Z. J. HU AND D. H. LI KODAI MATH. J. **41** (2018), 42–51

ON 3-DIMENSIONAL HOMOGENEOUS GENERALIZED *m*-QUASI-EINSTEIN MANIFOLDS

Zejun Hu and Dehe Li

Abstract

In this paper, we show that for 3-dimensional homogeneous manifolds only the space form can carry a proper generalized m-quasi-Einstein structure.

1. Introduction

Recently, there has been increasing interest on the quasi-Einstein manifolds, which generalize the notion of Einstein manifolds. Recall that a Riemannian manifold (M^n, g) with a potential function f is called *m*-quasi-Einstein if its associated *m*-Bakry-Emery Ricci tensor $\operatorname{Ric}_f^m := \operatorname{Ric} + \nabla^2 f - \frac{1}{m} df \otimes df$ is a constant multiple of the metric g (cf. [4] and the references therein). An *m*-quasi-Einstein manifold will be called trivial if f is constant. Otherwise, it will be called nontrivial. One of the motivations to study *m*-quasi-Einstein manifold is its close relation with warped product Einstein metrics. As a matter of fact, it was shown in [12] that an *n*-dimensional *m*-quasi-Einstein manifold is exactly the manifold which is the base of an (n + m)-dimensional Einstein warped product.

To extend the notion of *m*-quasi-Einstein, Catino [5] introduced the concept of generalized quasi-Einstein manifold, and as its particular case, Barros and Ribeiro [2] further proposed to consider the following notion of gradient generalized *m*-quasi-Einstein manifold, or simply *generalized m*-quasi-Einstein manifold:

DEFINITION 1.1 ([2]). For a positive integer m, we say that a manifold (M^n, g) with a potential function f is generalized m-quasi-Einstein if there exists a smooth function λ on M such that the Ricci tensor Ric of (M^n, g) satisfies

²⁰¹⁰ Mathematics Subject Classification. Primary 53C21; Secondary 53C25, 53C24.

Key words and phrases. Generalized m-quasi-Einstein, homogeneous 3-manifold, Einstein manifold, Bakry-Emery Ricci tensor.

This project was supported by NSFC, Grant No. 11371330. Received August 16, 2016; revised March 2, 2017.

the relation

(1.1)
$$\operatorname{Ric} + \nabla^2 f - \frac{1}{m} df \otimes df = \lambda g,$$

where ∇^2 and \otimes denote the Hessian and the tensorial product, respectively. If, in particular, the function λ in (1.1) is non-constant on M, the generalized *m*-quasi-Einstein manifold is called proper.

In recent years, generalized *m*-quasi-Einstein manifolds have been extensively studied by many mathematicians, see e.g. [1, 2, 5, 7, 8, 9, 10, 11, 13, 15], among many others. As usual, one can define the positive function $u = e^{-f/m}$ on M^n so that (1.1) can be rewritten as

(1.2)
$$\operatorname{Ric} -\frac{m}{u} \nabla^2 u = \lambda g.$$

Due to such a fact, the generalized *m*-quasi-Einstein manifold satisfying (1.1) is usually denoted by (M^n, g, u, λ) , where $u = e^{-f/m}$. Moreover, (M^n, g, u, λ) will be called *trivial* if the potential function *u* is constant. Otherwise, it will be called *nontrivial*. It is easy to see that an *n*-dimensional $(n \ge 3)$ proper generalized *m*-quasi-Einstein manifold must be nontrivial. Obviously, the triviality of (M^n, g, u, λ) implies that (M^n, g) is Einstein. But, generally, the converse is not true. To see this fact more clearly, we would recall that in [2] it was shown that, as trivial Einstein manifold, each of the three kinds of space forms can possess a nontrivial generalized *m*-quasi-Einstein structure.

In [3], Barros et al. studied *m*-quasi-Einstein structures on 3-dimensional homogeneous Riemannian manifolds. As the main theorem, they proved that if a 3-dimensional homogeneous manifold carries an *m*-quasi-Einstein structure then it is either Einstein or $\mathbf{H}^2(k) \times \mathbf{R}$, where $\mathbf{H}^2(k)$ denotes the 2-dimensional hyperbolic space with sectional curvature *k*.

In [4] Case-Shu-Wei showed that a nontrivial *m*-quasi-Einstein manifold is Einstein if and only if it is isometric to a hyperbolic space or a special Einstein warped product. That is to say, neither Euclidean space \mathbb{R}^n nor sphere \mathbb{S}^n can carry a nontrivial *m*-quasi-Einstein structure. Along with the result due to Barros et al. [3], we find that for 3-dimensional homogeneous manifolds only hyperbolic space and $\mathbb{H}^2(k) \times \mathbb{R}$ can carry nontrivial *m*-quasi-Einstein structures. However, there do exist manifolds that can not carry any nontrivial *m*-quasi-Einstein structure but can possess a proper generalized *m*-quasi-Einstein structure. Indeed, according to [2], both \mathbb{R}^n and \mathbb{S}^n can carry a proper generalized *m*-quasi-Einstein structure. Along this direction, in this work, we will focus on proper generalized *m*-quasi-Einstein structure on homogeneous 3-manifolds.

As is well known, every space form can carry a proper generalized m-quasi-Einstein structure. In fact, this has been stated as Examples 1, 2 and 3 in [2] with detailed discussions. Now, the following problem becomes interesting.

ZEJUN HU AND DEHE LI

PROBLEM. Are space forms the only 3-dimensional homogeneous manifolds that can carry a proper generalized *m*-quasi-Einstein structure?

In this paper, as the main result we will give a positive answer to this problem.

THEOREM 1.1. Let (M^3, g) be a 3-dimensional homogeneous manifold that can carry a proper generalized m-quasi-Einstein structure, then (M^3, g) must be a space form.

Remark 1.1. As has been mentioned above, the proper generalized *m*-quasi-Einstein structure on each space form has been studied in [2]. In fact, as shown in Theorem 1 of [2], the potential function f for that situation can be explicitly determined on space forms up to constant.

Remark 1.2. Due to the relation between the *m*-quasi-Einstein manifold and the (n + m)-dimensional Einstein warped product, in the definition of generalized *m*-quasi-Einstein manifold, *m* is usually assumed to be a positive integer (cf. [1, 2]). On the other side, we would like to point out that, the results in this paper also hold for any positive constant *m*.

2. Preliminary

The classification of simply connected 3-dimensional homogeneous manifolds is well known (see W. P. Thurston [14]). In fact, such a manifold has an isometry group of dimension 3, 4 or 6. If the dimension of the isometry group is 6, then the manifold is a space form. If the dimension of the isometry group is 3, the manifold has the geometry of the Lie group Sol₃. Whereas if the dimension of the isometry group is 4, such a manifold is a Riemannian fibration over a 2-dimensional space form $N^2(k)$ with constant Gauss curvature k, the fibers are totally geodesic and there exists a one-parameter family of translations along the fibers, generated by a unit Killing vector field ξ . These manifolds can be classified, up to isometry, by k and the so-called bundle curvature τ , the latter is defined by the equation $\overline{\nabla}_X \xi = \tau X \times \xi$ for any vector field X, where \times denotes the vector product and $\overline{\nabla}$ denotes the Riemannian connection. Moreover, k and τ can be any real numbers satisfying $k \neq 4\tau^2$. The manifold with 4-dimensional isometry group as described above is always denoted by $E^3(k,\tau)$. According to the classification, if $\tau \neq 0$ and k > 0, $E^3(k, \tau)$ is compact, and it has the isometry group of the Berger sphere $\mathbf{S}_{k,\tau}^3$. If $E^3(k, \tau)$ is non-compact, it has isometry group of one of the following Riemannian manifolds:

$$\begin{cases} \mathbf{S}^{2}(k) \times \mathbf{R}, & \text{when } \tau = 0, \, k > 0; \\ \mathbf{H}^{2}(k) \times \mathbf{R}, & \text{when } \tau = 0, \, k < 0; \\ \text{Nil}_{3}, & \text{when } \tau \neq 0, \, k = 0; \\ \mathbf{PSL}_{2}(\mathbf{R}), & \text{when } \tau \neq 0, \, k < 0. \end{cases}$$

Here Nil₃ stands for the classical Heisenberg group endowed with a left invariant metric, $PSL_2(\mathbf{R})$ is the universal cover of the Lie group $PSL_2(\mathbf{R})$ (endowed with a 2-parameter family of homogeneous metrics).

3. Generalized *m*-quasi-Einstein structure

Based on the dimension of the isometry group, we will discuss 3-dimensional homogeneous generalized *m*-quasi-Einstein manifolds in different cases. Since homogeneous 3-manifolds with isometry group of dimension 6 are space forms, and the generalized *m*-quasi-Einstein structure on space forms has been treated in [2], in what follows, we will mainly deal with homogeneous 3-manifolds with isometry group of dimension 3 and 4, respectively, in order to see whether there exists a proper generalized *m*-quasi-Einstein structure on these manifolds.

3.1. Homogeneous 3-manifold with isometry group of dimension 3. In this subsection, we will show that homogeneous 3-manifolds with isometry group of dimension 3 do not carry any generalized *m*-quasi-Einstein structure. As mentioned above, such a manifold possesses the geometry modeled of the Lie group Sol_3 . We will prove the following

PROPOSITION 3.1. Sol₃ does not carry any generalized *m*-quasi-Einstein structure.

We first recall the geometry of the space Sol_3 , for details see section 2 in [6]. Exactly, Sol_3 can be viewed as \mathbf{R}^3 endowed with the metric

(3.1)
$$\hat{g} = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2,$$

where (x, y, z) are canonical coordinates of \mathbb{R}^3 . It is worthy to note that Sol₃ has a Lie group structure with respect to which the above metric is left-invariant. A canonical orthonormal frame with respect to \hat{g} is given by

$$\{E_1 = e^{-z}\partial_x, E_2 = e^z\partial_y, E_3 = \partial_z\}.$$

By using this frame we get the following lemma.

LEMMA 3.1 (see also [3]). Let us consider on Sol_3 the metric and the frame given by (3.1) and (3.2), respectively. Then we have

$$[E_1, E_2] = 0, \quad [E_1, E_3] = E_1, \quad [E_2, E_3] = -E_2.$$

The Riemannian connection $\hat{\nabla}$ of Sol₃ can be expressed by:

$$\begin{split} \nabla_{E_1} E_1 &= -E_3, \quad \nabla_{E_1} E_2 = 0, \qquad \nabla_{E_1} E_3 = E_1, \\ \hat{\nabla}_{E_2} E_1 &= 0, \qquad \hat{\nabla}_{E_2} E_2 = E_3, \quad \hat{\nabla}_{E_2} E_3 = -E_2, \\ \hat{\nabla}_{E_3} E_1 &= 0, \qquad \hat{\nabla}_{E_3} E_2 = 0, \qquad \hat{\nabla}_{E_3} E_3 = 0. \end{split}$$

ZEJUN HU AND DEHE LI

Moreover, the Ricci tensor Ric of Sol₃ satisfies

 $\hat{R}_{11} = \hat{R}_{22} = 0, \quad \hat{R}_{33} = -2, \quad \hat{R}_{ij} = 0 \quad for \ i \neq j,$

where $\hat{\boldsymbol{R}}_{ij} = \widehat{\operatorname{Ric}}(E_i, E_j)$.

To prove Proposition 3.1, we also need the next lemma.

LEMMA 3.2. Suppose that $(Sol_3, \hat{g}, u, \lambda)$ is a generalized m-quasi-Einstein structure on Sol₃. Then the function u = u(x, y, z) satisfies the following equations: (1) $u_{xy} = 0$,

(1)
$$u_{xz} = u_x$$
,
(2) $u_{xz} = u_x$,
(3) $u_{yz} = -u_y$,
(4) $e^{-2z}u_{xx} + u_z = -\frac{\lambda u}{m}$,
(5) $e^{2z}u_{yy} - u_z = -\frac{\lambda u}{m}$,
(6) $u_{zz} = -\frac{\lambda + 2}{m}u$.

Proof. With respect to the orthonormal frame (3.2), we can rewrite (1.2) as:

$$\hat{\nabla}^2 u(E_i, E_j) = \frac{u}{m} (\hat{R}_{ij} - \lambda \delta_{ij}).$$

From Lemma 3.1 we get $\hat{R}_{12} = 0$, and then $\hat{\nabla}^2 u(E_1, E_2) = 0$.

On the other hand, using $\hat{\nabla}_{E_1}E_2 = 0$, we can calculate

$$\nabla^2 u(E_1, E_2) = \hat{g}(\nabla_{E_1} \nabla u, E_2) = E_1(E_2(u)) - \hat{g}(\nabla u, \nabla_{E_1} E_2)$$

= $E_1 E_2(u) = u_{xy}.$

It follows that $u_{xy} = 0$.

^ **-**

Similarly, direct calculations of the following terms

$$\hat{\nabla}^2 u(E_1, E_3), \, \hat{\nabla}^2 u(E_2, E_3), \, \hat{\nabla}^2 u(E_1, E_1), \, \hat{\nabla}^2 u(E_2, E_2) \, \text{ and } \, \hat{\nabla}^2 u(E_3, E_3)$$

 \square

will verify all other assertions.

Proof of Proposition 3.1. If Sol₃ carries a generalized *m*-quasi-Einstein structure (Sol₃, \hat{g} , u, λ), we first use (4) and (6) of Lemma 3.2 to deduce that the function u satisfies

$$e^{-2z}u_{xx}+u_z=u_{zz}+\frac{2}{m}u,$$

and then

(3.3)
$$e^{-2z}u_{xxy} + u_{zy} = u_{zzy} + \frac{2}{m}u_{y}.$$

According to (1) and (3) of Lemma 3.2, we have

$$u_{xxy} = u_{xyx} = 0, \quad u_{zzy} = u_{yzz} = -u_{yz} = u_y.$$

Putting the above results into (3.3) we obtain

$$\left(\frac{2}{m}+2\right)u_y=0,$$

which implies $u_y = 0$.

Similarly, using (1), (2), (5) and (6) of Lemma 3.2, we can also get $u_x = 0$. Moreover, (4) and (5) of Lemma 3.2 give

$$2u_z = e^{2z} u_{yy} - e^{-2z} u_{xx}.$$

It follows from $u_x = u_y = 0$ that we further get $u_z = 0$. Therefore, u is a constant and thus Sol₃ is Einstein.

This is a contradiction, by which the proof of Proposition 3.1 is completed. \Box

3.2. Homogeneous 3-manifold with isometry group of dimension 4. In this subsection, we concentrate on the problem whether there exists a proper generalized m-quasi-Einstein structure on homogeneous 3-manifolds with isometry group of dimension 4. The main result is the following

PROPOSITION 3.2. Nil₃ and $PSL_2(\mathbf{R})$ do not carry any generalized m-quasi-Einstein structure.

To begin with, we recall that a noncompact homogeneous 3-manifold with isometry group of dimension 4 can be viewed as \mathbf{R}^3 endowed with the metric

(3.4)
$$g_{k,\tau} = \begin{cases} dx^2 + dy^2 + [\tau(y \, dx - x \, dy) + dt]^2, & \text{if } k = 0, \\ \rho^2(dx^2 + dy^2) + [2k\tau\rho(x \, dy - y \, dx) + dt]^2, & \text{if } k \neq 0, \end{cases}$$

where $\rho = \frac{2}{1 + k(x^2 + y^2)}$. An orthonormal frame with respect to $g_{k,\tau}$ is given by

$$\{E_1 = \partial_x - \tau y \partial_t, E_2 = \partial_y + \tau x \partial t, E_3 = \partial_t\}, \qquad \text{if } k = 0,$$

(3.5)
$$\left\{E_1 = \frac{1}{\rho}\partial_x + 2k\tau y\partial_t, E_2 = \frac{1}{\rho}\partial_y - 2k\tau x\partial_t, E_3 = \partial_t\right\}, \quad \text{if } k \neq 0.$$

Next, we need the following lemma whose proof can be found in [3].

LEMMA 3.3 ([3]). Let $E^3(k, \tau)$ be a noncompact homogeneous 3-manifold with isometry group of dimension 4, whose metric and its associated orthonormal frame are given by (3.4) and (3.5), respectively. Then we have

$$[E_1, E_2] = -kyE_1 + kxE_2 + 2\tau E_3, \quad [E_1, E_3] = [E_2, E_3] = 0.$$

With $\overline{\nabla}$ the Riemannian connection we have the following calculations:

$$\begin{split} \overline{\nabla}_{E_1}E_1 &= kyE_2, & \overline{\nabla}_{E_1}E_2 &= -kyE_1 + \tau E_3, & \overline{\nabla}_{E_1}E_3 &= -\tau E_2, \\ \overline{\nabla}_{E_2}E_1 &= -kxE_2 - \tau E_3, & \overline{\nabla}_{E_2}E_2 &= kxE_1, & \overline{\nabla}_{E_2}E_3 &= \tau E_1, \\ \overline{\nabla}_{E_3}E_1 &= -\tau E_2, & \overline{\nabla}_{E_3}E_2 &= \tau E_1, & \overline{\nabla}_{E_3}E_3 &= 0. \end{split}$$

Moreover, the Ricci tensor $\overline{\text{Ric}}$ of $E^3(k, \tau)$ satisfies

$$\bar{R}_{11} = \bar{R}_{22} = k - 2\tau^2, \quad \bar{R}_{33} = 2\tau^2, \quad \bar{R}_{ij} = 0 \quad for \ i \neq j,$$

where $\overline{R}_{ij} = \overline{\operatorname{Ric}}(E_i, E_j)$.

To prove Proposition 3.2, we also need the following lemma.

LEMMA 3.4. Let $E^3(k,\tau)$ be a noncompact homogeneous 3-manifold with isometry group of dimension 4. Suppose that $(E^3(k,\tau), g_{k,\tau}, u, \lambda)$ is a generalized m-quasi-Einstein structure on $E^3(k,\tau)$. Then, with respect to the orthonormal frame given by (3.5), the functions u and λ satisfy the following equations:

(1) $E_1E_2(u) + kyE_1(u) - \tau E_3(u) = 0,$ (2) $E_1E_3(u) + \tau E_2(u) = 0,$ (3) $E_2E_3(u) - \tau E_1(u) = 0,$ (4) $E_1E_1(u) - kyE_2(u) = \frac{u}{m}(k - 2\tau^2 - \lambda),$ (5) $E_3E_3(u) = \frac{u}{m}(2\tau^2 - \lambda).$

Proof. Since $(E^3(k,\tau), g_{k,\tau}, u, \lambda)$ is a generalized *m*-quasi-Einstein structure, from (1.2) we obtain

$$\overline{\nabla}^2 u(E_1, E_2) = \frac{u}{m} \overline{R}_{12} = 0.$$

On the other hand, by definition and Lemma 3.3, we have

$$\overline{\nabla}^2 u(E_1, E_2) = g_{k,\tau}(\overline{\nabla}_{E_1}\overline{\nabla} u, E_2) = E_1(E_2(u)) - g_{k,\tau}(\overline{\nabla} u, \overline{\nabla}_{E_1}E_2)$$
$$= E_1E_2(u) + kyE_1(u) - \tau E_3(u)$$

and the first assertion (1) follows.

Similarly, direct calculations of the following terms

$$\overline{\nabla}^2 u(E_1, E_3), \overline{\nabla}^2 u(E_2, E_3), \overline{\nabla}^2 u(E_1, E_1) \text{ and } \overline{\nabla}^2 u(E_3, E_3)$$

will verify the assertions (2), (3), (4) and (5), respectively.

Proof of Proposition 3.2. If Nil₃ or $PSL_2(\mathbf{R})$ carries a generalized *m*-quasi-Einstein structure, then according to (4) and (5) of Lemma 3.4, the potential

function u satisfies

(3.6)
$$E_3 E_3(u) + \frac{u}{m}(k - 4\tau^2) = E_1 E_1(u) - ky E_2(u).$$

Moreover, because of item (1) of Lemma 3.4 along with $E_3(y) = 0$, we have

$$E_3E_1E_2(u) + kyE_3E_1(u) - \tau E_3E_3(u) = 0,$$

and then it follows from Lemma 3.3 and items (1)-(3) of Lemma 3.4 that

(3.7)

$$\tau E_3 E_3(u) = E_3 E_1 E_2(u) + ky E_3 E_1(u)$$

$$= E_1 E_3 E_2(u) + ky E_1 E_3(u)$$

$$= \tau E_1 E_2 E_3(u) + ky E_1 E_3(u)$$

$$= \tau E_1 E_1(u) - \tau ky E_2(u).$$

Comparing (3.6) with (3.7), noting that u > 0 and $\tau \neq 0$ for both Nil₃ and $PSL_2(\mathbf{R})$, we get $k = 4\tau^2$. This is a contradiction to the assumption that the noncompact homogeneous 3-manifold has an isometry group of dimension 4.

This completes the proof of Proposition 3.2.

3.3. Proof of Theorem 1.1. Propositions 3.1, 3.2 have shown that Sol₃, Nil₃ and $PSL_2(\mathbf{R})$ do not carry any generalized *m*-quasi-Einstein structure. In addition, it has been proved in [1] that a compact generalized *m*-quasi-Einstein manifold with constant scalar curvature must be isometric to the standard sphere. Hence, based on the classification of homogeneous 3-manifolds, all remaining is to verify the following:

CLAIM. Both $S^2(k) \times R$ and $H^2(k) \times R$ do not carry any proper generalized *m*-quasi-Einstein structure.

Note that both $S^{2}(k) \times R$ and $H^{2}(k) \times R$ are of parallel Ricci tensor. On the other hand, generalized *m*-quasi-Einstein manifolds with parallel Ricci tensor have been classified in [8] and can be stated as follows:

THEOREM 3.1 ([8]). Let (M^n, g, u, λ) be a complete n-dimensional $(n \ge 3)$ nontrivial generalized m-quasi-Einstein manifold which possesses parallel Ricci tensor. Then (M^n, g) is isometric to one of the following manifolds:

- (1) a space form,

- (1) a space p(2) \mathbf{D}_{c}^{n} , (3) $\mathbf{R} \times N^{n-1}(b)$, (4) $\mathbf{H}^{p}(a) \times N^{n-p}(b)$, $b = \frac{m+p-1}{p-1}a$,
- (5) $\mathbf{D}_{c}^{p} \times N^{n-p}(b), \ b = (1 m p)c^{2},$

where a, b are negative constants, $N^{k}(b)$ denotes a k-dimensional Einstein manifold with scalar curvature kb, here we recall that traditionally one also calls b the Einstein constant of $N^k(b)$; $\mathbf{H}^p(a)$ denotes the p-dimensional hyperbolic space with Einstein constant a; \mathbf{D}_c^k denotes a k-dimensional Einstein warped product $\mathbf{R} \times_{c^{-1}e^{cr}} F^{k-1}$, i.e. $\mathbf{R} \times F^{k-1}$ endowed with the metric $dr^2 + (c^{-1}e^{cr})^2 g_F$, c is a positive constant, F^{k-1} with metric g_F is a Ricci flat manifold.

It follows from Theorem 3.1 that $S^2(k) \times \mathbf{R}$ do not carry any nontrivial generalized *m*-quasi-Einstein structure. Furthermore, Remark 2.2 in [8] shows that, if $\mathbf{R} \times N^{n-1}(b)$ in Theorem 3.1 possesses a generalized *m*-quasi-Einstein structure ($\mathbf{R} \times N^{n-1}(b), g, u, \lambda$), then λ must be a negative constant. That is to say, though $\mathbf{H}^2(k) \times \mathbf{R}$ possesses an *m*-quasi-Einstein structure, as generalized *m*-quasi-Einstein manifold, it must be not proper.

This verifies the claim. Accordingly, we complete the proof of Theorem 1.1. \Box

Actually, the above arguments also imply the following corollary, which extends Theorem 1.1 without the assumption of properness.

COROLLARY 3.1. Let (M^3, g) be a 3-dimensional homogeneous manifold that can carry a generalized m-quasi-Einstein structure, then (M^3, g) is either a space form or $\mathbf{H}^2(k) \times \mathbf{R}$.

Remark 3.1. Theorem 2 in [3] shows that, if a 3-dimensional homogeneous manifold carries a nontrivial *m*-quasi-Einstein structure, then it is either hyperbolic space or $\mathbf{H}^2(k) \times \mathbf{R}$. In this sense, Corollary 3.1 also generalizes Theorem 2 in [3] from *m*-quasi-Einstein to generalized *m*-quasi-Einstein structure.

Acknowledgements. We would like to thank the referees for their helpful comments and suggestions regarding this paper.

References

- A. BARROS AND J. N. GOMES, A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl. 401 (2013), 702–705.
- [2] A. BARROS AND E. RIBEIRO JR, Characterizations and integral formulae for generalized m-quasi-Einstein metrics, Bull. Braz. Math. Soc. (N.S.) 45 (2014), 325–341.
- [3] A. BARROS, E. RIBEIRO JR AND J. SILVA FILHO, Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds, Differential Geom. Appl. 35 (2014), 60–73.
- [4] J. CASE, Y. SHU AND G. WEI, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93-100.
- [5] G. CATINO, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), 751–756.
- [6] B. DANIEL AND P. MIRA, Existence and uniqueness of constant mean curvature spheres in Sol₃, J. Reine Angew. Math. 685 (2013), 1–32.
- [7] Y. DENG, A note on generalized quasi-Einstein manifolds, Math. Nachr. 288 (2015), 1122-1126.

- [8] Z. HU, D. LI AND J. XU, On generalized *m*-quasi-Einstein manifolds with constant scalar curvature, J. Math. Anal. Appl. 432 (2015), 733–743.
- [9] Z. HU, D. LI AND S. ZHAI, On generalized m-quasi-Einstein manifolds with constant Ricci curvatures, J. Math. Anal. Appl. 446 (2017), 843–851.
- [10] G. HUANG AND F. ZENG, A note on gradient generalized quasi-Einstein manifolds, J. Geom. 106 (2015), 297–311.
- [11] J. L. JAUREGUI AND W. WYLE, Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds, J. Geom. Anal. 25 (2015), 668–708.
- [12] D. S. KIM AND Y. H. KIM, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc. 131 (2003), 2573–2576.
- [13] B. LEANDRO NETO, Generalized quasi-Einstein manifolds with harmonic anti-self dual Weyl tensor, Arch. Math. 106 (2016), 489–499.
- [14] W. P. THURSTON, Three-dimensional geometry and topology 1, Princeton Mathematical Series 35, Princeton Univ. Press, Princeton, 1997.
- [15] L. WANG, Rigid properties of quasi-almost-Einstein metrics, Chin. Ann. Math. Ser. B. 33 (2012), 715–736.

Zejun Hu School of Mathematics and Statistics Zhengzhou University Zhengzhou 450001 P. R. China E-mail: huzj@zzu.edu.cn

Dehe Li School of Mathematics and Statistics Zhengzhou University Zhengzhou 450001 P. R. China E-mail: lidehehe@163.com