the
varifold induced by sets with vanishing distributional boundary (see 4.14).

Lemma 4.1 (Disintegration for varifolds). Suppose m and n are positive
integers, ma n, U is an open subset of Rn, and V A VmðUÞ. Then, (see [2, 3.3])ð

k dV ¼
ðð

kðx;PÞ dV ðxÞP dkVkx

whenever k is an R valued V integrable function.

Proof. The case k A KðU �Gðn;mÞÞ is treated by Allard in [2, 3.3]. Not-
ing [5, 2.5.13, 14], successive approximation by the method of [5, 2.5.3] yields
the case that k is a characteristic function of a V measurable set. Finally, we
employ [5, 2.3.3, 4.8, 4.4 (6)] to deduce the general case. r

Definition 4.2 (Generalised V weakly di¤erentiable functions). Suppose m
and n are positive integers, ma n, U is an open subset of Rn, V A VmðUÞ, kdVk
is a Radon measure, and Y is a finite dimensional normed vector space.

Then, a Y valued kVk þ kdVk measurable function f with dmn f � U is
called generalised V weakly di¤erentiable if and only if for some kVk measurable
HomðRn;YÞ valued function F , the following two conditions hold:

(1) If K is a compact subset of U and 0a s < y, thenð
K\fx:j f ðxÞjasg

kFk dkVk < y:
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(2) If y A DðU ;RnÞ, g A EðY ;RÞ and spt Dg is compact, then

ðdVÞððg � f ÞyÞ ¼
ð
gð f ðxÞÞP\ �DyðxÞ þ hyðxÞ;Dgð f ðxÞÞ � FðxÞi dVðx;PÞ:

The function F is kVk almost unique. Therefore, one may define the generalised
V weak derivative of f to be the function VDf characterised (see [5, 2.8.9, 14,
9.13]) by a A dmn VDf if and only if

ðkVk;CÞ ap lim
x!a

F ðxÞ ¼ s for some s A HomðRn;YÞ;

where C ¼ fða;Bða; rÞÞ : a A Rn; 0 < r < y; and Bða; rÞ � Ug;

and, in this case, VDf ðaÞ ¼ s. The set of all Y valued generalised V weakly
di¤erentiable functions will be denoted by TðV ;YÞ. Finally, TðVÞ ¼ TðV ;RÞ.

Remark 4.3. This definition is in accordance with [9, 8.3], where it is
introduced under the additional hypothesis that V is rectifiable.

Remark 4.4. The closedness results [10, 4.1, 2] hold (with the same proof )
when the condition V A RVmðUÞ in their statements is replaced by V A VmðUÞ.

Example 4.5. If f : U ! Y is of class 1, then f A TðV ;YÞ and (see [2, 3.3])

VDf ðxÞ ¼ Df ðxÞ �
ð
P\ dV

ðxÞP for kVk almost all x;

hence, kVDf ðxÞka kDf ðxÞjTðxÞk, where TðxÞ ¼ im
Ð
P\ dV

ðxÞP, for such x.

Lemma 4.6 (Lipschitzian functions I). Suppose m, n, U , V , and Y are as in
4.2. Then, the following two statements hold.

(1) If f : U ! Y is a locally Lipschitzian function, then f A TðV ;YÞ and

kVDf ðxÞka lim
r!0þ

Lipð f jBðx; rÞÞ for kVk almost all x:

(2) If fi : U ! Y is a sequence of locally Lipschitzian functions converging to
f : U ! Y locally uniformly as i ! y, and

k ¼ supfkVkðyÞðVDfiÞ : i ¼ 1; 2; 3; . . .g < y;

then f A TðV ;Y Þ, kVkðyÞðVDf Þa k, and

lim
i!y

ð
hVDfi;Gi dkVk ¼

ð
hVDf ;Gi dkVk

whenever G A L1ðkVk;HomðRn;YÞ�Þ.

Proof. Let (2) 0 denote the statement resulting from (2) by adding the
hypothesis, that the sequence fi belongs to TðV ;YÞ. To prove (2) 0, in view of
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[5, 2.5.7 (ii)], [10, 2.1], and [4, V.4.2, 5.1], we may assume that, for some function
F A LyðkVk;HomðRn;YÞÞ with kVkðyÞðFÞa k, we have

lim
i!y

ð
hVDfi;Gi dkVk ¼

ð
hF ;Gi dkVk for G A L1ðkVk;HomðRn;YÞ�Þ:

Then, 4.4 and [10, 4.1] yield (2) 0 which, as we observe, implies (1) by means of
convolution and 4.5; in particular, (2) 0 and (2) are equivalent. r

Remark 4.7. (1) partly generalises [9, 8.7]. In the remaining part thereof
(i.e., in the characterisation of VDf in terms of the ðkVk;mÞ approximate di¤er-
ential), the hypothesis V A RVmðUÞ may not be weakened to V A VmðUÞ; in fact,
4.5 and [2, 4.8 (2)] readily yield examples.

Remark 4.8. Here, we formulate two open questions which relate the pre-
ceding remark to the di¤erentiability theory of Lipschitzian functions by Alberti
and Marchese (see [1, 1.1]). For this purpose, suppose m and n are positive
integers, m < n, V A VmðRnÞ, and kdVk is a Radon measure.

(1) Does it follow that, for kVk almost all x, the image of qðxÞ ¼Ð
P\ dV

ðxÞP A HomðRn;RnÞ is contained in the ‘‘decomposability bundle
of kVk’’ at x introduced by Alberti and Marchese in [1, 2.6]?

(2) If so, does it follow that, for Lipschitzian functions f : Rn ! Y ,

VDf ðxÞ ¼ Dð f jQðxÞÞðxÞ � qðxÞ for kVk almost all x;

where QðxÞ ¼ fxþ hv; qðxÞi : v A Rng?

Remark 4.9. 4.6 (2) is analogous to [8, 4.5 (3)].

Remark 4.10. Referring to 4.5 and 4.6 (2) in place of [8, 4.5 (3)], and noting
4.1, the result in [9, 8.6] takes the following form: If f A TðV ;Y Þ, y : U ! Rn is
Lipschitzian with compact support, g : Y ! R is of class 1, and either spt Dg is
compact or f is locally bounded, then

ðdVÞððg � f ÞyÞ ¼
ð
gð f ðxÞÞ traceðVDyðxÞÞ þ hyðxÞ;Dgð f ðxÞÞ � VDf ðxÞi dkVkx:

Consequently, if f A TðV ;Y Þ is locally bounded, Z is a finite dimensional normed
vector space, and g : Y ! Z is of class 1, then g � f A TðV ;ZÞ with

VDðg � f ÞðxÞ ¼ Dgð f ðxÞÞ � VDf ðxÞ for kVk almost all x:

We notice that, by [9, 8.7], this is a generalisation of [9, 8.6].

Remark 4.11. The results [9, 8.4, 5, 12, 15, 16, 18, 20, 29, 30, 33] remain
valid when the references to ‘‘Definition 8.3’’ in [9] in their statements and proofs
are replaced by references to the present, more general definition in 4.2; in fact,
it is su‰cient to additionally replace the references to ‘‘Remark 8.6’’ in their
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proofs in [9] by references to 4.10 in the present paper and use (instead of
‘‘Example 8.7’’ in [9]) an approximation based on convolution, 4.5, and 4.6, to
justify the second ingredient to the equality on page 1029, line 25 in [9]: namely,
the equation

hu;VDððn � gÞyÞðxÞi ¼ hu;DnðgðxÞÞ � VDgðxÞiyðxÞ þ nðgðxÞÞhu;VDyðxÞi

whenever u A Rn, for kVk almost all x.

Example 4.12 (Nonexistence of decompositions). Suppose m and n are
positive integers, m < n, and T A Gðn;mÞ. Then the following three statements
hold.

(1) If m is a Radon measure over Rn, V ¼ m� dT A VmðRnÞ, kdVk is a
Radon measure, f : Rn ! R is of class 1 with Df ðxÞjT ¼ 0 for x A Rn,
and EðyÞ ¼ fx : f ðxÞ > yg for y A R, then VqEðyÞ ¼ 0 for y A R.

(2) If E is an Ln measurable set, V ¼ ðLn
OEÞ � dT A VmðRnÞ, kdVk is a

Radon measure, and V is indecomposable, then V ¼ 0.
(3) If V ¼ Ln � dT A VmðRnÞ, then dV ¼ 0 and there does not exist a

decomposition of V .
To prove (1), we notice f A TðVÞ and VDf ðxÞ ¼ 0 for kVk almost all x by 4.5,
whence we deduce the assertion by means of 4.11 and [9, 8.29]. Moreover, (1)
yields (2) by taking f to be a nonzero member of HomðRn;RÞ with T � ker f .
Finally, Allard [2, 4.8 (2)] and (2) imply (3).

Remark 4.13. 4.12 (3) shows that the rectifiability hypotheses in [9, 6.12,
8.34] may not be omitted.

Theorem 4.14 (Weakly di¤erentiable functions by partitions). Suppose m, n,
U , V , and Y are as in 4.2, X is a countable subset of VmðUÞ, x maps X into the
class of all Borel subsets of U such that distinct members of X are mapped onto
disjoint sets, ðkVk þ kdVkÞðU @

S
im xÞ ¼ 0,

W ¼ V O xðWÞ �Gðn;mÞ and VqxðWÞ ¼ 0 for W A X;

fW A TðW ;Y Þ for W A X, and

f ¼
[

f fW j xðWÞ : W A Xg; F ¼
[

fðWDfW Þ j xðWÞ : W A Xg:

Then, the following three statements hold:
(1) The function f is kVk þ kdVk measurable.
(2) The function F is kVk measurable.
(3) If

Ð
K\fx:j f ðxÞjasg kFk dkVk < y whenever K is a compact subset of U and

0a s < y, then f A TðV ;YÞ and

VDf ðxÞ ¼ FðxÞ for kVk almost all x:

Proof. The proof of [9, 8.24] applies unchanged. r
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Remark 4.15. In view of 4.13, it is important that the preceding general-
isation of [9, 8.24] does not assume the members of X to be indecomposable.

Definition 4.16 (Zero boundary values). Suppose m and n are positive
integers, ma n, U is an open subset of Rn, V A VmðUÞ, kdVk is a Radon
measure, and G is a relatively open subset of Bdry U . Then the space TGðVÞ is
defined to be the set of all nonnegative functions f A TðVÞ such that, abbreviat-
ing B ¼ ðBdry UÞ@G and EðyÞ ¼ fx : f ðxÞ > yg for 0 < y < y, the following
conditions hold for L1 almost all 0 < y < y:

ðkVk þ kdVkÞðEðyÞ \ KÞ þ kVqEðyÞkðU \ KÞ < y;

ð
EðyÞ�Gðn;mÞ

P\ �DyðxÞ dVðx;PÞ ¼ ððdVÞ OEðyÞÞðyjUÞ � VqEðyÞðyjUÞ

whenever K is a compact subset of Rn @B and y A DðRn @B;RnÞ.

Remark 4.17. Defining Wy A VmðRn @BÞ by

WyðkÞ ¼
ð
EðyÞ�Gðn;mÞ

k dV for k A KððRn @BÞ �Gðn;mÞÞ

for 0 < y < y, we see that, whenever y satisfies the conditions of 4.16, we have

kdWykðAÞa kdVkðEðyÞ \ AÞ þ kVqEðyÞkðU \ AÞ for A � Rn @B;

in particular, kdWyk is a Radon measure for such y.

Remark 4.18. The definition in 4.16 is in accordance with [9, 9.1], where
it is stated under the additional hypothesis that V is rectifiable. Moreover, the
results of [9, 9.2, 4, 5, 9, 12, 13, 14] remain valid if the references to ‘‘Definition
9.1’’ in their statements and proofs in [9] are replaced by references to the present,
more general definition in 4.16; in fact, taking 4.11 into account, the proofs
remain otherwise unchanged.

Lemma 4.19 (Lipschitzian functions II). Suppose m, n, U , V , and G are as
in 4.16, c : U [ G ! R, LipðcjKÞ < y whenever K is a compact subset of Rn @B,
g ¼ cjU , D is a kVk measurable set, W A VmðRn @BÞ, WðkÞ ¼

Ð
D�Gðn;mÞ k dV for

k A KððRn @BÞ �Gðn;mÞÞ, and kdWk is a Radon measure.
Then, there holds c A TðWÞ, g A TðVÞ, and

WDcðxÞ ¼ VDgðxÞ for kVk almost all x A D:

Proof. Assuming k ¼ Lip c < y, we extend c to z : Rn ! R such that
Lip z ¼ k by means of [5, 2.10.43]. Then, using convolution, we construct a
sequence zi A EðRn;RÞ with Lip zi a k for every positive integer i and

ziðxÞ ! zðxÞ; uniformly for x A Rn; as i ! y:
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Since W ðxÞ ¼ V ðxÞ for kVk almost all x A D by [5, 2.8.9, 18, 9.11], we note

WDðzi jRn @BÞðxÞ ¼ VDðzijUÞðxÞ for kVk almost all x A D

for every positive integer i by 4.5. Therefore, passing to the limit i ! y with
the help of 4.6, we deduce the conclusion. r

Remark 4.20. The result of [9, 9.16] remains valid if the references to
‘‘Definition 9.1’’ in its statement and its proof are replaced by references to the
present, more general definition in 4.16; in fact, taking 4.11 and 4.18 into
account, it is su‰cient to additionally replace the occurrences of ‘‘RVm’’ on page
1044, lines 15 and 29 in [9] by ‘‘Vm’’ and the words ‘‘Example 8.7 in conjunction
with [5, 2.10.19 (4), 2.10.43]’’ on page 1044, lines 26–27 in [9] by a reference to
4.19 in the present paper.

5. Sobolev inequalities

In this section, we present Sobolev inequalities for generalised weakly di¤er-
entiable functions with zero boundary values, that are entailed by the general
isoperimetric inequalities in 3.5 and 3.10. As the formal analogue to 3.5 does
not hold (see 5.3), two alternative formulations are o¤ered. The first version
(see 5.6) involves an averaging process based on medians and a scale (possibly
depending on the point). The second version (see 5.8) implies control only on
the rectifiable part. For both statements, we isolate a classical technique due to
Federer in 5.4 and 5.5. The analogue for 3.10, in contrast, is immediate (see
5.9). Finally, the negative results of this section (see 5.3 and 5.7) are entailed by
examples (see 5.1 and 5.2) based on known scaling properties of derivatives in
Euclidean space.

Example 5.1. Suppose n is an integer, nb 2, and n=ðn� 1Þ < pay. Then,

sup ðLnÞðpÞð f Þ : 0a f A DðRn;RÞ; spt f � Uð0; 1Þ;
ð
jDf j dLn

a 1

� �
¼ y;

in fact, we fix 0a g A DðRn;RÞ with spt g � Uð0; 1Þ and
Ð
jDgj dLn ¼ 1, and

consider fe A DðRn;RÞ with feðxÞ ¼ e1�ngðe�1xÞ for x A Rn and 0 < ea 1.

Example 5.2. Suppose m and n are positive integers, m < n, and F is the set
of ðV ; f Þ such that V A RVmðRnÞ, kVkUð0; 1Þ ¼ aðnÞ, dV ¼ 0, 0a f A DðRn;RÞ,
spt f � Uð0; 1Þ, and

Ð
jVDf j dkVka 1. Then, we will prove that

supfkVkðpÞð f Þ : ðV ; f Þ A Fg ¼ y for n=ðn� 1Þ < pay:

We first pick T A Gðn;mÞ, define W ¼ Ln � dT A VmðRnÞ, and recall dW ¼ 0
from 4.12 (3); in particular, the assertion resulting from replacing ‘‘RVm’’ by
‘‘Vm’’ is a consequence of 4.5 and 5.1. Then, we approximate W by varifolds
V A RVmðRnÞ with kVkUð0; 1Þ ¼ aðnÞ, dV ¼ 0, and V ðxÞ ¼ dT for x A Rn. (Geo-
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metrically, each approximating varifold V corresponds to a positive multiple of
the union of a countable collection of a‰ne planes parallel to T .)

Example 5.3 (Sobolev inequality vs. general isoperimetric inequality). If m
and n are positive integers, m < n, b ¼ y if m ¼ 1, b ¼ m=ðm� 1Þ if m > 1, and
0 < d < y, then the supremum of the set of all numbers

ðkVk O fx : MðxÞb dgÞðbÞð f Þ

corresponding to V A RVmðRnÞ and f A DðRn;RÞ satisfying dV ¼ 0, f b 0, andÐ
jVDf j dkVka 1, where M is associated to m, n, and V as in 3.1, equals y; in

fact, assuming d ¼ aðmÞ�1aðnÞ, one may take p ¼ b in 5.2.

Lemma 5.4 (Integrating superlevel sets). Suppose f measures X , f is a
nonnegative f measurable function, 1a pay, and EðyÞ ¼ fx : f ðxÞ > yg for
0a y < y. Then,

fðpÞð f Þa
ðy
0

fðEðyÞÞ1=p dL1y;

here 01=p ¼ 0 and y1=p ¼ y.

Proof. Assume p < y and
Ðy
0 fðEðyÞÞ1=p dL1y < y. Then, possibly

replacing f ðxÞ by supf0; f ðxÞ � eg for 0 < e < y, we may also assume
fðEð0ÞÞ < y. Abbreviating fy ¼ inff f ; yg, we define g : fy : 0a y < yg ! R
by

gðyÞ ¼ fðpÞð fyÞ for 0a y < y:

Minkowski’s inequality (see [5, 2.4.15]) yields

0a gðyþ uÞ � gðyÞa fðpÞð fyþu � fyÞa ufðEðyÞÞ1=p

for 0a y < y and 0a u < y. Therefore, Lip g < y and, by [5, 2.9.19],

0a g 0ðyÞa fðEðyÞÞ1=p for L1 almost all 0a y < y;

hence, by [5, 2.4.7, 9.20], we infer fðpÞð f Þ ¼ limy!y gðyÞ ¼
Ðy
0 g 0 dL1. r

Remark 5.5. The method of the proof is taken from [5, 4.5.9 (18)].

Theorem 5.6 (Sobolev inequality—with averaging). Suppose m and n are
positive integers, ma n, U is an open subset of Rn, V A VmðUÞ, kdVk is a Radon
measure, f A TBdry UðVÞ, EðyÞ ¼ fx : f ðxÞ > yg for y A R, kVkðEðyÞÞ < y for
0 < y < y,

b ¼ y if m ¼ 1; b ¼ m=ðm� 1Þ if m > 1;
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0 < d < y, r is a ft : 0 < t < yg valued kVk measurable function, dmn r � U ,
0 < l < 1, g : dmn r ! R satisfies

gðaÞ ¼ supfy : kVkðU \ Bða; rðaÞÞ@EðyÞÞa lkVkðU \ Bða; rðaÞÞÞg

for a A dmn r, and A ¼ fa : y > kVkðU \ Bða; rðaÞÞÞb daðmÞrðaÞmg.
Then, g is kVk measurable and there holds

ðkVk OAÞðbÞðgÞaG

ð
f dkdVk þ

ð
jVDf j dkVk

� �
;

where G ¼ ð1� lÞ�1bðnÞ1�1=mgðmÞd�1=m.

Proof. Firstly, we use the facts, that the supremum equalling gðaÞ remains
unchanged when y therein is restricted to be rational and that

ðU �UÞ \ fða; xÞ : ja� xja rðaÞg

is kVk � kVk measurable, to deduce the kVk measurability of g from Fubini’s
theorem (see [5, 2.6.2]). Next, we define Wy A VmðRnÞ as in 4.17 and let My

denote the function resulting from replacement of V by Wy in the definition of
the function M in 3.1. Whenever 0 < y < y, a A A, and gðaÞ > y, we note

kVkðU \ Bða; rðaÞÞÞa kWykBða; rðaÞÞ þ lkVkðU \ Bða; rðaÞÞÞ < y;

kVkðU \ Bða; rðaÞÞÞa ð1� lÞ�1kWykBða; rðaÞÞ;
Bða; rðaÞÞ � fx : MyðxÞb ð1� lÞdg

by 3.1. Therefore, the Besicovich-Federer covering theorem yields

kVkðA \ fa : gðaÞ > ygÞ ¼ lim
i!y

kVkðA \ fa : gðaÞ > y and rðaÞa igÞ

a bðnÞð1� lÞ�1kWykfx : MyðxÞb ð1� lÞdg

for 0 < y < y, whence we infer, as kWykðRnÞ < y, that

kVkðA \ fa : gðaÞ > ygÞ1=b aGkdWykðRnÞaGðkdVkðEðyÞÞ þ kVqEðyÞkðUÞÞ

for L1 almost all 0 < y < y by 3.5, 3.7, and 4.17; here 00 ¼ 0. Since g is
nonnegative, integrating this inequality with respect to L1 yields the conclusion
by means of 5.4, [5, 2.6.2], 4.11, and [9, 8.5, 30]. r

Remark 5.7. If m < n, one may not replace g by f in the preceding esti-
mate; in fact, in view of 4.5, 4.18, and [9, 9.4], it is su‰cient to consider U ¼
Rn \Uð0; 1Þ, d ¼ 2�maðmÞ�1aðnÞ, and rðaÞ ¼ 2 for a A U , and take p ¼ y if
m ¼ 1 and p ¼ m=ðm� 1Þ if m > 1 in 5.2.

Theorem 5.8 (Sobolev inequality—rectifiable part). Suppose m and n are
positive integers, ma n, U is an open subset of Rn, V A VmðUÞ, kdVk is a Radon
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measure, f A TBdry UðVÞ, kVkfx : f ðxÞ > yg < y for 0 < y < y,

b ¼ y if m ¼ 1; b ¼ m=ðm� 1Þ if m > 1;

0 < d < y, and A ¼ fa : YmðkVk; aÞb dg.
Then, there holds

ðkVk OAÞðbÞð f ÞaG

ð
f dkdVk þ

ð
jVDf j dkVk

� �
;

where G ¼ gðmÞd�1=m.

Proof. We define EðyÞ as in 4.16. Moreover, we define Wy A VmðRnÞ as in
4.17 and let My denote the function resulting from replacement of V by Wy in
the definition of the function M in 3.1. Since YmðkWyk; xÞb d for kVk almost
all x A A \ EðyÞ by [5, 2.8.9, 18, 9.11], we conclude

kVkðA \ EðyÞÞa kWykfx : MyðxÞb dg for 0 < y < y:

In conjunction with 3.5, 3.7, and 4.17, we infer, as kWykðRnÞ < y, that

kVkðA \ EðyÞÞ1=b aGkdWykðRnÞaGðkdVkðEðyÞÞ þ kVqEðyÞkðUÞÞ
for L1 almost all 0 < y < y; here 00 ¼ 0. Integrating this inequality yields the
conclusion by means of 5.4, [5, 2.6.2], 4.11, and [9, 8.5, 30]. r

Theorem 5.9 (Poincaré inequality in a ball—zero boundary values). Sup-
pose m and n are positive integers, ma n, a A Rn, 0 < r < y, V A VmðUða; rÞÞ,
kdVk is a Radon measure, and f A TBdry Uða; rÞðVÞ.

Then, there holds

aðmÞ�1=m
r�1

ð
f dkVka gðmÞ

ð
f dkdVk þ

ð
jVDf j dkVk

� �
:

Proof. Define EðyÞ ¼ fx : f ðxÞ > yg for 0 < y < y. In view of 4.17, we
apply 3.10 with V replaced by Wy to obtain

aðmÞ�1=m
r�1kVkðEðyÞÞa gðmÞðkdVkðEðyÞÞ þ kVqEðyÞkUða; rÞÞ

for L1 almost all 0 < y < y. Integrating this inequality with respect to L1

yields the conclusion by means of Fubini’s theorem (see [5, 2.6.2]) and the coarea
formula (see 4.11 and [9, 8.5, 30]). r

Remark 5.10. In view of 4.5, 4.18, and [9, 9.4], there is no similar control of
kVkðpÞð f Þ involving a number depending only on m and p, for any p > 1 by 5.2.
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