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LOWER BOUND OF ADMISSIBLE FUNCTIONS
ON THE GRASSMANNIAN G,, ,(C)

ADNENE BEN ABDESSELEM AND INES ADOUANI

Abstract

We prove the existence of an “‘extremal” function lower bounding all admissible
functions (ie plurisubharmonic functions modulo a metric) with supremum equal to zero
on the complex Grassmann manifold G, ,»(C). The functions considered are invariant
under a suitable automorphisms group. This gives a conceptually simple method to
compute Tian’s invariant in the case of a non toric manifold.

Résumé

On prouve l’existence d’une fonction “extrémale” minorant toutes les fonctions
admissibles (ie plurisousharmoniques a la métrique initiale prés) a sup nul sur la
grassmannienne complexe Gy, ., (C). Les fonctions considérées sont invariantes par un
groupe d’automorphismes convenablement choisi. Cette minoration permet de calculer
I'invariant de Tian sur un exemple de variétés non toriques.

1. Introduction

This article takes its origin in the problem of the existence of Kdhler-Einstein
metrics on a compact Kéhler manifold X. This problem is one of the most
fundamental problems in complex differential geometry. Let us recall that a
metric ¢ is said to be Kéahler-Einstein if its Kdhler form w satisfies the following
equation:

(1.1) R=/w

for a real number A. R is the Ricci curvature form relative to the Kiéhler
form w.

In local coordinates (zi,...,z,) of X, if w= iga/; dz* AdzP, then the Ricci
, . 0?
tensor’s components are given by R ; = —0_; log(det(g,5)) (Where 0,5= W>
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Since the cohomology class of the Ricci curvature is the first Chern class
C1(X), a nessecary condition for the existence of a Kdhler-Einstein metric is that
C1(X) has a prescibed sign.

The problem is to find a real smooth and g-admissible function ¢
(ie gaﬁ—l—aaﬁq) is positive definite) such that:

/ _— - -
(1.2) Gyp = 9o T 0u?

is Kéhler-Einstein. This leads, after a suitable normalisation, to the complex
Monge-Ampere equation:

(1.3) log det(g'g™") = —ep + f,

where f is a geometric data and where ¢ = —1 (respectively ¢ = 0, ¢ = +1) when
C1(X) is negative (respectively null, positive).

The cases C;(X) <0 and C;(X) =0 (linked with Calabi conjecture) were
solved independently by Aubin [A], [Al] and Yau [Y] (see also [T1]). In both
cases one get a positive answer.

In the positive case, unlike the two previous ones, there exist obstructions
to the existence of Kéhler-Einstein metrics, given by Matsushima [M], Lichnner-
owicz [L] and Futaki [F]. However, it is interesting to find conditions under
which these manifolds admit or do not admit Kéhler-Einstein metrics. The
linearized operator of the equations cited above is no longer invertible in the
positive case (since ¢ = +1 is positive). To overcome this difficulty, Thierry
Aubin introduced another family of equations:

(1.4) (x),:logdet(g'g™") = —top + f, ¢ is C*g-admissible,

and reduces the problem to the C’-estimate of the solutions ¢, of (x),. To this
end, T. Aubin in [A2] introduced an holomorphic invariant &(X) giving a
sufficient condition to the existence of a Kéhler-Einstein metric on X.

A few years later, taking into account a Hormander inequality [H] and
functionals introduced by Aubin in [A2] (see also [A3]), G. Tian [T] introduced
a new holomorphic invariant og(X) for C* g-admissible functions, invariant
under a group of automorphisms G, easier to compute than Aubin’s one. Under
a condition on this invariant, equation (1.1) can be solved:

THEOREM 1.1 (Tian [T]). Let (X,g) be a compact Kihler manifold of
complex dimension n with Ci(X) > 0. Define:

Ag={pe C¥(X)|¢ is G-invariant on X, g-admissible, sup ¢ = 0}

and

og(X) = sup{ocHC > 0 such that J e dv<C foral pe JZ/(;}.

X

n

Then X admits a Kdihler-Einstein metric whenever og(X) > e
n
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Furthermore, the first author was interested in proving the existence of a
Kaihler-Einstein metric on some Fano manifolds and he gaves a “tool” to
compute Tian’s invariant. In fact, this method uses the underlying algebraic
aspects of the manifolds under study to highlight an “extremal” function y lower
bounding all C* g-admissible functions ¢ with supremum equal to zero, and
invariant under a suitable group of automorphisms. This fact allows to compute
Tian’s invariant by estimating the integral of the exponential of a single function.
In [B1], the method has been initiated in the simplest case, namely the sphere
S? = PI(C). A similar lower bound has been proven on the complex projective
space [B2], as well as on manifolds built from the projective space by blow-up
(B] [B-D] [B-C]).

In a recent paper [B-J], this method was applied in the case of a non toric
manifold: the Grassmannian G, 4(C). Moreover, Tian’s invariant for complex
Grassmannian G, ,(C) (the space of p-planes in C”*) has already been computed
by J. Grivaux in [G] using a very clever and completely different method. In this
article, our aim is to generalize the result given on G 4(C).

2. Preliminary material

Let Gy (C) be the complex Grassmannian manifold of m-planes in C™".
It is a compact complex manifold of dimension m?(n — 1). Let My, m(C) be the
space of nm x m complex matrices (i-e nm rows and m columns) and let Ly, ,,(C)
be the subset of matrices of rank m. A point of Gy, .,(C) is identified by a
matrix M € Ly, ,(C):

Zy
(2.1 M= :
anl
ljm+1
where Z; = : (for 0 < j <n—1)is a mx m complex matrix, and where
l(j+1)m
(lim+k)1 < <m are the rows of Z;.
Setting I = {ii,...,in}, where 1 < i) <--- <, < nm, Z; denotes the m x m
complex matrix given by:
I
(2.2) Zr=| :
I

'm

Considering the above description, the domains of usual charts of G, (C)
are given by:

(2.3) Uy = {M € Gy u(C) such that det Z; # 0}.
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Zy
Z
For example, every point M = ) in Uy, where Iy ={1,2,...,m}, can
Id, :
le anl
be written M = . where Idy is the identity matrix of order m and, for

2
n—1
jed{l,...,n—1}, Z/’:Zngl.
We endow Gy, ,,n(C) by the metric g obtained from the Fubini-Study on
P"~'C where r = (ny;n) Let (z%))<y<m2(n_1) e @ local coordinate system in

U,,, then g is given by:

(24) g = anal/} In{ 1+ Z |det Z[|2 dz* ® dZ_ﬁ7
I<{1,..,nm}\Iy
52
where a, = nm and 67/; =———. The integer a, is chosen such that the metric
o 0z20zh

g is in the first Chern class Ci (G, um(C)) of Gy um(C). g is a Kéhler metric on
G (C) with fundamental form:

(2.5) w = l'an&a/; In (1 + Z | |det ZI|2) dz* /\dz/}.
—,nm\Iy

I<{1,

DermnitioN 2.1, A function ¢ € C* (G (C)) is called g-admissible if
(9 +0,30) is positive definite.

The function ¥ on Ly, ,(C) of nm? variables given by:

j=n—1 2m
(2.6) l/;(M) _ ln( Hjj:() |det Z;| _ >
(Zlc{l,...,nm} |det ZI| ) !

induces a well defined function 1/; on Gy um(C) outside the boundaries of the
charts U;. In fact, the right multiplication of a point M in L, ,,(C) by a

ZoA
matrix 4 € GL,,(C) is equal to M’ = : and, recalling that a, = nm, we
have: Z, 1A
2 j=n—1 2
2.7) B(M') = ln< [det A" [T7=" |det Z;™ )
|det A|2nm(ZIc{l,...,nm} |det Zl|2)an

(2.8) — (M),
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The expression of lﬁ in the chart Uy, is given by:

: 1 ldet Z
(2.9) Y(M) = ln< [l |det 2 > )
(1 + Zlc{l,...,nm}\lf) |det ZI| )
Let ¥ =y —sup ¥ = Y + a,m In(n). This new function reaches a supremum
Id,
equal to zero on the point : € Gy,nm(C) and tends to infinity in the
Idnfl

boundaries of the charts U;. This will be proved into Proposition 4.3.

3. An appropriate isometry group

The unitary group U,,(C) acts transitively by left multiplication on
G, »n(C) and induces an isometry group of G, ,,(C) with respect to the Fubini
Study metric g. Consequently, given two points M and N of G, m(C), there
always exist an isometry that transforms M in N.

Let us consider an isometry i: Gy pn(C) — G um(C) satistying

(3.1) i(M)=D
Idy
D,
where D = . is the matrix obtained from M by the following description.
Set :
anl
Idy
Z)
(3.2) M= .| e N{det Z; #0}.
: I
Zn—l

Since the matrices Z; (for 1 < j <n—1) are invertibles and according to the
polar decomposition theorem, there exists a unique pair (U;, H;) € U, (C) x
H}(C) such that Z; = U;H;. However, H; is a hermitian positive definite
matrix. It follows that H; is diagonalizable and its eigenvalues are strictly
positive real numbers. In other words we have: H; = Pj‘lDJ-PJ- where

1
A0 0

P;je Uy(C) and D; = 0 is the m x m diagonal matrix whose
; .. 0
R

diagonal entries are the eigenvalues of H;.
The existence of such an automorphism is provided by the transitive action
of the unitary group U,,(C) on G, ,m(C). In particular, among these automor-
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phisms we also consider the maps Pj (for 7, j € {0,...,n—1}) and ®y defined as
follows:

Pij : Gm,nm(c) - Gm,nm(c)

VA Zy
Z Z
Z; Z;
. —
Z; Z;
Zn—l Zn—l

and

Zy UZ,
Z A
—

Zu1 Zy 1

The map P; exchanges the matrices Z; (for 0 < j <n— 1) between them.
Therefore ¢, corresponds to the left multiplication of matrices Z; (for 0 < j <
n—1) by a unitary matrix U € U,(C). Both ®y and Pj; are well defined. In
what follows, G stands for the group generated by the isometries i. The metric g
is, by definition, invariant under the action of G.

4. Main results

Here and subsequently, all calculations will be made in the chart Uj, defined
by

4.1) Uy, = {M € Gy yn(C) such that det Z; # 0}.

Locally, in the chart Uy, to say a map ¢ defined on Gy, ,,(C) is G-invariant
implies that it satisfies:

Idy Z Uz, Idy
Z Id, Idy Uz,
(4.2) ol 22 |=9| 22 |=¢p| 22 [=¢p| £

Zn—l Zn—l Zn—l Zn—l
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and, in the intersection of charts ((7),{det Z; # 0}), we have

Id() Zl IdO
Z Id, z;!
(4.3) o| 22 |=9| 2 |=¢p| 224"
Zn—l Zn—l Zn—lzl_1

THEOREM 4.1. Let ¢ € C®(Gyum(C)) be a g-admissible and G-invariant
Id,

Junction such that supg, )¢ =¢ : =0. Then: ¢=1.
Idn—l

This theorem asserts that all admissible and G-invariant function ¢ €
C®(G,nm(C)) with supremum equal zero are lower bounded by the function
 defined above. The important corollary of Theorem 4.1 is established by our
next theorem.

1
THEOREM 4.2. Vo < o e have the following inequality of the type Tian-
Hormander (See [H], [T]):

(4.4) J e dv< C
G, (C)

for every g-admissible and G-invariant function ¢ € C* (G uu(C)), satisfying
supp =0 on Gy um(C).

. . 1 . . .
This theorem induces og(Gp,um(C)) > ot The remainder of this section

will be devoted to the proof of these Theorems.

4.1. Proof of Theorem 4.1. The proof of Theorem 4.1 will be divided
into a sequence of lemmas but let us first outline some properties of the func-
tion .

PROPOSITION 4.3. W is G-invariant and it reaches a supremum on Gy, u(C)
equal to zero at any point in the unitry group U, (C). Y and  satisfy:

(4.5) O = 0 = —g

Proof. The proof falls into three steps.
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Step 1. The functions y and lﬁ are G-invariant. Indeed, by the description
Zj = UiH; = U;P;'D;P; (for 1< j<n—1) we get: detZ; =detD;. On the
other hand, the logarithmic potential of the metric g, easily seen in the dominator
of the function y, is invariant by the action of isometry i. It follows that iy is
G-invariant as well as the function .

2
Step 2. It is easy to check that 0, = (31,;& = —g since %(ln(|f(z)|2))
=0 if f is a holomorphic function. =0z

Step 3. Under the properties of G-invariance satisfied by the function v, we

1d,
D,
are reduced to the case when M is equal to . . Thus, y satisfy:
anl
n—1 2m
| |det D;
(46) w<M>=1n( Lo e o )
(142 D)™
1 m 1 m 2m
@ _ m(m A gy il >
(1+ Zl\[o |Dr|7)™
1d
D,
Let us show that for every point M = ) € Gy n(C), we have:
anl
Idy
1d,
(4.8) VM) <y |
Idnfl
Id,
D
Let f be a function defined at every point M = . on the chart U of
Gm,mn(c) by: :
D,

[175' Idet D"

4.9 M) = :
(4.9) f(M) TESIRE
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Observe that the function K : (R)" — R} defined by

(X0 -+ Xp_1) /"
(4.10) K(XO’“.’xnil)_Xo—|—~~~—|—x,,_1
1dy
D,
reaches its supremum at the point (1,...,1). Hence, for all M = . €
Gp.mn(C) we have: :
anl

Hjnz—ll \det Dj|2m
n—1 2\ ay,
(142001 |det Dy[)

(4.11) f(M) <

The last function is nothing but the function K™ (with xo = 1 and x; = |det Dj|2
for 1 <j<n-—1). From this, we conclude that f reaches a supremum if
Id,

Id,
det D; =1 (for 1 < j<n—1). Neverthless the point . satisfy this con-

Idn—l
dition, hence the function f reaches a supremum at this point. This completes
the proof.

LemMa 4.4. Let 9 € C* (G mn(C)) be a g-admissible and G-invariant func-
tion. We get:

1d, 1d,

Dy (D1 - “anl)l/(nfl)
@.12) w-n| . |z6-» |

D, (Dy--- D, )"/

Proof. The proof is by induction on p. Assume that the inequality

Id,
(Dl o 'Dp)l/p
1d,
D : 1/p
(4.13) (=¥ . [=@=¥)| (Di---Dy)
D,;_l Dp+1
anl

holds for p (1 < p<n—1), we will prove it for (p+1), ie:
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Id,
(Dl . 'Dp+1)1/<p+1)
Id,
D, :
(4.14) e-w| . |[=@-w| @ Dy)""
: Dp+2
anl
Dn—l

Suppose that the above inequality is not satisfied for degree (p + 1), then there
exists a point

Idy
DY
(4.15) M, = . € G,um(C)
Dy,
such that
Idy
1/(p+1
(D?"'Dz(i)ﬂ) /(p+1)
Idy
DY :
! DY DO 1/(p+1)
(4.16) (p—¥) . <(p—1V) (DY - p+1)
P+
Dy,
Dy,
By G-invariance of ¢, we can assume that (/ljl)1 <j<pi1 (relative to DY, ... ,Dg 1)

sat.isfy )11 < - <le 4l quthermore, by induction hypothesis and again by
G-invariance of ¢, we obtain:

Idy

Do 1dy
1
! (DYDY, D)'”
DY . : y
o
(4.17) (9 =) po | = (p—) (D?"'Dﬁ_lD,?) ’
y4 0
Dy b
DO DS—]
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and

(4.18) (0 =¥)

where

(D}

(D} -

.DO
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Idy
D0 DY

p+1

)1/17

0
Dp+1

1
p—1 )/17

0
Dnl

0 0
0
0 Cﬂl ( )
0 0
" 0
0 @)
0 0
0
0
Dp+2
anl
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(C[lj](t))lgjgp = (4 - '}yulfl)l/pl

; {n((22) "7 1 G () 7 1 (20) 7)Y
i (i i1/
COheyep = (i 4) 7 ((mw) :
14
V2<i<m
and
1
1 ( ) )"pll[ﬂrl
[p+1] P

, V2<i<m

p\ TG TGy ) ()1 53) )
=4 5)

’m
’117

27

By the inequality (4.16), the matrices DO (for 1<j< p+ 1) can not be all
equal. Since we have chosen A to satlsfy yh < --- < Al i1 it follows that the

curve c¢(t) passes at 1= (/1 ) through the point

Id,
1
(DYDY DYY'/”

(4.19) P =] (DY --Dg_ng)W

Do,
Dy
and at 1= (/1;+1)1/p through the point
1dy
1/(p+1
(D(l) . ..DO D1(7)+1) /(p+1)
1/(p+1
(4.20) pPy=| (D)D) Dgﬂ) /(p+D)
0
D,
DO
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It is easy to check that at zy = ((API/I;H)/(}VII "';”1171)1/17) € [(,lpl)l/p’ ()V;H)l/p],

the curve c(#) passes through the point

1d,
1 1
(D?~--D§+1) /(p+1)

(4.21) Py=| (DYDY, )T

0
D p+2

Do

n—1

Consequently, from the inequalities (4.16), (4.17) and (4.18), we conclude
that:

(@ =¥)(P3) > (p—y)(P1) and (9 —)(P3) > (¢ — ) (P2).

This shows that the function (¢ —) has a local maximum on the curve c(¢).
Applying the G-invariance argument of (p — ) again, we get:

C[ll](’) 0 0
0
: 0
0 0
([lﬂ](t) 0 0
0o .o :
(0= ¥)(c() = (9~ ¥) C
0 0 @)
¢y 0 0
0
: 0
0 0 C[';H](t)
Dp+2
Dn—l
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™) 0 - 0
0 :
: 0
0 0 e
(e 0 0
0
0 0 (e
é[lerl](tei ) 0 0
0
: .o 0
0 . 0 C[';H](tem)
Dp+2
Dn—l

C[ll'] (z) 0 0
0
=) : 0
0 0 ()
é[1n+1] (z) 0 0
0
' : 0
0 -0 CfZH] (2)
Dp+2
Dn—l

= (¢ —¥)(c(2)

where ¢(z) is the curve defined on the annulus {(i;)l/p <zl < (/I;H)l/p}.
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Thus, the function (¢ —y) has a local maximum inside the annulus, it
follows that its Hessian is negative in this points. Consequently,
~2 2
“[(p — ¥)(c(2))] _5 (p— ) X .0 1
(4.22) 5207 (z0) = 227057 (¢(20))¢'(z0)¢’ (z0) < 0.

This contradicts the admissibility of ¢.

LemMma 4.5. Let 9 € C*(Gym) be a g-admissible and G-invariant function.
Then:

1d, 1d
(Dy---D, )"/ 1d,
(4.23) (0 —¥) : >@-v)| .
(Dl o Dn—l)l/(n_]) Idn—l
Proof.  Set
(4.24) A= (DD,
(,111...,1;_1)1/01*1) 0o ... 0
_ 0
: SR 0
0 e 0 (A Y
By G-invariance of the function (¢ — ), we can write:
Ido A71 IdO
A A7
1d,
(4.25) -] 4 [=-n| . |=-w|
A Idn71 Idl;—l
By Lemma 4.4, we obtain:
Ifiol IdO
(A~ Vdy - - Id, )"V
(4.26) (p=w)| 1 =W :
” (A~ dy - - - Id,_p)" "V
n—1
Idy
(41D
(4.27) =o-w|
(41 VD)
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Repeating the previous process ¢ more times (¢ € N*), we deduce that:

Id() IdO
A AEDY (=11
48  -w| . [=6-w |
A AEDY (=11
1d,
_1\¢ —l)”“
(Dl ...D 71>( D/ (n
(4.29) =(p—w) ’
(D - .Dnil)(*l)"/(nfl)"+l
where

(4.30) (D .‘.Dn_l)(—l)‘l/(n—l)‘kl

(/11 l )( 14/ (n—1)7"! 0O --- 0
_ 0
; . 0 1
0 e 0 (lf"...;v;[l)(—l)"/w—l)"

AL g YD D e

n—1

Set L.
i<m go ‘to 1 when g goes to infinity. This proves the lemma.

x = (4

sequences (x;); _;

4.2. Proof of Theorem 4.1. Let ¢ be a function satisfying assumptions of
Theorem 4.1. In the chart

(4.31) Uy, = {M € Gy, yn(C) such that det Z;, # 0}

Idy

VA
and at the point M = . satisfying det Z; # 0, for 1 < j<n—1, Lemma
4.4 gives :

Zn—l

Idy Idy

Z (Dy - D)V
(432) w-0| " |ze-w |

Zn 1 (Dl 'Dn—l)l/(n 1)
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where D; is the diagonal matrix constituted by the eigenvalues of the Hermitian
matrix H given by the polar decomposition of the matrix Z; (for 1 < j <n—1).
Applymg Lemma 4.5, it follows that:

Idy Idy
Z) 1d,
(4.33) w-»| " |ze-»
anl Idnfl

Consequently, ¢ >y at every point M in the chart Uj, satisfying det Z; # 0 (for

Idy

Z
1 <j<n-1). Concerning the point M = . with at least one matrix Z;

Zn 1

such that det Z; = 0, we get ¢ >y since iy = —oco. This proves the Theorem 4.1.

4.3. Proof of Theorem 4.2: Tian’s Invariant of the Grassmann G, ,,(C).
Let ¢ € C*(Gpmn(C)) be a g-admissible and G-invariant function satistying
sup ¢ =0 on Gy, 4m(C). Theorem 4.1 yields ¢ > y at every point M € Gy i (C).
Thus, for all o >0 it follows that:

(4.34) J e ™ dv < J e dv
G, (C) G, (C)

Let us evaluate the last integral in the map Uy, defined by Uj, = {det Z; # O}
In this map, the volume element related to the metric g defined on Gy, (C) is
given by (See [G]):

—ay

(4.35) do=b,[ 1+ > |detZz]|*| dzyndz
I<{1,....,nm\Iy

m?(n—1)
where a, = nm, b, = (é) and J = {1,...,(n—1)m?}. Hence, we obtain:

(4.36) J e dv
Gon.n(€)

(4.37) —b J ( 12" det ™" )
clrbm? ( + Zlc{l ,nmP\Iy |det le )a’l

—dn

{1+ > detz*| dzyndz
Ic{l,...,nm}\Iy
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_j:n—l det Z: —2mo
(4~38) = bnj H]:l | ]| 2y ay(1—a) dzy ndZ;
clrim? (1 + Zlc{l,m,nm}\lo ‘det ZI' ) !
o +ee(l + c nm det D; ()
(4.39) — b, J . J PP R L ,m’)
0 0 [[= (det D))
X (dul - duf?) - (duly - )
Hjl O --- 0
where (D))o, =~ and () _;_, = ((4)7)) <1z
. .. O
0 0 ul‘l‘l

. 1 .
This integral converges for o < —, and the proof is complete.
m
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