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INTEGRAL INEQUALITIES FOR LIPSCHITZIAN MAPPINGS
BETWEEN TWO BANACH SPACES AND APPLICATIONS

SEVER S. DRAGOMIR

Abstract

In this paper we obtain some inequalities of Ostrowski and Hermite-Hadamard type
for Lipschitzian mappings between two Banach spaces. Applications for functions of
norms in Banach spaces and functions defined by power series in Banach algebras are
provided as well.

1. Introduction

Let Z(H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H. The absolute value of an operator A4 is the positive operator
|4| defined as |A| = (474)">.

One of the central problems in perturbation theory is to find bounds for

11 (4) = /(B

in terms of |4 — BJ| for different classes of measurable functions f for which the
function of operator can be defined. For some results on this topic, see [5], [32]
and the references therein.

It is known that [4] in the infinite-dimensional case the map f(A) := |4] is
not Lipschitz continuous on %(H) with the usual operator norm, i.e. there is no
constant L > 0 such that

4] =Bl < L|4 - B]|

for any 4,Be %#(H).
However, as shown by Farforovskaya in [30], [31] and Kato in [37], the
following inequality holds

2 4]l + [IB]l
1.1) [|4] —|B||| < =||l4 — B <2+log(7
( | | < )4 B| o
for any 4,Be #(H) with A # B.

1991 Mathematics Subject Classification. 46B20, 26D15, 47A99.

Key words and phrases. Banach spaces, Banach algebras, Power series, Lipschitz type inequal-
ities, Ostrowski-type inequalities, Mid-point inequalities, Hermite-Hadamard type inequalities.

Received July 9, 2015.

227



228 SEVER S. DRAGOMIR

If the operator norm is replaced with Hilbert-Schmidt norm || C| yg =
(tr C*C)'? of an operator C, then the following inequality is true [2]

(1.2) 1Al = 1Bl ll s < V2|4 = Bll s

for any 4,Be %(H).

The coefficient /2 is best possible for a general 4 and B. If 4 and B are
restricted to be selfadjoint, then the best coefficient is 1.

It has been shown in [4] that, if 4 is an invertible operator, then for all
operators B in a neighborhood of 4 we have

2 3
(1.3) 4] =Bl < a1]| 4 — B|| + az[| 4 — B||" + O(]|4 — B||")
where
_ . 13y 4112
ar= A7 [l4] and ay = A7+ (A7 4]"
In [3] the author also obtained the following Lipschitz type inequality

(1.4) 17 (4) = f(B)l < f(a)l|4 — B

where f is an operator monotone function on (0,00) and A,B > aly > 0.
If we use, for instance, the inequality (1.4), then we can state that

(1.5) IA((1 =04 +1B) = f(1 = s)4+ sB)|| < f'(a)|4 = B|| |t — 5]

for any f,s€[0,1], where f is an operator monotone function on (0,c0) and
A,B>aly > 0.

Further on, if we integrate the inequality (1.5) over se€ [0, 1] and if we use
the integral triangle inequality then we have successively
1

(1.6) ’f((l — 1) A+ tB) — J f((1 = 5)A + sB) ds

0

1
< Jo lf((1=8)A+tB) —f((1 —s)A4 + sB)|| ds

1
< f@llA B | 1ol ds =3/ @llA - Bl + (1= 7

1 NI
Z+Q—Q]f@ﬂA—m
for any 7€ [0, 1].

This is an Ostrowski type inequality for operator monotone functions.
In particular, we get the following Hermite-Hadamard type inequality or
mid-point inequality

Hf(#) —Jlf((l —5)A + sB) ds

0

< /'@

|4 - B

where f is an operator monotone function on (0,c0) and A4,B > aly > 0.
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We recall the original Ostrowski inequality [42]

- RN
(1.7) ’f(x)—b_aj S ) du| < |2+ ﬁ M(b - a)

provided that f:[a,b] — R is differentiable on (a,b) and |f'(u)| < M for all
ue (a,b). The best inequality one can obtain from (1.7) is the mid-point
inequality

(18) ()5 ]

with % the best possible constant.
For Hermite-Hadamard’s type inequalities, namely

(19) (5) =52 [ 1ty au < HOZIE),

2 )7 b—a),

where f : [a,b] — R is convex on [a,b], see for instance [10], [11], [12], [33], [35],
[36], [38], [40], [41], [44], [45], [46], [47], [48] and the references therein.

For Ostrowski’s type inequalities for the Lebesgue integral, see [1], [8]-[9]
and [14]-[27]. Inequalities for the Riemann-Stieltjes integral may be found in
[16], [18] while the generalization for isotonic functionals was provided in [19].
For the case of functions of self-adjoint operators on complex Hilbert spaces, see
the recent monograph [22].

Motivated by the above results we investigate in this paper some norm
mequahtles of Ostrowski and Hermite-Hadamard type to approximate the integral
fo uy+ (I —u)x] du for the mapping F:C < X — Y that is a Lipschitzian
mapping with the constant L > 0 on the convex subset C of the Banach space
X and with values in another Banach space Y. Applications for functions of
norms in Banach spaces and functions defined by power series in Banach algebras
are provided as well.

2. Integral inequalities

Let (X;| - |ly) and (Y5 - ||y) be two Banach spaces over the complex number
field C. Let C be a convex set in X. For any mapping F: C =« X — Y we can
consider the associated function ®f ., ;:[0,1] = Y, where x,ye C, 1€(0,1],
defined by

(2.1) O (1) = (1= AF[(1 = (1 = 2)x + 2y) + o]
+ AF[(1 = t)x + t((1 = D)x + )]
We observe that for A=0 and 2 =1 we have
O 1.y,0(1) = Op. vyt (1) = FI(1 = 1) + 17]
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and
1 X+ X+
q)F,x,y,l/Z(t) :5 (F|:(1 — I)Ty+ty:| +F|:(1 — Z)X+ lTy])

where x,y e B.
There are some particular values of interest, namely

©r 2 y0(0) = r iy 1(0) = F(x), @r oy p0(1) = Prox (1) = F(p),

1 x+
(DFX_}O ) (DFAy (E)ZF(T)})7

Op o p12(0) = % [F <X-|2- y) + F(x)], O v y12(1) = % [F(y) + F(X—|2— yﬂ

and
1 1 3x+ x+3
o)A () (2)
where x, y € B.

The following result holds.

LEMMA 1. Let F: C < X — Y be a continuous mapping on the convex subset
Cof X. If x,yeC, then

1 1
(22) JO O (1) di = L Fluy + (1 — w)x] du

for any A€[0,1].

Proof. Since F is continuous on C the integrals involved in (2.2) exist.
For A=0 and A=1 the equality (2.2) is obvious.
Let 2€(0,1). Observe that

1

Jl FI(L= 00y + (1= A)x) + 1] di = J FI((1 = )i+ 0y + (1 — 6)(1 = 2)x] dr

0 0

and

1

J; Flt(2y+ (1 = A)x) + (1 — t)x] dt = JO Fltiy + (1 — Af)x] dt.

If we make the change of variable u:= (1 —#)A+ ¢ then we have 1 —u =
(I=6)(1=4) and du= (1 — A) du. Then

1 1
J FI( = )3+ 0y + (1 = 6)(1 = 2)x] dz:li)J Fluy + (1 — )] du.
0 vJa
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If we make the change of variable u := At then we have du = A dt and

Jl FltAy + (1 — At)x] dt = %J/:F[uy + (1 — u)x] du.
0 0

Therefore

—

(1- JV)J FI(L = )0y + (1= A)x) + 1] dr

f=]

+/1J1F[t(/ly+ (1= 2)%) + (1 = 0)x] dt
0

JlFuy—i— (1 —u) ]du—i—JAF[uy—i—(l — u)x] du
A 0

JFuy—i— 1 — u)x] du
0

and the identity (2.2) is proved.

O

We say that the mapping F : B< X — Y is Lipschitzian with the constant

L >0 on the subset B of X if

(2.3) 1F(x) = FW)ly < Lllx = ylly for any x,ye B.

The following lemma is of interest in itself.

Lemma 2. Let F: C < X — Y be a Lipschitzian mapping with the constant
L >0 on the convex subset C of X. If x,ye C and .€(0,1] then for any

1,1 €[0,1] we have

(24)  1Opxyi(12) = Prp2(0)lly < Lita = ta] [Ix = plle (1= 2)* +2%).

In particular we have

(2.5) 1PF, x,y,0(t2) = Pr xp0(t)lly < Ltz — t1][[x — ¥y,
[PF x.y1(22) = @r xy1(0)lly < Llta — ti] [[x — ¥y

and
1
(2.6) 1PF,xy,1/2(12) = Pr vy 2(t)lly < 5 LI = tilllx = Yy

for any x,y e C.
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Proof. For any 11,1, €[0,1] we have, by the triangle inequality, that

2.7) N®rxy,2(12) = Proxpa(t)[ly = [[(1 = DF[(1 = 1)((1 = A)x + Ay) + 12]
+ AF[(1 = t)x + 6((1 — D)x + Ay)]
— (1 =AF[(1 —0)((1 = A)x+ 4y) + 11)]
—AF[(1 = n)x+ 0 ((1 = A)x + )]lly
< (L =ADIF[(1 = )((1 = Dx +4p) + )]
—F[(1=0)((1 =2)x+ ) +nyllly
+ A|F[(1 = t2)x + t2((1 = A)x + 4p)]
= F[(1 = t)x+n((1 = x+ )iy

for any x, ye C and 1€ [0,1].
Since F: C < X — Y is a Lipschitzian mapping with the constant L > 0,
then

(2.8) IFI(1 = 2)((1 = A)x + Ay) + tay] = F[(1 = 01)(1 = A)x + 2y) + 11)llly
< L1 =2)(1=Ax+4y) + tay = (1 =) (1 = A)x + 4y) —tylly
= L(1 =] —nlllx - yllx

and

(2.9) NFI( = )x+ (1 = Ax+ Ay)] = FI(1 = 0)x + 0 ((1 = Hx + )y
< L[(1 = 2)x + (1 = Ax +4y) = (1 = t)x — 61 (1 = Ax + )y
= Lil—nlllx - yllx

for any x,ye C and 1€ [0,1].
From (2.6)—(2.9) we get the inequality (2.4).
The other inequalities are obvious. O

The following result holds:

THEOREM 1. Let F:C c X — Y be a Lipschitzian mapping with the con-
stant L > 0 on the convex subset C of X. If x,ye C, then we have

1
(2.10) ‘ D .y, i(1) — J Flsy+ (1 —5)x] ds

Y

1 1\’
Z+(ﬂv—§)]nx—y|x

for any te0,1] and A€ [0,1].
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Proof. By Lemma 2 we have
211) @y i (6) = Pp oy (9)ly < L= sl [lx = plly[(1 = 2)* + 2%

for any #,5€0,1] and 1€ [0, 1].
Integrating (2.11) over s on [0,1] we get

1
(2.12) \ < [ 19000 = @Ol d
Y

1
(I)F7x7y’g(l‘) — J @pﬁx’y’@(s) dS
0 0

1
< Ll =yl = 27+ 2| o=l ds,
for any 1€ 0,1] and Z€0,1].
By Lemma 1 we have

and since
: 1., 2 1\
[Lp=sts =50 -0 = (- 3)
and
(=i =2]ky PERAY
=23 =5
then by (2.12) we get the desired result (2.10). 0

The best inequality we can get from (2.10) is as follows:

COROLLARY 1. Let F:C c X — Y be a Lipschitzian mapping with the con-
stant L > 0 on the convex subset C of X. If x,ye C, then we have

(2.13) H; {F(”I y) +F<x—;3yﬂ - Jl Flsy + (1 = s)] ds

0

1
< gLlIv =y

Y

The constant § is best possible in (2.13).

Proof. The inequality (2.13) follows by (2.10) by taking r=1=1.
Consider the function F:[0,1] — R,
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We observe that F is absolutely continuos with [[F'[l ) ,, =1 and therefore
Lipschitzian with the constant L =1 and if we take x=0, y =1 then we get

1[./1 3 2 ! 3 1
SF(Z)+F(2)] - —lds— ~lds=—-
o[ (@) @)L g g5
showing that the equality case is realized in (2.13). O
Remark 1. If we take in (2.10) A =0 then we get the Ostrowski type
inequality
! 1 1\’
(2.14) HF[(l —1)x + 1y —J Fisy+ (1 —s)x]ds|| <L 2t (t—2> Ix = »lly
0 Y

for any x,ye C and r€0,1].
The best inequality we can get from (2.14) is for ¢ = %, namely, the mid-point
inequality

(2.15) HF(XJ2ry>JlF[sy+(l ~ s ds|

0

1
< LI =l

The constant § is best possible in (2.15). The scalar case was obtained in [11].
If we take in (2.10) A =1 then we get

O R |

1
—J Flsy+ (1 —s)x] ds

0

for any x,ye C and 1€ [0, 1].
The best inequality we can get from (2.16) is for =1, namely, the
inequality (2.13).

1

< -L
-2

Let C be a convex set in X and a mapping F: C < X — Y. We can also
consider another associated function Wr ., ; : [0,1] = Y, where x, y e C, 1 €[0,1],
defined by

(2.17) Wrxpi(t) == (1= AF[(1 = )((1 = A)x + 4y) + 1)]
+AFtx+ (1 = 0)((1 = A)x+ Ay)].

We observe that for A=0 and A =1 we have

Wrxypolt) = FI(1 —O)x+ 0], Wraypa() = Flix+ (1 -10)y]
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and

WE v 1/2(0) :%(F[(l — z)¥+1y] +F[zx+ (1-— z)x;yD,

where x, y € B.
There are some particular values of interest, namely

\PF,;gyAO(O) = F<x)> WF,x,yJ(O) = F(y)a ‘PFA,x,y,()(l) = F(y)7 \PF,x,y,l(l) = F(x>

o) o))
Prp0 = F(S5), Wain) =3P + PO

and

where x, y € B.

Lemma 3. Let F: C < X — Y be a continuous mapping on the convex subset
Cof X. If x,yeC, then

1 1
(2.18) Jo Wi vy (1) dt = Jo Fluy + (1 — u)x] du.

Sor any 2€][0,1].

Proof. Since F is continuous on C the integrals involved in (2.2) exist.
For A=0 and A =1 the equality (2.18) is obvious.
Let 2€(0,1). Observe that

1

1
Jo Wi v ya(t)dt = (1 —2) Jo F(1-0)((1—=2X)x+ )+ ty] dt

+ AJI Flix+ (1 —0)((1 — D)x+ Ay)] dt.
0

If we change the variable 1 — ¢ =s, then we have

1

J; Flox+ (1= 0((1 = 2)x + )] dt = L FI(L = $)x+ s((1 — A)x + Ay)] ds.

Making use of the equalities provided by the change of variables in the proof of
Lemma 1 we get the desired result (2.18). We omit the details. O
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We have the following properties for the function Wr . ) ;:
Lemma 4. Let F: C < X — Y be a Lipschitzian mapping with the constant
L >0 on the convex subset C of X. If x,ye C and A€|0,1], then for any

1, € [0, 1] the inequalities (2.4), (2.5) and (2.6) hold for the function Wr ., ; as
well.

Using Lemma 3 and 4 we can also state the following inequality:

THEOREM 2. Let F:C <= X — Y be a Lipschitzian mapping with the con-
stant L > 0 on the convex subset C of X. If x,ye C, then we have

1
(2.19) ‘ Wiy a(t) — Jo Flsy+ (1 —s5)x| ds

Y

1 (z—gﬂ E+ (z—%ﬂ = 1lly

for any t€0,1] and A €10,1].

Remark 2. If we take in (2.19) 4 =1, then we get

on (oot eefren-r)

1
fJO Flsy+ (1 —s)x] ds

Y

Lo (=Y e
4 2) [T ix

for any 1€ [0,1] and x,y e C.
In particular, if we take in (2.20) 1 =1, then we get the trapezoid type
inequality

1
<=L
2

1

(2.21) H%[F(x) + F(p)] —J Flsy+ (1 —s)x] ds

1
< -Llx—
0 < gLl =ylly

Y

for any x, y e C. The constant % is best possible in (2.21). The scalar case was
obtained in [41].

If we take in (2.20) ¢ =0, then we get the mid-point inequality (2.15). If
we take in (2.20) =1, then we get the inequality (2.13).
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3. Applications for norm inequalities

Let X be a real linear space, a,b € X, a # b and let [a,b] := {(1 — A)a + /b,
A€[0,1]} be the segment generated by a and b. We consider the function
f:la,p) > R and the attached function g(a,b):[0,1] =R, g(a,b)(t):=
SI(1 =t)a+1b], te]0,1].

It is well known that f is convex on [a,b] iff g(a,b) is convex on [0, 1], and
the following lateral derivatives exist and satisfy

(1) g+(a b)(s) = (V+ fl(1 = s)a +sb])(b — a), s€[0,1)

(ii) g’ (a,0)(0) = (V+ f(a))(b—a)

(iii) ¢ %(( )= (V-S(b)(b—a)

g’ (a,b
where (4 f(x))(y) are the Gdteaux lateral derivatives, we recall that

(V+f(x)(p) := lim fx+hy) = f(x)

h—0+ h ’
(VS )() = Jim TEHRIZID oy
Now assume that (X, -||) is @ normed linear space. The function f(x) =
2||x|| x € X is convex and thus the following hmlts ex1st
@9) o3y o= (T4 i)0) = i, LT = D1,
2 2
) <6251 (7o) () = i,y L2FS =,

for any x, y € X. They are called the lower and upper semi-inner products asso-
ciated to the norm || -|.

For the sake of completeness we list here some of the main properties of
these mappings that will be used in the sequel (see for example [13]), assuming
that p,q e {s,i} and p;éq

(a) X, = | x||* for all xe X;

( ) <°‘xaﬂy>p*0‘ﬁ<an’>p lf a7ﬁ20 and xvyeX;
(aaa) [<x, ¥, | < [[x[| || y[| for all x,ye X;
av lax+ y,x), = olx,xy, + {y,x), if x,ye X and o« eR;
» » »
v (=x, >, = —<x, >, for all x,ye X;
(v) Yop Y4 y
(va)  <x+y, 2, < |Ix|l ||zl +<y,z), for all x,y,z€ X;
(vaa) The mapping <-,-), is continuous and subadditive (superadditive) in

the first variable for p =s (or p =1i);

(vaaa) The normed linear space (X, | -||) is smooth at the point xo € X\{0}
if and only if {y, x>, = {y,xp; for all y € X; in general {(y,x); <
{y,xy, for all x,ye X;

(ax)  If the norm || - || is induced by an inner product {-,-», then {y,x); =
{y,xy =<y, x), for all x,ye X.

Now, consider the functions f(x) = x|, r > 1, x € X where (X,||-]) is a

Banach space.
The following result holds:
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LemMA 5. Let r>1 and x,y € X\{0}, then

1
(3.1) Il =Nl < rlly = x| JO (1= t)x + 2y]| " dr.
The inequality (3.1) is sharp.

Proof: Let r>1 and x,ye X\{0}.

Assume that x and y are in X and such that (1 —¢)x+ ¢y # 0 for any
t€10,1]. The function g(x, y)(¢) := [|[(1 — t)x + ty|" is convex on [0,1] and ab-
solutely continuous on [0,1]. The derivative g’(x, y) exists almost everywhere
on [0,1] and

g' (% 2)(0) = rll(1 = x + "7y = x, (1= )x + 1),

for almost every t € [0, 1], where p is either s or i.
Therefore

(3:2) I =Xl = gCx, 1) (1) = g(x, ¥)(0)

1
:jamwmm

0
1
== D = (1= D ),
0

which is an equality of interest in itself.
Taking the modulus in (3.2) and utilizing the Schwarz inequality (aaa) we get

1
iyl =1 < VJO (1= 0)x+ )2y = x, (1= 0)x + 1y, | di
: -1
< rlly =l | 10 = v+ o]
and the inequality (3.1) is proved. w1
Now, if there exists o € (0,1) such that (I —a)x+ay =0, then y =
We then have

X.

i e
[ = Il = o = (=]

and
! r—1 HX”’ ! r—1
rHyfoJ (1 =t)x+ 1y dt:r—rj [t —o| " dt
0 atJo
[x[]" o+ (1 =)
o’ r

=r

= o+ (1 -y 20



INTEGRAL INEQUALITIES FOR LIPSCHITZIAN MAPPINGS 239
and the inequality (3.1) becomes
o~ (=) <o +(1-2),

which is obvious.

If r=1, then (3.1) becomes the continuity inequality for the norm.

If we take r =2, y = b, x = a where b > a > 0, then we get in both sides of
(3.1) the same quantity b —a® > 0. O

COROLLARY 2. Let r>1 and x,ye X\{0} with ||x|,|y|| <M for some
M >0, then

(3-3) LI = 11" < ey = .
Proof. 1t follows by (3.1) on observing that, if ||x]|, | y|| < M, then ||(1 — #)x
B

+ty|| < M for any ¢ € [0, 1], which implies that f()l (1= 0)x+0p|| " dr < M,
O

Remark 3. Let r > 1. Utilising the inequalities (2.10) and (2.19), we have
for x,y e X\{0} with ||x|,||y|| < M that

(3.4) ‘Ar,x,yﬁfl(t) - J; sy + (1 —s)x||" ds
(Y §+(z—§)2]|x—y|

Ay i(0) = (1= DN =) ((1 = 2)x + 2) + |
A1 = B)x+ (1 = A)x + p)||”

<2rM™!

where either

or

Areyit) == (L= DN = (1 = A)x + 2y) + o]
e+ (1= 0)((1 = Ax+ )|

and 7€ 10,1], 2€10,1].
We also have the norm inequalities

(3.5) E (H(l — Z)¥+ ty

Lo (=Y ez
4 2) (=i

+H(1—z)x+tx+—y

p 1
)= [ v - as
2 0

1 .
< ET’M’_I
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+Htx+ (1=1)

1 N
(3.6) ‘— (H(l—z Yy )—J sy + (1= )x|” ds
2 2 .

2
1 t 1 2 ||x H
4 y

1
(3.7) ] 1= 0+ ol = [ oy (1= o)l s

1 ,_12
4

for any € [0,1] and x,y e X\{0} with ||x|,|y] < M.
In particular, we have

1

Mll
2

<rM’™! [l =

(38) 0< %H b , sk 4 ]—J; sy + (1 — s)x|)” ds
< gy,

(3.9) 0< J sy + (1 = s)x||" ds — HX;yH %rM’ x =y

and

(3.10) 0< w — J; llsy + (1 —s)x||" ds < %rM"”Hx |

for any x,y € X\{0} with ||x|,|ly]| <M and r>1.
The positivity of the terms in (3.8)—(3.10) follows by the Hermite-Hadamard
inequality for the convex function [0,1]3s+— [lsy+ (1 —s)x|" for r > 1.

Now, by the help of power series f (1) =).,~,a,A" we can naturally con-
struct another power series which will have as coefficients the absolute values of
the coefficients of the original series, namely, f,(4) := > |o|A". It is obvious
that this new power series will have the same radius of convergence as the
original series. We also notice that if all coefficients o, > 0, then f, = f.

In general, we have the following result:

THEOREM 3. Let f(z) = Y. onz" be a function defined by power series with

complex coefficients and convergent on the open disk D(0O,R) =« C, R> 0. For
any x,y € X with ||x|,|ly|]| < R we have

1
(3.11) LA =Dl < {1y = x| L Jd(U = 0)x + 1y]]) dt
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Proof. Now, for any m > 1, by making use of the inequality (3.1) we
have

(312) Dl - o ([ y1" = 11x")
n=0

n=1

m

< D lowl 11" = [1xl1")

n=1

<y x||2n|ocnwj 11— o)x + oy d

1 m
= |ly — x| Jo (Zn|an| (1= 6)x+ ty||"1> dr.

n=1
Moreover, since ||x|,|/y|| < R, then the series >~ 0, »", > .- oux" and

o0

> nloul (1= 0)x + oy]|"!

n=1

are convergent and

0
> alyl” = £y, Z%HXII VA(RY))
n=0

while

0

> nleal (1= 0x + oyl = £/I(1 = )x + 2]

n=1

Therefore, by taking the limit over m — oo in the inequality (3.12) we deduce the
desired result (3.11). O

COROLLARY 3. With the assumptions of Theorem 3, for any x,y € X with
[Ix[l, Il < M < R and M >0, we have

(3.13) SAD =fAxIDE < S5 (D)]]y = x]|.

Now, if we consider the associated function Ay, ;:[0,1] — [0, c0) that is
given either by

2wy a(8) 7= (L= S (I(1 = )((1 = 2)x + 4y) + 1))
+A([(1 = 0)x + (1 = 2)x + )l]),
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or by

Af oy a(t) i= (L= AL (I(1 = (1 = A)x + 2p) + w7]])
+ 4 (e + (1= ) ((1 = A)x + )]),

then we get the inequality

1
(3.14) ‘&wﬂﬂ—LﬂthLﬂwm%

<2f, (M) l‘lﬁ (z — %ﬂ F+ (ﬂu - %ﬂ lx =yl

where f(z) =Y. ,a,z" is a function defined by power series with complex
coefficients and convergent on the open disk D(0,R) = C, R>0 and x,ye X
with ||x||,[|y]]| < M < R and M > 0.

In particular, we have from (3.14) the following inequalities

(3.15) ’% (f(H(l —9 2y zyH) +f<H(1 — Bx + z#“))

[ st as
()
(3.16) ‘ ( (H 1—1¢ —+tyH)+f<Htx+(l —1 X;J}H))

L sy + (1= )xll) ds
}+Q—§fbw—yn

1
@) U0 =0 ) = [+ (0=l s

}+Q—3f]w—y|

for any 7€ 0,1] and x,y € X\{0} with x|, | »| < M.

< 3 J(0) =

and

< fJ(M)
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Moreover, we have

o BAEE A2 Lrvm o
< S/l

190 [ (F52) - [, 2t + 0 =i | < Jrzanie— i

and

a0y UDEIOD [y o ] < 00

for any x,ye X\{0} with ||x|,||y|]| < M.
As some natural examples that are useful for applications, we can point out
that, if

(3.21) f(z):i(’”nz":m ! . 4eD(0,1);

g(2) = Z (_1)‘ M =cos A, LeC;

n=0
- (_l)n 2n+1 :
= — = A ;
h(2) 2t 1)!/1 sin 4, e C;
~ 1
(A=) (-1)'V"=——, 1eD(0,1);
2 i

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

<1, 1
(3.22) fa(;»):;# =In—: 2eD(0,1);
ga(A) = A" =coshl, AleC;
;(Zn)!

<]
ha(2) = 2(712”“ =sinh 4, AeC;
—0 .

() =) A" = % 4 eD(0,1).
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Other important examples of functions as power series representations with non-

negative coefficients are:

1

(3.23) exp(4) = Zﬁi" leC,
n=0"""

1 142 N L
S (2 = " LeD(0,1);
2 n(l—l) ,;Zn—ﬁ . AeDOD;

RPN C(n+3) o )
sin (l)—;ml +, /IED(O,I),
-1 _ = 1 2n—1
tanh (l)—gznilk , AeD(0,1)
T+ )T+ AT()
2F1(O€7ﬂ,y,l)—; n'F(oc)F(ﬂ)F(n+y) A ) a7ﬁ7y>0a
Ae D(0,1);

where T is Gamma function.

4. Applications for banach algebras

Let # be an algebra. An algebra norm on % is a map || -| : % — [0, 0)
such that (4, -||) is a normed space, and, further:
[labl| < {lall |15l
for any a,b € #. The normed algebra (%, || - ||) is a Banach algebra if || - || is a

complete norm.

We assume that the Banach algebra is umital, this means that % has an
identity 1 and that ||1]| = 1.

Let # be a unital algebra. An element a € % is invertible if there exists
an element b e # with ab=ba =1. The element b is unique; it is called the

. 1 . . .
inverse of a and written a~! or —. The set of invertible elements of % is denoted
a

by Inv#. If a,belnv# then abelnv % and (ab) ' =b~'a'.

For a unital Banach algebra we also have:

(i) If ae# and lim,_,[la"||'" <1, then 1 —ae Inv %;

(i) {aeg: |1 -b| <1} <Inv

(iif) Inv & is an open subset of %;

(iv) The map Inv#3a+ a' e Inv 4 is continuous.

For simplicity, we denote z1, where z € C and 1 is the identity of %, by z.
The resolvent set of ae %4 is defined by

pla)={zeC:z—aelnv B};
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the spectrum of a is a(a), the complement of p(a) in C, and the resolvent function
of a is R, : p(a) — Inv 4,

Ru(z):=(z—a)".
For each z,w e p(a) we have the identity
Ru(w) = Ry(2) = (2 = W)Ry(2) Ru(w).

We also have that

ola) = {ze C: |z < [lall}.
The spectral radius of a is defined as

v(a) = sup{|z| : ze a(a)}.

If a, b are commuting elements in %, i.e. ab = ba, then
v(ab) < v(a)v(b) and v(a+b) <v(a)+v(b).

Let 4 a unital Banach algebra and ¢ € 4. Then
(i) The resolvent set p(a) is open in C;
(i) For any bounded linear functionals 7 : % — C, the function Ao R, is
analytic on p(a);
(iii) The spectrum o(a) is compact and nonempty in C;
(iv) We have
v(a) = lim [ja"|"/".

n—oo

Let f be an analytic functions on the open disk D(0, R) given by the power
series

f(z) = ZV‘O‘/Z‘/‘ (lz| < R).
=0

If v(a) < R, then the series )", oa’ converges in the Banach algebra % because
>0 ol [la’|l < oo, and we can define f(a) to be its sum. Clearly f(a) is well
defined and there are many examples of important functions on a Banach algebra
% that can be constructed in this way. For instance, the exponential map on %
denoted exp and defined as

o0
1 .
exp a:= Zﬁa’ for each ae 4.
Jj=07"

If # is not commutative, then many of the familiar properties of the expo-
nential function from the scalar case do not hold. The following key formula
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is valid, however with the additional hypothesis of commutativity for a and b
from %

exp(a + b) = exp(a) exp(b).
In a general Banach algebra # it is difficult to determine the elements in the
range of the exponential map exp(%), i.e. the element which have a “logarithm”.

However, it is easy to see that if @ is an element in B such that ||1 —a|| < 1, then
a is in exp(#). That follows from the fact that if we set

—l—a7

M%
:.—‘

n=1

then the series converges absolutely and, as in the scalar case, substituting this
series into the series expansion for exp(b) yields exp(bh) =

Concerning other basic definitions and facts in the theory of Banach algebras,
the reader can consult the classical books [29] and [43].

The following result is valid, see also [28]. For the sake of completeness, we
give here a simple proof.

LEMMmA 6. For any x,y€ % and n>1 we have
1
(@) " ="l < mlly = x| 1= 0 e

Proof. We use the identity (see for instance [6, p. 254])
n—1 ) )
(4.2) a"—b" =Y a"""(a—b)b’
=0
that holds for any a,b € % and n > 1.
For x,ye# we consider the function ¢:[0,1] — % defined by ¢(¢)
[(1=0x+1y]". For te(0,1) and & #0 with t+¢e€(0,1) we have from (4.2)
that

p(t+e)—o(t)=[1—t—e)x+ (t+e)y]" = [(1 —t)x+1y]"

—

n—

zsz 1—r—ex+(t+e)y" "(y—x)[(1 - )x+1y].
j=0

Dividing with ¢ # 0 and taking the limit over ¢ — 0 we have in the norm
topology of % that

(43) /(1) = lim Lfp(i +5) — ol0)

n—1

(1= Ox+ o] (y = )1 - t)x + 1)
=0
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Integrating on [0,1] we get from (4.3) that

1 n—1 p1
JO o/ (1) dt = ZJ (1= Ox+ 0] (y = [ = Ox+ ] dr

j=0 70
and since
1
jo 9'(1) di = p(1) - 9(0) = y" — x"

then we get the following equality of interest

yh=x"= nZJ (1= 0)x+ 0"y =1 - )x+ o) dt
j=0 70

for any x,ye % and n>1.

247

Taking the norm and utilizing the properties of Bochner integral for vector

valued functions (see for instance [39, p. 21]) we have

—

n—

-l < 3 [t 10— 910~ o+ 01 a
< e (o (WS U
< U = 0 1y = )+ 0
< S 0= e ot 10 - 0 1 a

(=}

J=
! 1
:nnyfxujo 10— 0+ o] d
for any x,ye % and n>1.

The following result is valid.

THEOREM 4. Let f(z) = Y., onz" be a function defined by power series with
complex coefficients and convergent on the open disk D(0,R) = C, R> 0. For

any x,y € % with ||x|,||y|| < R we have

1
(4.4) I/ ) =Sl < ly =~ JO JdI = 0)x + ty]]) dt.

The proof is similar to the one from Theorem 3 by making use of the

Lemma 6. We omit the details.
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COROLLARY 4. With the assumptions of Theorem 4, for any x,y € % with
Ix]l, |7l < M < R and M > 0, we have

(4.5) £ () = S < fd M)y = x]|.

Now, if we consider the associated function dy \ , ; : [0,1] — # that is given
either by

Ofx (1) = (1 =) f((1 = )((1 = A)x + 4y) + 1)
+ A (1 =0)x+t((1 = D)x+ 4y)),
or by

Ofxp,a(t) == (1 =) f((1 = )((1 = A)x + 4y) + 1)
+ M (tx+ (1L =0)((1 = A)x+ Ap)),
then we get the inequality

(4.6) \hmmmﬂfw+uwmw

1+1121+2 12|| I
4 2) ||la T \*72) |1F

where f(z) =Y. ,z" is a function defined by power series with complex
coefficients and convergent on the open disk D(0,R) = C, R>0 and x,ye X
with ||x||, ||| < M <R and M > 0.

In particular, we have from (4.6) the following inequalities

4.7) H%(f((l—z)%H%f((l_t) H%))

—Jlf(sy—&— (1 —9)x) ds

0

—f()F <%éfhx—ﬂ,
(4.8) H%<f((l—t)%+ty>+f<zx+(1—z)x;y>>

1
—J flsy+(1—s)x)ds

0
4 Y

<2f/(M)

a

1 /
< = M
2“( )
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and

1
(49) |7 =ox s )= [ s+ -9

) 1 1\
<f00 3+ (1-3) [Ix-

for any ¢t € [0,1] and x,y e #\{0} with ||x||,|y|| < M.
Moreover, we have

wio 5|r(E) (5] Jol Flsy+ (1= 5)x) ds

1
< o Ja(M)lx =y,

< 31—

(@) \f(x;y)-ﬂﬂswu-s)xms
and

wi2) Hf(x) +10) J

0

Sl (1= 9)) ds| < 3 7(D]x—

for any x, y e #\{0} with [|x|. ||| < M.
One can obtain various examples by taking the functions mentioned in the
previous section. The details are left to the interested reader.
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