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L?> CONTINUITY OF THE CALDERON TYPE COMMUTATOR
FOR THE LITTLEWOOD-PALEY OPERATOR WITH
ROUGH VARIABLE KERNEL

YANPING CHEN, ZHENDONG NIU AND Liwel WANG!

Abstract

For b e Lip(R"), the Calderon type commutator for the Littlewood-Paley operator
with variable kernel is defined by
5 \1/2
dt
; .

Ho,1;(f)(x) = (J; ! J Qx,x—y)

2
By giving a method based on Littlewood-Paley theory, Fourier transform and the
spherical harmonic development, we prove the L? norm inequalities for the rough
. 2(n—1 e .
operators g 1., with Q(x,z') € L*(R") x L1(S""") (q > L)> satisfying certain
cancellation conditions. "

(b(x) =b(»)f(y) dy

n—1
-yl |x =yl

1. Introduction

Let S"~! be the unit sphere in R” (n>2) with the normalized Lebesgue
measure do = da(x’). A function Q(x,z) defined on R” x R” is said to belong
to L*(R") x L1(S" "), ¢ > 1, if it satisfies the following conditions:

(i) Q(x,Az) = Q(x,z) for any x,ze R” and 1> 0; 1

() 1190« (g oset) = SUPyerer (ot [20x 2] dor(2)) 4 < oo,

z

where z' = ER for any z e R"\{0}.

For o > 0, the singular integral operator Tq , with variable kernel is defined
by
Q(x y X — ) )

Touf (9 =pv. | S 10)
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where f e #(R") and Q(x,z') e L*(R") x L'(S""!) satisfies

(1.1) an—l Q(x,z') da(z") = 0.

When « =0, we denote T o by T for simplicity. It is easy to check that,
by (1.1), Tf(x) exists for almost every x € R”. As is well known, L? continuity
of T was initially studied by Calderén and Zygmund [2]. Furthermore, they
showed that the operator T is closely related to the problem about the second-
order linear elliptic equations with variable coefficients. They obtained

Tarown A (see [2). [ Q(x)e L (R x L5, g5 201

satisfies (1.1), then for all f e S (R"), there is a constant C > 0 such that
1Tf 2wy < ClA N 2y

Afterwards, the continuity properties of the singular operator Tgq ,f have
been intensively investigated (see [4, 10, 18, 21, 31] for example). Nevertheless,
we would like to mention the recent paper [9], where the decomposition techniques
via spherical harmonics were used to extend the (L2, L?)-boundedness of Tq,, to
all « > 0. We recall the following result of [9].

TueoreM B (see [9]). Let a>0. If Q(x,z') e L*(R") x LI(S" ') with

2(n—1) .
q> max{l7 G }, satisfies

(1.2) JS’H Q(x,z)Y,u(2') da(z") = 0,

for all spherical harmonic polynomials Y,, with degree < [0]. Then there is a
constant C > 0 such that

HTQ,deLZ(RH) < CHf

where L2(R") is the homogeneous L*> Sobolev space with the order o.

B,

An analogous operator of the singular integral Tq, is the Marcinkiewicz
integral operator up, which is defined by

W) () = (j 2 (%) 2‘”)1/2,

t

where 0 < p < n, and

) = | QX —0) 1) dy,

Nz eyt X = v’
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If Q(x,z') = Q(z'), u is a Littlewood-Paley function, that was studied by
many authors (see [1, 23, 32, 33, 37, 36, 39]). For a general Q(x,z’), Ding, Lin
and Shao [25] gave the L? boundedness of p, with variable kernel. Recently,
many new advances have been made in the study of the L” boundedness of uf,
see [8, 12, 24] for further details.

On the other hand, it is well known that commutators have played a crucial
role in harmonic analysis and partial differential equations (see [3, 5, 19, 27,
29, 30] for example). For b e Lip(R"), Calderédn [5] introduced the following
commutator on R:

TCh(x) =b(y) f(») dy
Cw X—y  x—y

b

[b,dH /dx] f(x) = p.V.(—l)J

which is called first Calderén commutator. Obviously, if b(x) = —x, then
[b,dH /dx] reduces to the Hilbert transform. Thus, its role in the theory of
partial differential equations becomes apparent. Some known results show that
the commutator [h,dH /dx] is also of fundamental importance in the study of
Cauchy integral along Lipschitz curves and the Kato square root problem, see
[6, 7, 34, 35] for its history and significance.

In addition, there are large classes of commutators of singular integrals,
which are of interest in the theory of nondivergent elliptic equations with dis-
continuous coefficients, see [16, 17, 22]. Moreover, there is also an interesting
connection between the nonlinear commutator, considered by Coifman, Rochberg
and Weiss in [20], and the Jacobian mapping of vector functions. They have
been applied in the study of nonlinear partial differential equations, see [28] and
the references therein.

In this paper, for b € Lip(R"), we will study the Calderon commutator for
the Littlewood-Paley operator with variable kernel defined by
1/2
1

« X, X — ?
pansN@ = [ [15] 2D - sonsma] 7

0

oyt |x— p["7!

which is a new kind of commutator of Littlewood-Paley operator. When Q(x, z’)
is independent of x, Chen and Ding [14] showed that if Qe L(logt L)"/*(S"1),
then uq ., is of type (2,2). Motivated by [5] and [14], it is an interesting
problem that if 4 ., is still bounded on L*(R") when Q(x, z’) does depend on x.
We will give an affirmative answer to this question. Our main result can be
stated as follows.

TueorEM 1.1, If Q(x,z') e L*(R") x LY(S" "), ¢ > 2(”; 1), satisfies (1.2)

for all spherical harmonic polynomials Y,, with degree <1, then for b e Lip(R"),
there is a constant C >0 such that

e, 1.6/ 12wy < ClON Ly 1/ 22 (r)-
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Remark 1.2. 1In fact, since the integral kernel in Theorem 1.1 has no any
smoothness, the usual manner such as the method of rotation, which is effective
in [5] fails utterly to treat the operator ugq y.,. Therefore, we are forced to give
here a new approach which is fundamentally different from the one in [5]. The
proof of Theorem 1.1 involves careful decompose arguments using the pro-
perties of Littlewood-Paley functions and Fourier transform, and the well known
techniques for treating ‘““variable kernel” operators via spherical harmonics.

2. Preliminaries and Lemmas

9

As usual, the notations “A” and ““v”’ denote the Fourier transform and the
inverse Fourier transform, respectively. Denote by #(R") the Schwartz class
and %'(R") the space of tempered distributions. If £ C R" is a measurable
set, then |E| stands for the Lebesgue measure of E. fg represents the mean
value of f on E, namely, fr = |E|” IE x) dx. For brevity, we write Lip;(R")
= Lip(R"). Throughout this paper, the letter C indicates a positive constant
whose value may change from appearance to appearance. We also denote
f(x) =~ ¢g(x) if there exist positive constants 4 and B independent of x such that
Af (x) < g(x) < Bf (x).

For x e R" and a multi-index o = (oy,...,0,), we set x* = x1 cexp 0
denotes the derivative 07" ---0,"f, |a| = o1 +--- 4 o, denotes its size.

Lemma 2.1 (see [38]). Let n>2, and fe L'(R")NL*R") has the form
f(x) = fo(|x])P(x), where P(x) is a solid spherical harmonic of degree k. Then
the Fourier transform of f has the form f = Fy(|x|)P(x), where

Fo(r) = 2mi*p~ln2k=2)/2] J V fo(s)J<,,+2k_2>/2(ans)s(””k)/z ds,
0

r=|x|, and J, is the Bessel function.

LemMa 2.2. Suppose thatn >2,0 < f < 1,meNandk € Z. Denote by H,,
the space of surface spherical harmomcs of degree m on S"\ with its dimension
dp. {Ym]} denotes the normalized complete system in H,. For t>0, let

e y—2 Y (x7)
Uk,t,m,j(x) = (Zkf) W%{v0<\x|<2kt}( x).

Then for m = 2

(2.1)  okrm (O] < CQ250) " m ™2 min{ |25, 1251 P Vo s (),

where J.= (n—2)/2 and &' = |_§| For any fixed multi-index o with m > ||, we
have

(2.2) 1070k, 1, (E)] < €250 TP minf|2k ", 1),
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Proof.  To estimate (2.1), we set Py, ;(x) = Y, j(x")|x|", then P,, ; is a solid
spherical harmonic of degree m and

~2 —n—mt1
Ok,1,m,j(X) = (zkt) x|~ "t Pm.,j(x))f{x:\x\gzkt}(x)~

Obviously, W (|x]) :== (2%1) ?|x| _"_'"H)({x:‘x‘gzkl} (x) is a radial function in x for
fixed ¢ >0, by Lemma 2.1, we have

(2.3) Okm (&) = Fo(I) P (&) = Yin j(EN)IE"Wo((E]),

where

0
\P()(I’) _ zni—mr—[(n+2m—2)/2] JO l//0(S)J(n+2n172)/2(27Trs)s(n+2m)/2 ds
2k¢

= 27'51'7"/‘(2161) =2, —ln+2m=2)/2] JO AS‘7"+17m](n+2m,2)/2(27ZVS)S(n+2m)/2 ds

2n2ktrJ
_ n/24+1.—m —m+1 kN —2 (n+2m—2)/2(8)
= (2n) i (272" tr) Jo STy ds

From this and (2.3), it follows that

27z2kt\§|J
(24)  Gom (&) = m)" T i (2n250E]) P Y ()] L ”’*i(s)

where 2 = (n—2)/2. Now we can distinguish three cases as follows:

ds,

Case 1°0 2%#¢| < 1. The classical formula of the Bessel function yields

(see [40, p. 48])
m—+2

Ky
20 (m + A+ 1/2)°
For x > 1, using Stirling’s formula, we get

V2rx* 2™ < T(x) < 2v2mx*" 12,

Then, in view of m > 2, we obtain

Jznzktc’l Tii(s) ds‘

|Jm+/1(s)‘ S C

(2r2*11)) ¢

0 s*

s ds

Qn2Eh =, JW“"
T 2" (m+ A+ 1/2)
_ 1 (2m2k1]&)"™
k-1 )
<CN) S Tmiiri2) m
m+7 k m—2 k 2
< ckyC (2m2%1(¢]) i.(2 1€))
2mHh(m 4 A+ 1/2)™F m
5 et (2ﬂ)m

2" m(m 4+ 1/2)"

0

< C(2*n7'(2%1¢)
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A m
< C(Zkl)lm_)*_l(Zkt|f|)2<§) . (2;2?2“

2F0~ m (2R e,
(2kl)_lm_)’_l+ﬂ/2(2kl|f|)2.

IA

C
C

IA

A .
Case 2°: 1 < 2k¢¢] <%. In this Case, we have

272k 1¢|
(2r2%1¢)) 3¢ J Jsii()ds
. { 2k
< C(2%r) 2T (m 4 A+ 1/2) . m
C(zk ) oM . (2m2kee)™

2m+/ (m +l+ 1/2)1‘)1+/l

< cty” (:)"’-(;)"- e yete

<) m+ 1)~
< C@* )™ m o+ )~ 20
< CRK)"mT AR (k) P2
Case 3°: 2Kg|¢| > m4_—&7—[)» By the second integral mean value theorem,

arguing as in [11, p. 195], we have

J~27z2 & ‘JnHJ( ) 5

(2r2k1(¢]) )¢

Si
0 m2kHg g (s)
2m2k1|E) 7% |¢E J mti ) ds
=( 1) 7)¢] ;@ bty 87
PP . ket j1 2 ()
comte) e (| S eratti z|é|)J gzl
== h
0 h
i Jm /.(S)
+ 2m2k+iy|E J i ds
Pl S

< cr2*1|g)) 21E) - (2] - 2Fee) !
< C(zkt)—1m717,1+/3/2(2kt‘§|)—ﬂ/2,
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where 272507 14|¢| < h < 272%+7#|¢|.  Hence, combining (2.4) and the estimates
above, we arrive at

|6k ()] < C2%0) ' m™ 12 min{ 256, 125 2] PPV Yo (6]

This gives the proof of (2.1). We omit the proof of (2.2) since it is essentially
similar to the proof of Lemma 3.1(3.3) in [13, p. 88-89].

LemMa 2.3 (see [15]). For 0<d< oo, meN and j=1,2,....d,, take
5m; € CF(R") such that supp(Ly ;) C {£:0/2 <|&| <20}. Let Ty, ; be the
multiplier operators defined by

Té»/’;:jf(i):ré,m,jf‘(é)v J:172aadm

Moreover, for be Lip(R"), denote by [b,Ts ;| the commutator of Ty, ; and b.
Define Ty by

dNI 1/2
Ts.mpf (x) = ( |[b, To‘.,m,_/]f(X)|2> :
j=1
If for some constant 0 < f <1, [s,, ; satisfies

Com (&) < C27*m ™12 min{,07772}| Y, 1(£1)],

2
where . = (n—2)/2, and for any multi-index o with |o| >—=(A+1—f/2) and
with 7| = 2, B

10*To,m,llp- < €275, m > o],
10Tl < C2%, m <,
then for some 0 < vi,v; < 1, there exists a positive constant C = C(|a|) such that
ko . —Bu, /2
1T f e < C27Fm = min{6", 6 P bl S 2y > o,
d,m;b 2 > . o e—fp
TR T c2 min{or 5Bl 1 m < o]

LemMMA 2.4 (see [14]). Let ¢ € #(R") be a radial function such that supp ¢ C

{&:1/2<|¢| <2}. Define the multiplier operator S; by S;f(&) = ¢(27&)f(&)
for jeZ. Let beLip(R"). Then for f e L*(R"), we have

1/2
(Zzzjl[b,%}flliz) < ClblLy 1l

jeZ

3. Proof of Theorem 1.1

Using the spherical harmonic development [4] and (1.2), we get

o0

dn
Q(}C, Z/) = Z Z a};l,j(-x) Ym,j(zl)v

m=2 j=1
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where

am, j(x) = J Q(x,z") Y ;(z') do(z")

Sn—1

and d,, ~ m"2 (see [4]). Denote

dn 1/2
() = (i lam,j<x>2> and by, (x) = “j{’?.
J=1 m(X

Then
(3.1) Z b?
and
A
Z alﬂ Z b
m>2 j=1
If we write

iy Ins 23 () — (1)) 1 () d

2 Jiyee Ix =y

5 \1/2
dt
t )

b () = (r

then by Hoélder’s inequality and (3.1), we have

(ﬂg,l;bf(x))z
2
_ OC l Q(x,x—y) x) — g
=[[8] T ew -sonso @) 6
_ (" o Yo i(x—y) 2a’t
=[] o, S et om0 R 0 - s ]
< ( a,i(x)m“’)
m=2
g mr lj 3 b (022D () b)) £ () dy a
= o [Py Ix— " !
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o [ dn
< (Z a,zn(x)m6> Z msj < A brzmj(‘x))

m>2 m=2 0 =
Ay 1 Y, (X y) Zdl
i Yoy X = 7)oy i
ijl & Jlxy|<t Ix— " (b(x) = b(¥))S () dy| =
dy
- (Z a, (x)m”> (Z m* Z(ﬂmﬁ/;bf(X)f) ’
m>2 m=2 =

where 0 < e < 1. By [4, p. 230], if we take ¢ sufficiently close to 1, then

1/2 1/q
<n>(§}mwmﬁ ch;Jmmewwo < ClI e oy

m>2

for ¢ >2(n—1)/n. Let

d 1/2
:um;bf(x) = <Z |:um‘j;bf(x)|2> .
j=1

Minkowski’s inequality and (3.2) imply that
& 2
(33) ||ﬂ9,1;bf\|iz = C||QH§%(R“)W(SH) Z ||ty f | 72-
m>2

If we can show that for some 0 < f < (1 —¢)/2, such that

(3-4) et Sz < Cm 2 2B, L1172,

then from (3.3) and (3.4), we get immediately the conclusion of Theorem 1.1.
Hence, it remains to show (3.4) to prove Theorem 1.1.

Let y e C*(R") be a radial function such that 0 <y <1, suppy C
{¢:1/2<¢<2} and 3, , 92 (277¢) =1 for |¢] #0. Define the multiplier S

by Si/(&) = (27 f(©). Let

-2 Yl‘mj(xl)
|X|”71

for keZ, m=1,2,...,and j=1,...,d,. Set
Tkt (€)= Gemi(€)y Thpm () = Do (EW(257E).

Denote by Fy ;. ; the convolution operator whose kernel is I'x ; ,, ; and [b, Fi ; m ;]
is the commutator of Fy,, ;. Define the operator F/ mj OY

Fl o (@) =Tl (OF ().

Let [b,F/,, ] denote the commutator of F/, .. Then

Ok,1,m, j(X) = (2kl) X{x:0<|x| <21} (x)
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1

o 24! - Yrmj(x - y) _
o () = (kz J tz LHQT ST (600 = BN () dy

Yo j X =) oy - .
2kt |Y Y| <2kt |xfy\"71 (b(x) = b(»))f(») dy

) \1/2
di
S
d)’!’l

132 =S | o (OF

J=1

de\ JZ
i—1 'R"J1 j ez

Jj=

ez

=)
1/2
_< Z|kafml )2?>

ez

b Fktm]S[ k]f( )

1 keZ lEZ

So we get

ﬂ dx.
t

> [0, Ftm jS7i] S (%)

leZ

By Minkowski’s inequality, we have
4 1/2
. t
(33) It oo < Z(J |, ZD b Foony S (P dx7> .
lez \J1 JR" jc7 =

It is easy to see that

[b7 F, IA,’”;J'Slsz]f(x) = [bv }7/(1, t,m,j]Sl—kf(x) + Fkl, t,m,j[b’ Sl—k}f(x)a
then

|, ZZkazm,S, JFP dx

keZ j=

—ZZ

keZ j=

(J b Fktm]]Sl f (x))° dx>l/2

1272
+ <J |Fkl,t,m,j[b’ Sl—k]f(x)‘z dx) ]
R"

= ZZ 106, L A1t S W 2+ 1FL 10, Sia) 1] )
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Thus

(J |, Zilbmm}s, Nk dxﬂ>/2

keZ]

<J ZZIIb FL o JSicf |2 dt>

lker

(J Zi”szm/b Si- k]f”z dt)

1 keZ j=

=141I.

If we can show that for 0 < f < (1 —¢)/2, there exists a constant 0 < y < 1 such
that

(3.6) max{Z, 11} < Cm~ P27 b) L 1 £ 2,
then (3.4) follows. So it remains to show (3.6) to prove Theorem 1.1. Let

dy 1/2
Fk{,l,mf(x) = (Z Flj.t,mﬁjf(x”z)

J=1

and

1/2
Fktmhf <Z|katm/ )|> :

The proof of (3.6) needs the following fact: for 1€ [1,2], 0 < f < (1 —¢)/2, there
exists a constant 0 < @ < 1 such that

(3.7) 1L S l2 < C27Fm ™ min{2%, 2772 | 7],
and
(3.8) IE S 2 < P2 £ o

First we prove (3.7). In fact, for any fixed constant 0 < f < 1, by Lemma
2.2(2.1), we have for te[l,2],

(3.9) T o ()] = [Theom (W (258
< C27 m =12 min{2% 27H12Y |y, (&)
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From this, the Plancherel theorem and the fact Z;i’l | Yo, i (X )2 ~ m?, (see [4,
p. 225]), we get '

- 1/2
HF'kl,t,meL2 = <Z ||Fk tm ]f”LZ)
dy 12
- (Z [y PEERET dé)

=
< C27 m =12 min{2% 27F12Y| 111,
= C27 " m " min{2% 27F12} )| £ .-

This_gives the proof of (3.7). To show (3.8), we define operator F!
Ff i/ (&) =Ty (2750 f (&), and denote by

1/2
Fktmhf <Z|katm] )|> :

Then we have supp F,i’,’m.j(2’k~) C {&:2"71 < |¢] <211 and by (3.9), we obtain

by

k,t,m,j

(3.10)  [Tp (2779 < C27Fm ™12 min{2¥ 2772}, (&)
< C27Fm= =12 min{2! 2712} | ¥, (&)
On the other hand, for any multi-index o, we have

ayrll(, t,m,j(é) = aa(rk t,m, j(é)lvb(zkilé))
= Z Cafl . CU,I 5?71—*k tm/(f))(aziﬂlp(zk*lf))?

where the sum is taken over all multiindexes # with 0 <#; <o; for 1 <j <n.

2
We take o with |o] > —y(}v—k 1—-p/2). If m> |o|, by Lemma 2.2(2.2), we have
for tel,2] p

0" Tk o () < € Y 20 DEEDIGT, ()]

0<nl<|2

<C Z 2(/<—/)(\Of|—\77\)(2kt)—1(zkl) Il min{|2ktf|m_"7‘, 1}

0< | <«

<C Z 2 (k=) (|l =lnl) o =k Kl min{|2kf|’”_"7|7 1}

0<nl<|z

<C 3 okalko el ming|okg b 1y,

0<nl<|z
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Then we obtain

(3.11)  [o*(Ty, 2 ) < C > 27Kkl Sl min {20mll 1}

0<lnl <[«

<C S 27kp el min{atni 1)

0<y/<lal
<27k

Since
JS | Y j(x") Ys(x") do(x") = 0,
for any spherical harmonic polynomials Y; with degree < m, we have
LH Yon ()3 do(x') = 0,

for any multi-index / with |/] <m. From this, by [26, p. 551], if 2 <m < |«,
we have for any multi-index # with || <2,

@7

0

2kt

I(?”Fk,z,m,j(é)l <C J | Ym’j(y/)y/nednié.ryf da(y/)r‘m dr
Sn=

< Czk(lﬂ\*1)|2k5|2*|'7\_
Then, similar to (3.11), for any multi-index 7 with || =2, we have

(312)  |o°TL,,, @ 0 <c Y 2, ,, 2 k)|

0<ll=Ir]

<C Z 2*M\szl(\f\*wl)Qk(MH)|§|27\f7\ < 27,

<[yl <[z
From (3.10)—(3.12), using Lemma 2.3 with § = 2/, for some 0 < v;,v; < 1, we get

C2*m= " min{20, 2752 b] L N2, > o,

Fl il <
Ikl {&kmmwumwmmﬂmw =l
By dilation and [|b(2%)]|,, = 2¥|b||,;,, we obtain

Cm =P min{200, 2772 1, [ f 1] 20 1m0 > o,
C min{2%, 27712 1b]] 1 11l 2, m < |al.

/
||Fk,t,m;bh||L2 < {

Hence the proof of (3.8) is completed. O
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Now we turn our attention to (3.6). Applying (3.8) and Littlewood-Paley
theory, we conclude that

:J ZZ”katijI ka2 a

l kez j=1
di
2
:J ZH IctmbSl kf”
keZ
< Cm 22220 )2 S0 HSz_kaiz

keZ
—2428~—20)1 2 2
< Cm 222 |||b||Lip||f||L2~

From (3.7), Littlewood-Paley theory and Lemma 2.4, we derive

- d
J ZZ”Fktm]bSI k]f||2 !

lker

dt
J Z"Fktmb Sl k]fHZ

l pez
< Cm ™2 min{2¥, 27"} Z 272([b, S f 1172
keZ
= Cm > min{2% 2= N 120K (b, 5, 117
kel

< Cm =2 min{2%, 2PN |p|12. 1111172

Combining the estimates of / and /I gives (3.6). Hence Theorem 1.1 is proved.
O
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