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AN ADDITION TYPE FORMULA FOR THE DOUBLE
COTANGENT FUNCTION
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Abstract

In this paper, we prove an addition type formula for the double cotangent function.
Furthermore, we see that the addition theorem of the usual cotangent function, the
reciprocity laws of (classical and higher) Dedekind sums, Lerch’s functional equation
and Ramanujan’s formula can be deduced from it.
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1. Introduction

An explicit construction of class fields over an algebraic number field is
one of the attractive problems in number theory. The problem is, for a given
algebraic number field K, to find a function Fg whose special values generate
abelian extensions such that we can describe the reciprocity laws of them
explicitly. By the Kronecker-Weber theorem, special values of the exponential
function generate the maximal abelian extension of the rational number field.
The theory of complex multiplication shows that, when K is an imaginary
quadratic field, a special value of the j-function and special values of the elliptic
function whose period lattice is the ring of integers of K generate the maximal
abelian extension of K. It is also known that, when K is a CM-field, the
complex multiplication of abelian varieties gives rise to certain family of abelian
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extensions over K. However, for other number fields, we don’t know much
about this problem.

The double sine function is a function considered to be a candidate for
Fx when K is a real quadratic field. In fact, Shintani [14] conjectured that a
product of division values of the double sine function is a unit in a certain abelian
extension over K, and proved it in some special cases.

The double sine function is defined as follows. Let w;, w, be two nonzero
complex numbers. Assume that w;/w, is not a negative real number. Put
o = (w1,w;) and define the double Hurwitz zeta function as

o0
Llsx0)= Y (x+mor+mw) ™,

ny,n;=0

where (x4 njw; +nmawy) ™ means exp[—s log(x + nmo; +mw,)] and the loga-
rithm is taken as in [6, §16]. {5(s,x, ) is absolutely convergent when Re(s) > 2,
meromorphically continued to the whole complex plane and holomorphic at
s =0. The double gamma and sine functions are defined respectively as

)
s=0

Siny (x, w) = Dy (x, 0) ' Ta(w) + w0y — x, ®).

0
FZ('X? (D) = exp(aCZ(sa X, (l))

It is known that the double gamma and sine functions have similar properties
to that of the usual gamma and sine functions (for example, see [4], [5], [6] and
[11]). Koyama and Kurokawa [10] investigated the addition formula for the
double sine function from the view point of formal group laws, but an analogue
of the addition theorem for the usual sine function is not known. Since a
suitable addition theorem for the double sine function would imply the alge-
braicity of the division value of the double sine function, finding it is regarded
as quite important.

The double cotangent function is defined by

Coty(x,0) = a’%lc log Sin, (x, ®).

Since the addition theorem of the usual sine function can be written as that of the
cotangent function, we expect that there is a close relation between the addition
formulas for the double sine and cotangent functions. In this paper, we study
the addition formula for the double cotangent function.

Let’s put ¢;(x) = m cot(nx). Then the addition theorem for the usual cotan-
gent function may be represented as follows:

(L) ax)a(y) —aealx+y) —a)elx+y) = (x)er(x + y) = 0.

The purpose of this paper is to find a formula similar to this, which Cot(x, ®)
satisfies.
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The main theorem of this paper is as follows. We say that a real number
o 18 generic if and only if

lim [jmof| " =1,
m—o0
where we put ||x|| := min{|x —n|;n € Z} for x e R. Furthermore, we set
R =—— t— k 4, k
(x1, X2, @) o (Z cot = (x1 + kn)ls(4, X2 + kan, o)
. n
+ cot — (x1 — kwy)h(4,x) — 0 — wr — kwy, —o
kz:; 601( 1 2)(a(4, %0 — w1 — ) > ))
- (Z cot — (x1 + ko )la(4, 2 + ke, )
(69)) wy

+ Z cot i(xl — k1){5(4, %2 — 01 — s — kwl,—w)>.
=1 @2

THEOREM 1.1 (Main theorem). Assume that one of the following conditions
holds:

(i) 602/601 ¢ R.

(ii) w2/w1 € Q.

(i) wy/w, and w\/w, are both generic and y ¢ R.
Then we have

(1.2) Cotg3 (x, @) Coty(y,w) + Cotf)(x—k y,0) Coty(y, )
3

< ) Cot2 X+ y,0) Cotffk) (x, )
=0
= —6R( ;01 + 0 — X,0) + 6R(y,x + y,0).

Remark 1.2. Under any one of the three conditions of Theorem 1.1, the
absolute values of cot wi( y + kw;) are bounded as k — co. Thus the infinite

series appearing in the definition of R(y,w; + wy — x,®) and R(y,x + y,®) are
all absolutely convergent. However, when y is a real number and w,/w, ®;/w,
are both generic, convergence of R(y,w; + w; —x,m) or R(y,x+ y,®) is am-
biguous.

We show that the main theorem in fact implies (1.1). Moreover, we prove
that the reciprocity laws of (classical and higher) Dedekind sums, Lerch’s func-
tional equation and Ramanujan’s formula are obtained from the main theorem.
In this sense, Theorem 1.1 includes all these formulas.
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Although it is natural to ask whether R(xj,x»,®) can be represented in a
simpler way, we are currently unable to find such a representation. However, if
it exists, we may gain more formulas of the double cotangent and sine functions.
Meanwhile, by letting © = w,/w; tend to ico in (1.2), certain identities for Euler’s
double zeta values are obtained, where R(x|,x,,®) plays important role in the
argument. The detail of this result will be given in a forthcoming paper.

This paper is organized as follows. In section 2, we review the proof of
the addition theorem for the usual cotangent function based only on the partial
fractional decomposition. In section 3, we summarize the basic properties of
the double cotangent function. In section 4, we give the proof of the main
theorem. In section 5, we see that the addition theorem of the usual cotangent
function, the reciprocity laws of (classical and higher) Dedekind sums, Lerch’s
functional equation and Ramanujan’s formula can be deduced from the main
theorem.

2. Addition theorems for the cotangent function

In this section, we consider the usual cotangent function. For simplicity, we
put

¢1(x) = m cot(zmx).

Then the function c¢; satisfies a following theorem:

THEOREM 2.1.
ci(x)er(y) —a(y)ef(x +y) = cr(x)ef(x + y) = cj(x)er(x + y) = 0.

Theorem 2.1 is ecasily obtained by clearing the fraction in the addition
theorem
2

_ama(y) —=
(2.1) ci(x+y) = atal)

and differentiating the both sides with respect to x, but Eisenstein showed this
based only on the partial fractional decomposition of ¢;. Since the idea of
Eisenstein will also be used in the proof of the main theorem, we review it.

Eisenstein’s proof is as follows. Recall that ¢;(x) has the following partial
fractional decomposition:

(2.2) ci(x) = ! + i ! + :
’ T f\x+n x-n)
By differentiating this repeatedly, for k > 2, we have
k—1
(2.3) ED_en ey — 1

(k_l)'CI ( )7116Z(x+n)k
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The key to the proof is the following lemma:

LEMMA 2.2. Put r=p—+gq. Then we have, for two positive integers i, I,

1 S bh+k-1 1 S h+1-1 1
phgh — Z( k ) ph—kphik + Z( / ) gh Il

k=0 =0

Lemma 2.2 is obtained by dividing the both sides of r=p+g¢q by pgr,
differentiating /; — 1 times with respect to p and /, — 1 times with respect to g¢.
Especially when /; =/, =2, Lemma 2.2 becomes

1 N 2 n 1 n 2
P22 p22 prd T gy
By adding together the two identities obtained by putting

(2.4)

(p,g)=(x+my+n—m),(x—m—1,y+n+m+1)
in (2.4) and applying >, to the both sides, we have

(( +m)’( . )2>+ 0 dq4n _jat)vabin
mezZ \\X T M yrn—m

(x+y+n)? (x+y+n)? (x+y+n)’

Because of the periodicity, we may replace ¢;(y + n) and cfl)( y+n) by ci(p)
and c%l)( »), respectively. Applying > _, to the both sides yields

W) = eV @+ 3) = eV x4 3) = P (x+ p)(er(x) + e ()

because of the absolute convergence of the series in the left hand side. By
integrating the both sides of this with respect y, we obtain the theorem (for the
proof of the constant of integration being 0, see [15, Chapter 1§4]).

Remark 2.3. Conversely it is possible to deduce (2.1) from Theorem 2.1 by
integrating with respect to x. In fact the constant of integration is determined by
using the identity cj(x) + ¢1(x)? + 7% = 0, which can be obtained from Theorem
2.1. Thus Theorem 2.1 and (2.1) are equivalent and Theorem 2.1 is regarded as
the addition theorem for the cotangent function.

3. Properties of the double cotangent function

In this section, we summarize the basic properties of the double cotangent
function. These will be used in Section 4 and Section 5.

ProposiTION 3.1.

1
Coty(x + w1, m) = Coty(x,m) — w—cl <wi>
2 2

Coty(x 4+ wr, w) = Coty(x,m) — a)icl <wi>
1 1
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Proposition 3.1 follows immediately from the quasiperiodicity of the double
sine function (11, Theorem 2.1 (a)]). By using Proposition 3.1 repeatedly, for
non-negative integers n; and n,, we have the following:

Cotz(x + nwy + nawy, w)

12 /x4t 15 Xt
= Coty(x,0) — — c - c .
o) - oY a2 - 3 ()

r

(3.1)

Coty(x — njw; — nywy, )

1 & X — 1wy 1 & X —rog
= Cot — — — .
z(x,w)+w ch( o +w2 1 cl s

153

PrOPOSITION 3.2. For ¢ # 0, we have

Cotay(cx, co) 1 Cota(x, m).
¢

Proposition 3.2 is deduced from the homogeneity of the double sine function
((11, Theorem 2.1 (e)]). In [11], this formula is proved for ¢ > 0, but the same
proof works for ¢ e C*.

ProrosiTiION 3.3.  Coty(x,w) has the following partial fractional decom-
position:

1 1
(3.2) Cotr(x,m) =y(@) + - - ———~

N Z 1 3 1
X+ mowy +mw;  x— (n+ Doy — (np+ Do

np,ny >0
(”1 s I’lz) #* (07 0)

2 n w1 + @y
mow +mwy  (njw; + nng)2 ’

where y(®) is a constant depends only on o, and the infinite series on the right
hand side are absolutely convergent. Therefore, when k > 1, we have

k
—( kll) Cotgk) (x, )
1 1

nl‘n2>0<(x+n1w1 +n2w2)k+1 (x—(m+ Do, — (m + l)wz)“l).
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Proof. From the definition of the double sine function, it follows that

[h(x,0) Thw +w —x,0)
D(x,0) Do +o-x0)

(3.3) Cota(x,m) =

By the infinite product representation of the double gamma function

_ x2 X
Iy (x, ) = py(o) exp <2722 + me) X H (1 + W)

ny,np >0
(m1,n2) #(0,0)

X x?
-exp| — + 5 |
noi +mw  2(njw; + npw,)

which was obtained by Barnes [6, §25] (751, 72, and p,(w) are constants), we have

I (x, o) 1
3.4 e il
(34) a(x, ) PaX F P T
1 1 X
> - + ).
m \X T ot moy - mor+moy - (njw) 4 nyw;)
Since

1 1 X

X +mwy +mwy o+ moy (no +n2w2)2

x2

(X + moy + nywy) (mw; + nyw,)*’

the infinite series on the right hand side of (3.4) is absolutely convergent. By
(3.4) and (3.3), we have (3.2). Absolute convergence of the right hand side of
(3.2) follows that of (3.4). O

Remark 3.4. Proposition 3.1 can be also deduced from Proposition 3.3, as
the periodicity of ¢;(x) can be deduced from the partial fractional decomposition
(2.2).

PrROPOSITION 3.5.  Assume that one of the following conditions holds:
(i) o1, Im(wy), Im(x), Im(x/w,) > 0.
(i) Both w/w,y and wy/w; are generic and Im(x) > 0.

Then we have

COtz(x, (1)) — _Z <Cl (%) _ 7Zi> eka(x/(/)l) + w_zz (CI <nw_w21) _ 7Ti> eZmn(x/wz)

w1 k=1 1 n=1

nix  mi ( 1 1 >
+ - —+—].
wiwy 2 \w; o
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Proposition 3.5 is proved by taking logarithmic derivative of the expressions
in [9, Theorem 2] and [13, Proposition 5.

COROLLARY 3.6. Assume one of the conditions in Proposition 3.5 holds. As
|x| = o0, we have the following:

nix w1 1 _1
Coty(x,m) = ) (w—1+w_2> +o(|x[ ),
C t(l) — ni -1
o 2 (X, m) 1 + 0(|X| )a

Cot¥(x,m) = o(Ix|™") (k>2).

4. Proof of the main theorem

We are now in a position to prove Theorem 1.1. Throughout this section,

Z=x+y,
m= (m,m),
n = (ny,m),
1=(1,1).

In this section, we use Proposition 3.3 without previous notice.
First, we prove the theorem when the condition (i) holds. By Proposition
3.2 and the homogeneity of the double Hurwitz zeta function

4.1 (4, ex, cm) = cl4€2(4’x’ o) (c#0),

we may assume w; =1, wp, =t with Im(r) >0. We put 7= (1,7). Setting
=4, , =3 in Lemma 2.2 yields

1 3 (k42 1 2 /143 1
0 () 20

k=0 1=0

We add together the two identities obtained by putting
(pg)=(x+m-71,g=y+m—m)-7),(x—m-7,y+(n+m+1)-1)
in (4.2) and apply >, ,,-o to this. By observing that

Coty(x,7) — Coty(y+ (n+1) - 7,7)

1 1 1 1
N Z <x+m~tx—(m+1)-ry+(n+m+1)-r+y+(n—m)-r>’

my,my >0
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we have

1
4.3
( ) n11,n1220<(x+m'1)4(y+("_m)'T)3

1
<x—m+n~mﬂy+m+m+nwf>

3 (k42 (=1)F CotP M (x,7)
Z( ) k) (z+n-7)*"*

k=0

2 143\ (=1)>" Cot N (y+ (n+1)-1,7)
() |

= —l+n-r)t

Then we subtract the identity which is obtained by replacing n-t with
—(n+1)-7 in (4.3) from (4.3), and apply »_, , .o to this. Since Im(z) >0,

)OS —

3’
ny,ny =>0my,my >0 (X+M'T) (y+ (n _m) 'T)
1
4 3
ny,ny>0my,my>0 (x_ (m+ 1) : T) (y+ (n+m+ 1) : T)

are both absolutely convergent. Thus, we have

(4.4)

C0t§2>(y7m~‘t,‘l.’) _Cotgz)(er (m+1) "L',‘L'))
o >

1
2 (x+m-r)4 (x—(m—i—l)~~c4

my,my >0

3 3k [\ 2+k
-2 (k k ) (17)1@' ((2 1+) o)l Coty ™ (x,7) Coty ™ (z,7)
k=0 ! |

2 (1+3) (=)
5007
z;()(Cot(2 l)(y+(n+1)~r,1)_Cotg2_1)(yn~r,1)>

X
ny,ny> (Z+”'T)4+l (Z_ (”+1) 'T)4+/
if the series
Cot2 (y+(n+1) T.7) Cot(2 l(y—n~1:,r)
(4'5) Z 4+1 4+1
nim=0 (z+n-7) (z=(n+1)-7)

is convergent.
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We prove the convergence of (4.5). By (3.1), we have

Z (Cot2 1)(y+(n+1)~r,r) Cot(zz_/)(y—n~r,r)>

(z+n-0)*" (z—(n+1)-0)*"

ny,ny >0

2-1 mo (2-1 2-1)
Cot(2 )(y,t)— kiocf )(y—i—k‘c) 12 ( (

)4+/

y+k
. Z

ny,ny >0 (Z+n'1

_ 1 m nfy—k
Cotf ) + S8 = ko) + it o (2
ERPETRE

By interchanging the order of summation, we obtain

1 21 21

c k) c kt
Sy sy by

n =>0n>0 k=0 : n1>0k>0n2>k z+n +mt
(-0

kt
Sy vy b

m=0ks0m=0(Z +n1 +mt+kt

but since Im(z) >0 and thereby |c1 ( y+kt)| is bounded, the last series is
absolutely convergent. Since the other terms can be calculated similarly, we see
that (4.5) is convergent.

By integrating the both sides of (4.4) with respect to y twice, we have

3
3 -
Z (k) Cot(23 g (x,7) Cot(zk)(z, T)

. Cota(y —m-7,7) Cota(y+ (m+1)-1,7)
= Z < (x+m-7)* (x—(m+1)-7)* >

my,my >0

3 Cotr(y+ (n+1) -7,7) Cotr(y —n-1,17) .
‘ Z ( z+n-7) (Z—(n+1)~r)4>+f(X)y+g(x)7

ny,ny >0

where f(x) and g(x) are functions depending only on x. Similar calculations to
that in the proof of the convergence of (4.5) show that

6 Z Coty(y —m-7,7) Cotr(y+ (m+1)-17,7)
my,my >0 x+m T)4 (x—(m+1)~‘r)4

= Cot2 (x,7) Cota(y,7) + 6R(y,1 + 7 — x,7)

and
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Coty(y+ (n+1)-1,7) Cota(y —n-1,1)
—6 Z 4 - 4
(z+n-1) (z—(n+1)-7)
= Coty(y,7) Cot23 (z,7) = 6R(y,z, 7).

We substitute y, = (n+ 1/2)(z — 1) into y and take the limit as » — oo. Then,
by Corollary 3.6 we have

ny,ny >0

lim f(x)y, +g(x) = n?lx Cotf)(x, 7) —&-n?l Cot§2> (x,7)

n— o0

— 6ni<252(4, l+7—x+kt,7)+ ZC2(4,X+ kr, t))

k=0 k=1
_eX (Zgz (4 14+7—x+k1)+ 252(4,x+k,r)>.

k=1

We consider the quantity in the right hand side. We see that
O, x + kr,T) +;ZC2(47X +k,7)
k=1 k=1
ny 1 ni

= —+— _—
: : 4 4
n120,11221(x+n1 +I’l2‘L’) Tn]zl,nzz() (X—l—l’ll +I’l2T)

1 ny +nt

1
Tnl,nzZO (x +n+ nZT)

1
— _§§2(4,x, 7) + ;C2(3,X7 7)

and by the similar calculation
0 1 ©
252(47 l+1—x+kt,7) +;ZC;(4, l+7—x+k,1)
k=0 k=0

1
=ZH@ 1+ T—x D) +-5B L+ 1 x).
Proposition 3.3 shows that

OGx )+ 6B 1+ —x,1) = % Cot(QZ)(x7 ),
1
O x 1) — L@, 1 +71—x,1) = ~ Cotf)(x7 7).
Thus we have

lim £(x)y, +g(x) = 0

n—oo
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and thereby f(x) = g(x) =0, which completes the proof when the condition (i)
holds.

Next we assume that the condition (iii) holds. To prove the theorem, we
use the signed double Poisson summation formula, which was established in [9]:

ProposITION 4.1 (Signed double Poisson summation formula [9]). Let H(¢)
be an odd function in L'(R) with H(t) = O(t72) as |t| — . We put

H(u) = J H(f)e™ dt.

— 00
Assume that a/b and b/a are both generic and that the test function H(t) satisfies
H(x) = 0(u")

as x — oo for some 0 < u < 1. Then we have

k;OH(Zn(g—i-g))—F% (;H(an)—F;H(an))
- _i_“z cot(n%>ﬁ(ka) —%Z cot(n%)ﬁl(nb) —é%ﬁ/(oy

T k>0 n>0

In the proof, by Proposition 3.2 and (4.1), we may assume that w;,w; > 0.
Since both sides of (1.2) are meromorphic functions of x and Cot,(x, ) satisfies
the reflection formula

Coty(w; + vy — x, @) = Coty(x, ),

it is enough to prove the theorem when Im(x) >0 and Im(y) > 0.

Now put
_ Cotr(y —u,0)  Cota(y +u,0) y
) = ()H—u)4 (x—u)4 (u>0),
_ Coty(y — uw,, ») o
B == = 1.2)

Then we have

Z Cotz(y —m-w,0) Cotz(y+(m+1)- 0, 0)
(x+m-w)* (x—(m+1)- o)

my,my >0

= > Hm- o) +% > H(mon) +% Y Himwn)

my,my>1 my =1 my>1

+% Z I (my) +% Z L(my).

myeZ myel
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Cauchy’s integral theorem gives

H(u) = Zni{lt{?s e + Z (, I}f’?w ()e™ +  Res : H(t)e”")}

) t=y—(n+1)-w
and
—2ni [:gg/sw I(t)e 2™ (u>0)
I(u) = . )
2mi Yy ( Res [I(f)e” > 4 Res I(t)e_z’”’”) (u < 0).
o= t=(y+n-o0)/w, t=(y—(n+1)-0) /0w,

Recall that we put z=x+ y. Simple residue calculations show that

3 . \3—k
i _ A iux (iu) k+1 (k)
H(u) = —2mi (8 Zm (—1) C0t2 (Z, (D)
el (y+no) e[u(yf(nJrl)w)
T Z - 4
ny,ny >0 Z+n w) (Z_(n+1>'w)
. 3

k - \3—k
27”2(3(_2)%' <_2mu> Cotf (z, @)™/ (u > 0)

o, = w;

— 27 e 2miu(y+no)/o,  o=2miu(y—(n+1)-0)/o,
- (u<0).
ny,np >0

and

Ir(u) =

o8 (z+n-w)?! (z—(m+1) o)

Furthermore, by the above expression of H(u), we have

- 2
H'(0) =2z Cot(zz) (z,0) + 3

Therefore Proposition 4.1 and the (usual) Poisson summation formula yield

we Y (cowm.w>_c0t2<y+<m+1>5w>>

X Cot(23) (z,m).

(x+m- o) (x—(m+1) o)

my,my >0

6
N3k
O
w1 m;>0 ] W]
1 o] N [ 2mimy\ 2rimyx/o ni mi
—|——Z c|\m—|—mi)|——) eV | —4 — |03
w? 30 (69)) (00)) w1 (02))
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1 Wy . il . ;
Z(zyj)=<172> 21 g, Zm>0( (’”j) + 7”) erimlytmo)/o
> i

ny,ny >0 (Z+”'w)

—3

1 ;i . o ' _
2. )=(1,2), 1) ZEM <01 (mgjl) + m) e2mim(y=(nt1)-w)/w;

(z=(m+1) o)

<27z Cot ( ) + %nx Cotf) (z, a))>7

2(01 wy

where J; denotes the Kronecker delta. Now, by Proposition 3.5, we have

3 1 w> 27im, 3k i
Z( ) Cot ) — Z (Cl <m1 ) - ni) ( ) emim x/o
i my>0 w1 w1
e (m ) ) (Y g (31 0)
Wy = "\, > w1 w)

13 -
= _6Z(k> Cot¥¥ (x, w) Cot] ™ (z, ) + 5 -

W12

Cotgz) (z,)

and

1 wj ; mim(y+n-o)/ow;
2 i)=(1,2),(2.1) lZm>0( <m51i>+7”>€2 (rtna)/o

—2

ny,ny =0 (Z+Il(l))

1 w; N 2im( v—(n+1)0) /o
2i)=(1.2). 2, Do Zm>0 (Cl (maj> + m) e2rim(y=(nt1)o)/o;
z—(n+1)-0)™"

Cotr(y+(n+1) 0,0) — i (ern.w)_n_i(LJrL)
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(Cotz(y+ (n+1) 0.0) Cotz(y—n~w,w)>

_Z (z+n- o) (= (m+1) o)’
ni (1 1 2x 3)
——+—- Cot — C t
+ 12 (CO] +CO2 CO](DQ) © 2 (27 (D) 26()1602 © 2 ( )

Thus the right hand side of (4.6) becomes

13 -
~% (k) Cot(zk) (x, ) Cotg3 g (z, )

B Z (Cotz(y+ (n+1) 0,0) Coty(y —n~w,w)>
ni,ny >0 (Z+Il ' w)4 (Z - ("+ 1) ' (1))4 .

The remaining proof is the same as (i).
The proof when (ii) holds is similar to that of (iii), by using the following

proposition (the proof of the proposition is analogous to that of Proposition 4.1
and we omit it):

PROPOSITION 4.2.  Let a, b be coprime positive integers. Assume that H(t)
and H(u) satisfy the same conditions as Proposition 4.1. Then we have

S o) (g 5 ()

ia ma\ ~ ib nb\ -~
= - Em>0 cot <n 7) H(ma) — o Z cot (n ;) H(nb)

n>0
bfm afn
lab - iab
8n2 4712;11 (kab).
>0

We finish the proof of the main theorem.

Remark 4.3. The differential equation of the double sine function ([11,
Theorem 2.15]) shows
4.7 Cota(x, (1,1)) = (1 — x)ci(x).

We investigate what Theorem 1.1 means when w; = w; = 1.
When w1 = w; =1, R(x1,x3,®) is expressed as follows:

(4.8)  R(x1,x2,(1,1))
= —2c1(x1) (ifz 4,x 4k, (1,1)) +i§2(4,>€2 _Z_ka(_la_l))>

k=0 k=1

SR >+§<—n(+2><—;4+1>)

n=0 X2 + I’l n=3
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)Y (n+1)(n+2)

neZl (X2+n)4

2 2
X2+n) "+ 3 -=2x)(xa+n)+x5—3x+2
:761()61)2( 2+ 1)+ ( 2) (X2 ! )+ x5 — 3%
nel (Xz—‘rl’l)

3 X3 —3x,+2
=c1(x1) (cil)(xz) + (xz - 5) cfz)(m) + %c@(m)).
Here we used (2.3). By (4.7) and (4.8), (1.2) becomes as follows:
49)  =6(c{" ()e1(») = 1 )et” (x + 3) = 1 (¥)ef (x + ) = ¢ (Wer (x + p))

+32-2x—y) <C§2) (x)e1(y) — e (y)cfz)(x + )

—Z( )er <><x+y>>

(=X —x— ) (cf)(x)cl(y) — (e (x+ y)

—Z( ) (l)(x+y)> =0.

The expression in the first bracket is the left hand side of Theorem 2.1. The
expressions in the second and third brackets are obtained by differentiating the
left hand side of Theorem 2.1 with respect to x once and twice, respectively.
Therefore (4.9) follows from Theorem 2.1.

5. Application of the main theorem

In this section, we consider some applications of the main theorem. For
the applications, we use the following theorem, which is obtained from the main
theorem:

THEOREM S5.1. Assume that one of the conditions in Theorem 1.1 holds.
Then we have

1 ,/x x+y 1 x x+y
——c | —]a + 5 Cl a
(Y] w1 w» w1005 w1 w7

Yy — maw Y + nwy
al\——— a\———
1 Wy 1 W)
f—E —_— —_—

W2 527, (x+mw1)2 wlneZ(x+y+nw2)2
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Proof. First we observe that the double Hurwitz zeta function satisfies the
following periodicity:

(5.1) OH(s,x 4+ wi,0) = GH(s, x, 0) — § (s, x, 0)),
where we put

Ci(s, x, 05) = Z(x + naw;) .

n=0

Now, in Theorem 1.1, fix y and replace x+ w, with x. Then, by (5.1) and
Proposition 3.1, the theorem becomes

(m)
() (C"tg’” (x+2.0) - M)

W

(3—m)
X (Cotfm) (x,0) — a4 oy 3(xn{co1)>

.(3)
= (Cot(23)(>c7 o) — M) Cota(y, 0)

3
(5.2) >

m=0

4
W

.(3)
+ Cots(y, ) (Cotf)(x £y - D) y)/a”))
+ 6(R(y, 01 + w2 — x,0) — r(y, w1 — X))
_6(R(y7x+y’w)+r(yax+y))a

where we put

1 +k
r(x1,x2) = {ch <u)51(4,x2+kw2,w1)

w1 =0 w1

- —k
-> a (u>C1 (4, x2 — w1 — kan, —601)}

= @1

1 = x1+ka)1
- L[ ETEOTN e g k
+w2{1§ 61( o )Cl( ;X2 + ko, wr)

- x1 — ko
-> a (¥)C1(4,X2 —wi —kwl,—wl)}
= @2

=1

Taking difference between (1.2) and (5.2) yields
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(m) [ X +y 3—m) [ X
3./3 ¢ e ; ¢ o
(53) Z<m> TJ"I] Cotg _m)(x7 CO) +71 Cotgm>(-x+y7 (l))
m=0 1

4—m
C(m) xX+y 6(37”1) i
P N en )\

W
3

W

() (57
w w
= 4 ! C0t2(y>w) + 1 COtZ(yaw)

= 7
Wy Wy

+6r(y, 01 — x) +6r(y,x+ ).

Next, in (5.3), fix x and replace y with y + ;. Then, by Proposition 3.1
and the periodicity of {;(s,x,w;) given by

1
€1(57x+60j,60j) = Cl(sawij) _;7

we have

Yy — ko ¥+ kawy
6 “ w 6 “ 10
(5.4) Y L. ERVANRELT R W

! (x+ko)t o1 (x+ y + kan)?

Gem) (X m) (Xt Y
gkl

4—m, m+1
m=o \11 o 0,

Integrating both sides of (5.4) with respect to x twice yields

Yy — mawj Y+ nw;
1 “ w 1 “ w
_7272+7Z—1

wzmeZ (x+ma)1)2 W) neZ<x+y+n(/)2>2

1 X X+ 1 X X+
= (—)cl( y) s (—)ci”( y) +h(y)x + k(y),
wiw2 (03] (00)) w15 (6] w2

where /(y) and k(y) are functions depending only on y. When the condition
(i) of Theorem 1.1 holds, we substitute (k + 1/2)(w; + w2) (k € Z~p) into x and
take the limit as kK — oo. When the condition (ii) or (iii) holds, we take the limit
as Im(x) — co. In both cases, we have i(y) =k(y) =0 and thus obtain the
theorem. O

When w; = w, = 1 in Theorem 5.1, the right hand side becomes ¢{(x)ci(y) —
c1(y)ef(x + ») because of the periodicity of ¢;(x). Thus we recover Theorem
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2.1. We show that, in addition to Theorem 2.1, several formulas can be deduced
from Theorem 5.1.

First we show the reciprocity law for the Dedekind sums. The Dedekind
sum s(h, k) is defined as follows. Let &, k be coprime positive integers and we

w0 -2((F)(()

x—lx] -3 (x¢2)
0 (xeZ).

where we set
(9=

and |x| is the largest integer less than or equal to x. By [12, p. 18 (26)], s(h, k)
has the following expression:

(5.5) s(h, k) = ‘“flzkiicl (Z)cl (’l]’f)

CorOLLARY 5.2 (Reciprocity law for Dedekind sums).

L1 (h 1k
s(h,k)—i—s(k,h):_Z+E<%+ﬁ+z>.

Proof. Putz=x+y. Setw; =h, w, =k in Theorem 5.1. By the period-
icity of c¢j(x), Theorem 5.1 becomes

y+rh\ —Vlk y+r2k (1) z 4k
h2k3z ( ) h3k2z ‘i hk

R AN EA R I Ea WY e
=02 N\ n)N\k) T \n)\k )

Integrating the both sides with respect to x yields
y+rih x—rh ] &=L Y+ rk z+ rk
(56) kZ ( > 1< Ik ) nes N\ )k

= (%)Cl <£) + /),

where f(y) is a function depending only on y. Since it is known that

li R
Im(glim “ (X) i
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and for a positive integer N

]il p (x jv’"> — New(x),

m=0

as Im(x) — oo, the left hand side converges to

k-1 . h—1
i (y+nh i [yt nk
knf( K )+h2}( / )
k—

: -1
. m y+n i (Yt
=% c1( k )+hch< 7 )

r =0

= —mici(y) + mici(y)
=0,
while the right hand side to
(=)’ + f(y) = =2+ f ().

Thus we have f(y) = n%. By expanding the both sides of (5.6) into power series
of x and y, and comparing the constant terms, we see that

oD e (Bl bkt

Here we used
L (=1)"22B,,
(5.7) cotz = Z()izzzﬂfl (2| < =),

where B; denotes the j-th Bernoulli number. By (5.5), two sums on the left hand
side are equal to s(h, k) and s(k,h). Thus we obtain the theorem. O

Next, we show the reciprocity law of Apostol’s higher order Dedekind sums.
The higher order Dedekind sum sy, (%, k) is defined by, for an integer r greater

than 1,
o= (3) (),

where B;(x) donotes the j-th Bernoulli polynomial. By [7, Lemma 4.1], 55,1 (h, k)
is represented as

(-D)"'2r—1) & cot(nhn/k)
(5.8) s2-1(h, k) = ot ; T
n#0(mod k)
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CorOLLARY 5.3 (Reciprocity law for the higher order Dedekind sums).

(5.9) 2rhic® sy, (h,k) + 2rkh® Ly, (k,h)
= h2mk2 r=m) BZmB2I —2m (27 - 1)B2r~
’;) ( 2m )

Proof. By setting w; = h, w, = k and taking the limit as y — 0 in Theorem
5.1, we have

1 Z ci(nh/k) 1 ci(nk/h)
nel (x+nh h nel X—|—I’lk
n#0(mod k) n#0(mod h)

et (o) () () S

Expanding the both sides into power series of x and comparing the coefficients of
_3 .
yields

gt D DU b

(Zn)z n n=1 nzr_l
n#0(mod k)
r—1 0
oy (D) 2r=1)1'1 ci(nk/h)
+ 2rkh 2n)2r—1 - ; 21

n=
n#0(mod h)

/2 .
= (2}; ) hzmkz(,im)BZmBZr72m + (27’ - I)BZr~

Here we used (5.7). By (5.8), two infinite series on the left hand side are equal
to sy—1(h, k) and s5._1(k,h). This prove the theorem. O

Furthermore we can obtain the following two formulas from Theorem 5.1:

CorOLLARY 5.4 (Lerch’s functional equation). Let r be a integer greater
than or equal to 2 and 0 be a algebraic irrational number. Then we have

- cot(an 22 e cot( nm/O - 1 2r | —1 sz By o
Z +0 Z m2r-1 a ZH '(2r = 2k)!°

Proof. Thee proof is analogous to that of Corollary 5.3 by setting (w;, w,)
= (1,0) in Theorem 5.1. O
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Remark 5.5. The absolute convergence of the infinite series in the left hand
side of Corollary 5.4 follows from [2, Lemma 1].

COROLLARY 5.6 (Ramanujan’s formula). Let n be a positive integer. When
a, B >0, af = n>, we have

1 k2n1 1 Jo—2n-1
w502+ +Z (= P78+ 1 +Z Bk 1

2V a2

Proof. Set (w,w;) = (1,—zi/a) in Theorem 5.1. By taking the limit as
y — 0 and comparing the coefficients of x?"~!, we have

" G~ cot(—kai)  (—f) " <= cot(—kpi)

21 = k2n+l 21 — k2n+l
n+1
i ByBania- Cini
_22n —1)/ J J nt1—j J
;( Vaent2-ap® P
Since
cot(—0i) 1+ 1
20 2 e¥_1’
we have
" Eeot(—kad) (1 2 el
2i Je2n+1 = n<2C(2n+l)+Zezak_ 1
k=1 k=1
(—B) " & cot(—kpi) 1 k=21
2i 2l T =(=p)" n+1) +Z 2Pk —
which completes the proof. O

Appendix A. An alternative proof of Theorem 5.1

Theorem 5.1 may alternatively be obtained directly in terms of the usual
Poisson summation formula, as follows. The proof in the case of w,/w; ¢ R is
similar to that of ws/w; € R. We prove the theorem when w,/w; € R.  Since
both sides of the identity are meromorphic functions of x and ¢; is a odd function,
it is enough to show the theorem when Im(x) > 0 and Im(y) > 0. For simplicity,
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set z=x+y. Put I(u)=c¢ (y —wua)l) (x4 uw)) 2, I(u) = |7, I(1)e=2mm dy.
2

We have I(u) = O(u~?) because Im(y) > 0. By Cauchy’s integral theorem, we
have

—2ni Res I(t)e ™™ (u=0)
f(u t=—x/w;

27y, Res  I(t)e ™™™ (u<0)
t=(y+nw,)/w

and simple calculations show that

; . 2miu 1
Ry s (B0 (), ()
t=—x/w col (%) w17 (4]

—27i( y+nw; )u/w

Res  I(t)e 2" = — e —
(=(y+nen) fon o1 (z+ nw,)?

In particular, for ¢ > 0, we have I(u) = O(u~'%). By the Poisson summation
formula, it follows that

Q| —— o2
L Z - _ (27[1) ¢l Z memen/wl 4= Z emem/wl
wlw;  \o a)lw2 )

2
wszZ (x+mcu1) m=>0 m>0

27i eZni(ernwz)m/wl
s

2
neZ m>0 (Z + I’la)z)

Since
2mi Zez’”’” =—c(x) + i

for Im(x) > 0, the right hand side is calculated as follows:
o) () o (2 @) =) (G)
———ci|— el —]— slea|—)—7ni)er | —
w73 w1 (0)] W15 (@) w7
L o)
+—3" ‘

®1,27 (z+nw2)2

Y+ nws
s X z 1 x z 1 “ w1
wiw, \o m) ww; \w wy) 015 (z+ nw)

Thus we obtain the theorem.
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