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ON 3-DIMENSIONAL HOMOGENEOUS GENERALIZED

m-QUASI-EINSTEIN MANIFOLDS

Zejun Hu and Dehe Li

Abstract

In this paper, we show that for 3-dimensional homogeneous manifolds only the

space form can carry a proper generalized m-quasi-Einstein structure.

1. Introduction

Recently, there has been increasing interest on the quasi-Einstein mani-
folds, which generalize the notion of Einstein manifolds. Recall that a Rie-
mannian manifold ðMn; gÞ with a potential function f is called m-quasi-Einstein

if its associated m-Bakry-Emery Ricci tensor Ricmf :¼ Ricþ ‘2f � 1

m
df n df is

a constant multiple of the metric g (cf. [4] and the references therein). An
m-quasi-Einstein manifold will be called trivial if f is constant. Otherwise, it
will be called nontrivial. One of the motivations to study m-quasi-Einstein
manifold is its close relation with warped product Einstein metrics. As a matter
of fact, it was shown in [12] that an n-dimensional m-quasi-Einstein manifold is
exactly the manifold which is the base of an ðnþmÞ-dimensional Einstein warped
product.

To extend the notion of m-quasi-Einstein, Catino [5] introduced the con-
cept of generalized quasi-Einstein manifold, and as its particular case, Barros
and Ribeiro [2] further proposed to consider the following notion of gradient
generalized m-quasi-Einstein manifold, or simply generalized m-quasi-Einstein
manifold:

Definition 1.1 ([2]). For a positive integer m, we say that a manifold
ðMn; gÞ with a potential function f is generalized m-quasi-Einstein if there exists
a smooth function l on M such that the Ricci tensor Ric of ðMn; gÞ satisfies
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the relation

Ricþ ‘2f � 1

m
df n df ¼ lg;ð1:1Þ

where ‘2 and n denote the Hessian and the tensorial product, respectively.
If, in particular, the function l in (1.1) is non-constant on M, the generalized
m-quasi-Einstein manifold is called proper.

In recent years, generalized m-quasi-Einstein manifolds have been extensively
studied by many mathematicians, see e.g. [1, 2, 5, 7, 8, 9, 10, 11, 13, 15], among
many others. As usual, one can define the positive function u ¼ e�f =m on Mn so
that (1.1) can be rewritten as

Ric�m

u
‘2u ¼ lg:ð1:2Þ

Due to such a fact, the generalized m-quasi-Einstein manifold satisfying (1.1) is
usually denoted by ðMn; g; u; lÞ, where u ¼ e�f =m. Moreover, ðMn; g; u; lÞ will
be called trivial if the potential function u is constant. Otherwise, it will be
called nontrivial. It is easy to see that an n-dimensional ðnb 3Þ proper gener-
alized m-quasi-Einstein manifold must be nontrivial. Obviously, the triviality of
ðMn; g; u; lÞ implies that ðMn; gÞ is Einstein. But, generally, the converse is not
true. To see this fact more clearly, we would recall that in [2] it was shown that,
as trivial Einstein manifold, each of the three kinds of space forms can possess a
nontrivial generalized m-quasi-Einstein structure.

In [3], Barros et al. studied m-quasi-Einstein structures on 3-dimensional
homogeneous Riemannian manifolds. As the main theorem, they proved that
if a 3-dimensional homogeneous manifold carries an m-quasi-Einstein structure
then it is either Einstein or H2ðkÞ � R, where H2ðkÞ denotes the 2-dimensional
hyperbolic space with sectional curvature k.

In [4] Case-Shu-Wei showed that a nontrivial m-quasi-Einstein manifold is
Einstein if and only if it is isometric to a hyperbolic space or a special Einstein
warped product. That is to say, neither Euclidean space Rn nor sphere Sn can
carry a nontrivial m-quasi-Einstein structure. Along with the result due to
Barros et al. [3], we find that for 3-dimensional homogeneous manifolds only
hyperbolic space and H2ðkÞ � R can carry nontrivial m-quasi-Einstein struc-
tures. However, there do exist manifolds that can not carry any nontrivial
m-quasi-Einstein structure but can possess a proper generalized m-quasi-Einstein
structure. Indeed, according to [2], both Rn and Sn can carry a proper gen-
eralized m-quasi-Einstein structure. Along this direction, in this work, we
will focus on proper generalized m-quasi-Einstein structure on homogeneous
3-manifolds.

As is well known, every space form can carry a proper generalized m-quasi-
Einstein structure. In fact, this has been stated as Examples 1, 2 and 3 in [2]
with detailed discussions. Now, the following problem becomes interesting.
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Problem. Are space forms the only 3-dimensional homogeneous manifolds
that can carry a proper generalized m-quasi-Einstein structure?

In this paper, as the main result we will give a positive answer to this
problem.

Theorem 1.1. Let ðM 3; gÞ be a 3-dimensional homogeneous manifold that
can carry a proper generalized m-quasi-Einstein structure, then ðM 3; gÞ must be a
space form.

Remark 1.1. As has been mentioned above, the proper generalized m-quasi-
Einstein structure on each space form has been studied in [2]. In fact, as shown
in Theorem 1 of [2], the potential function f for that situation can be explicitly
determined on space forms up to constant.

Remark 1.2. Due to the relation between the m-quasi-Einstein manifold
and the ðnþmÞ-dimensional Einstein warped product, in the definition of gener-
alized m-quasi-Einstein manifold, m is usually assumed to be a positive integer
(cf. [1, 2]). On the other side, we would like to point out that, the results in this
paper also hold for any positive constant m.

2. Preliminary

The classification of simply connected 3-dimensional homogeneous manifolds
is well known (see W. P. Thurston [14]). In fact, such a manifold has an
isometry group of dimension 3, 4 or 6. If the dimension of the isometry group
is 6, then the manifold is a space form. If the dimension of the isometry group
is 3, the manifold has the geometry of the Lie group Sol3. Whereas if the
dimension of the isometry group is 4, such a manifold is a Riemannian fibration
over a 2-dimensional space form N2ðkÞ with constant Gauss curvature k, the
fibers are totally geodesic and there exists a one-parameter family of translations
along the fibers, generated by a unit Killing vector field x. These manifolds can
be classified, up to isometry, by k and the so-called bundle curvature t, the latter
is defined by the equation ‘Xx ¼ tX � x for any vector field X , where � denotes
the vector product and ‘ denotes the Riemannian connection. Moreover, k and
t can be any real numbers satisfying k0 4t2. The manifold with 4-dimensional
isometry group as described above is always denoted by E3ðk; tÞ. According to
the classification, if t0 0 and k > 0, E3ðk; tÞ is compact, and it has the isometry
group of the Berger sphere S3

k; t. If E3ðk; tÞ is non-compact, it has isometry
group of one of the following Riemannian manifolds:

S2ðkÞ � R; when t ¼ 0; k > 0;

H2ðkÞ � R; when t ¼ 0; k < 0;

Nil3; when t0 0; k ¼ 0;gPSL2ðRÞPSL2ðRÞ; when t0 0; k < 0:

8>>><>>>:
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Here Nil3 stands for the classical Heisenberg group endowed with a left invariant
metric, gPSL2ðRÞPSL2ðRÞ is the universal cover of the Lie group PSL2ðRÞ (endowed with a
2-parameter family of homogeneous metrics).

3. Generalized m-quasi-Einstein structure

Based on the dimension of the isometry group, we will discuss 3-dimensional
homogeneous generalized m-quasi-Einstein manifolds in di¤erent cases. Since
homogeneous 3-manifolds with isometry group of dimension 6 are space forms,
and the generalized m-quasi-Einstein structure on space forms has been treated
in [2], in what follows, we will mainly deal with homogeneous 3-manifolds with
isometry group of dimension 3 and 4, respectively, in order to see whether there
exists a proper generalized m-quasi-Einstein structure on these manifolds.

3.1. Homogeneous 3-manifold with isometry group of dimension 3. In this
subsection, we will show that homogeneous 3-manifolds with isometry group of
dimension 3 do not carry any generalized m-quasi-Einstein structure. As men-
tioned above, such a manifold possesses the geometry modeled of the Lie group
Sol3. We will prove the following

Proposition 3.1. Sol3 does not carry any generalized m-quasi-Einstein
structure.

We first recall the geometry of the space Sol3, for details see section 2 in [6].
Exactly, Sol3 can be viewed as R3 endowed with the metric

ĝg ¼ e2z dx2 þ e�2z dy2 þ dz2;ð3:1Þ

where ðx; y; zÞ are canonical coordinates of R3. It is worthy to note that Sol3
has a Lie group structure with respect to which the above metric is left-invariant.
A canonical orthonormal frame with respect to ĝg is given by

fE1 ¼ e�zqx; E2 ¼ ezqy; E3 ¼ qzg:ð3:2Þ

By using this frame we get the following lemma.

Lemma 3.1 (see also [3]). Let us consider on Sol3 the metric and the frame
given by (3.1) and (3.2), respectively. Then we have

½E1;E2� ¼ 0; ½E1;E3� ¼ E1; ½E2;E3� ¼ �E2:

The Riemannian connection ‘̂‘ of Sol3 can be expressed by:

‘̂‘E1
E1 ¼ �E3; ‘̂‘E1

E2 ¼ 0; ‘̂‘E1
E3 ¼ E1;

‘̂‘E2
E1 ¼ 0; ‘̂‘E2

E2 ¼ E3; ‘̂‘E2
E3 ¼ �E2;

‘̂‘E3
E1 ¼ 0; ‘̂‘E3

E2 ¼ 0; ‘̂‘E3
E3 ¼ 0:
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Moreover, the Ricci tensor dRicRic of Sol3 satisfies

R̂R11 ¼ R̂R22 ¼ 0; R̂R33 ¼ �2; R̂Rij ¼ 0 for i0 j;

where R̂Rij ¼ dRicRicðEi;EjÞ.

To prove Proposition 3.1, we also need the next lemma.

Lemma 3.2. Suppose that ðSol3; ĝg; u; lÞ is a generalized m-quasi-Einstein struc-
ture on Sol3. Then the function u ¼ uðx; y; zÞ satisfies the following equations:

(1) uxy ¼ 0,
(2) uxz ¼ ux,
(3) uyz ¼ �uy,
(4) e�2zuxx þ uz ¼ � lu

m
,

(5) e2zuyy � uz ¼ � lu

m
,

(6) uzz ¼ � lþ 2

m
u.

Proof. With respect to the orthonormal frame (3.2), we can rewrite (1.2) as:

‘̂‘2uðEi;EjÞ ¼
u

m
ðR̂Rij � ldijÞ:

From Lemma 3.1 we get R̂R12 ¼ 0, and then ‘̂‘2uðE1;E2Þ ¼ 0.
On the other hand, using ‘̂‘E1

E2 ¼ 0, we can calculate

‘̂‘2uðE1;E2Þ ¼ ĝgð‘̂‘E1
‘̂‘u;E2Þ ¼ E1ðE2ðuÞÞ � ĝgð‘̂‘u; ‘̂‘E1

E2Þ
¼ E1E2ðuÞ ¼ uxy:

It follows that uxy ¼ 0.
Similarly, direct calculations of the following terms

‘̂‘2uðE1;E3Þ; ‘̂‘2uðE2;E3Þ; ‘̂‘2uðE1;E1Þ; ‘̂‘2uðE2;E2Þ and ‘̂‘2uðE3;E3Þ

will verify all other assertions. r

Proof of Proposition 3.1. If Sol3 carries a generalized m-quasi-Einstein
structure ðSol3; ĝg; u; lÞ, we first use (4) and (6) of Lemma 3.2 to deduce that the
function u satisfies

e�2zuxx þ uz ¼ uzz þ
2

m
u;

and then

e�2zuxxy þ uzy ¼ uzzy þ
2

m
uy:ð3:3Þ
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According to (1) and (3) of Lemma 3.2, we have

uxxy ¼ uxyx ¼ 0; uzzy ¼ uyzz ¼ �uyz ¼ uy:

Putting the above results into (3.3) we obtain

2

m
þ 2

� �
uy ¼ 0;

which implies uy ¼ 0.
Similarly, using (1), (2), (5) and (6) of Lemma 3.2, we can also get ux ¼ 0.

Moreover, (4) and (5) of Lemma 3.2 give

2uz ¼ e2zuyy � e�2zuxx:

It follows from ux ¼ uy ¼ 0 that we further get uz ¼ 0. Therefore, u is a
constant and thus Sol3 is Einstein.

This is a contradiction, by which the proof of Proposition 3.1 is completed.
r

3.2. Homogeneous 3-manifold with isometry group of dimension 4. In this
subsection, we concentrate on the problem whether there exists a proper gener-
alized m-quasi-Einstein structure on homogeneous 3-manifolds with isometry
group of dimension 4. The main result is the following

Proposition 3.2. Nil3 and gPSLPSL2ðRÞ do not carry any generalized m-quasi-
Einstein structure.

To begin with, we recall that a noncompact homogeneous 3-manifold with
isometry group of dimension 4 can be viewed as R3 endowed with the metric

gk; t ¼
dx2 þ dy2 þ ½tðy dx� x dyÞ þ dt�2; if k ¼ 0;

r2ðdx2 þ dy2Þ þ ½2ktrðx dy� y dxÞ þ dt�2; if k0 0;

(
ð3:4Þ

where r ¼ 2

1þ kðx2 þ y2Þ . An orthonormal frame with respect to gk; t is given
by

fE1 ¼ qx � tyqt; E2 ¼ qy þ txqt; E3 ¼ qtg; if k ¼ 0;

E1 ¼
1

r
qx þ 2ktyqt; E2 ¼

1

r
qy � 2ktxqt; E3 ¼ qt

� �
; if k0 0:

ð3:5Þ

Next, we need the following lemma whose proof can be found in [3].

Lemma 3.3 ([3]). Let E3ðk; tÞ be a noncompact homogeneous 3-manifold with
isometry group of dimension 4, whose metric and its associated orthonormal frame
are given by (3.4) and (3.5), respectively. Then we have

½E1;E2� ¼ �kyE1 þ kxE2 þ 2tE3; ½E1;E3� ¼ ½E2;E3� ¼ 0:
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With ‘ the Riemannian connection we have the following calculations:

‘E1
E1 ¼ kyE2; ‘E1

E2 ¼ �kyE1 þ tE3; ‘E1
E3 ¼ �tE2;

‘E2
E1 ¼ �kxE2 � tE3; ‘E2

E2 ¼ kxE1; ‘E2
E3 ¼ tE1;

‘E3
E1 ¼ �tE2; ‘E3

E2 ¼ tE1; ‘E3
E3 ¼ 0:

Moreover, the Ricci tensor Ric of E3ðk; tÞ satisfies

R11 ¼ R22 ¼ k � 2t2; R33 ¼ 2t2; Rij ¼ 0 for i0 j;

where Rij ¼ RicðEi;EjÞ.

To prove Proposition 3.2, we also need the following lemma.

Lemma 3.4. Let E3ðk; tÞ be a noncompact homogeneous 3-manifold with
isometry group of dimension 4. Suppose that ðE3ðk; tÞ; gk; t; u; lÞ is a generalized
m-quasi-Einstein structure on E3ðk; tÞ. Then, with respect to the orthonormal
frame given by (3.5), the functions u and l satisfy the following equations:

(1) E1E2ðuÞ þ kyE1ðuÞ � tE3ðuÞ ¼ 0,
(2) E1E3ðuÞ þ tE2ðuÞ ¼ 0,
(3) E2E3ðuÞ � tE1ðuÞ ¼ 0,

(4) E1E1ðuÞ � kyE2ðuÞ ¼
u

m
ðk � 2t2 � lÞ,

(5) E3E3ðuÞ ¼
u

m
ð2t2 � lÞ.

Proof. Since ðE3ðk; tÞ; gk; t; u; lÞ is a generalized m-quasi-Einstein structure,
from (1.2) we obtain

‘2uðE1;E2Þ ¼
u

m
R12 ¼ 0:

On the other hand, by definition and Lemma 3.3, we have

‘2uðE1;E2Þ ¼ gk; tð‘E1
‘u;E2Þ ¼ E1ðE2ðuÞÞ � gk; tð‘u;‘E1

E2Þ
¼ E1E2ðuÞ þ kyE1ðuÞ � tE3ðuÞ

and the first assertion (1) follows.
Similarly, direct calculations of the following terms

‘2uðE1;E3Þ; ‘2uðE2;E3Þ; ‘2uðE1;E1Þ and ‘2uðE3;E3Þ

will verify the assertions (2), (3), (4) and (5), respectively. r

Proof of Proposition 3.2. If Nil3 or gPSL2ðRÞPSL2ðRÞ carries a generalized m-quasi-
Einstein structure, then according to (4) and (5) of Lemma 3.4, the potential
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function u satisfies

E3E3ðuÞ þ
u

m
ðk � 4t2Þ ¼ E1E1ðuÞ � kyE2ðuÞ:ð3:6Þ

Moreover, because of item (1) of Lemma 3.4 along with E3ðyÞ ¼ 0, we have

E3E1E2ðuÞ þ kyE3E1ðuÞ � tE3E3ðuÞ ¼ 0;

and then it follows from Lemma 3.3 and items (1)–(3) of Lemma 3.4 that

tE3E3ðuÞ ¼ E3E1E2ðuÞ þ kyE3E1ðuÞð3:7Þ
¼ E1E3E2ðuÞ þ kyE1E3ðuÞ
¼ E1E2E3ðuÞ þ kyE1E3ðuÞ
¼ tE1E1ðuÞ � tkyE2ðuÞ:

Comparing (3.6) with (3.7), noting that u > 0 and t0 0 for both Nil3 andgPSL2ðRÞPSL2ðRÞ, we get k ¼ 4t2. This is a contradiction to the assumption that the non-
compact homogeneous 3-manifold has an isometry group of dimension 4.

This completes the proof of Proposition 3.2. r

3.3. Proof of Theorem 1.1. Propositions 3.1, 3.2 have shown that Sol3,
Nil3 and gPSL2ðRÞPSL2ðRÞ do not carry any generalized m-quasi-Einstein structure. In
addition, it has been proved in [1] that a compact generalized m-quasi-Einstein
manifold with constant scalar curvature must be isometric to the standard sphere.
Hence, based on the classification of homogeneous 3-manifolds, all remaining is
to verify the following:

Claim. Both S2ðkÞ � R and H2ðkÞ � R do not carry any proper generalized
m-quasi-Einstein structure.

Note that both S2ðkÞ � R and H2ðkÞ � R are of parallel Ricci tensor. On
the other hand, generalized m-quasi-Einstein manifolds with parallel Ricci tensor
have been classified in [8] and can be stated as follows:

Theorem 3.1 ([8]). Let ðMn; g; u; lÞ be a complete n-dimensional ðnb 3Þ
nontrivial generalized m-quasi-Einstein manifold which possesses parallel Ricci
tensor. Then ðMn; gÞ is isometric to one of the following manifolds:

(1) a space form,
(2) Dn

c ,
(3) R�Nn�1ðbÞ,
(4) HpðaÞ �Nn�pðbÞ, b ¼ mþ p� 1

p� 1
a,

(5) Dp
c �Nn�pðbÞ, b ¼ ð1�m� pÞc2,

where a, b are negative constants, NkðbÞ denotes a k-dimensional Einstein mani-
fold with scalar curvature kb, here we recall that traditionally one also calls b the
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Einstein constant of N kðbÞ; HpðaÞ denotes the p-dimensional hyperbolic space
with Einstein constant a; Dk

c denotes a k-dimensional Einstein warped product
R�c�1ecr F

k�1, i.e. R� F k�1 endowed with the metric dr2 þ ðc�1ecrÞ2gF , c is a
positive constant, F k�1 with metric gF is a Ricci flat manifold.

It follows from Theorem 3.1 that S2ðkÞ � R do not carry any nontrivial
generalized m-quasi-Einstein structure. Furthermore, Remark 2.2 in [8] shows
that, if R�Nn�1ðbÞ in Theorem 3.1 possesses a generalized m-quasi-Einstein
structure ðR�Nn�1ðbÞ; g; u; lÞ, then l must be a negative constant. That is to
say, though H2ðkÞ � R possesses an m-quasi-Einstein structure, as generalized
m-quasi-Einstein manifold, it must be not proper.

This verifies the claim. Accordingly, we complete the proof of Theorem 1.1.
r

Actually, the above arguments also imply the following corollary, which
extends Theorem 1.1 without the assumption of properness.

Corollary 3.1. Let ðM 3; gÞ be a 3-dimensional homogeneous manifold that
can carry a generalized m-quasi-Einstein structure, then ðM 3; gÞ is either a space
form or H2ðkÞ � R.

Remark 3.1. Theorem 2 in [3] shows that, if a 3-dimensional homogeneous
manifold carries a nontrivial m-quasi-Einstein structure, then it is either hyper-
bolic space or H2ðkÞ � R. In this sense, Corollary 3.1 also generalizes Theorem
2 in [3] from m-quasi-Einstein to generalized m-quasi-Einstein structure.
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