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ATTRACTORS OF ITERATED FUNCTION SYSTEMS
AND ASSOCIATED GRAPHS

DAN DUMITRU AND ALEXANDRU MIHAIL

Abstract

The aim of this article is to establish some conditions under which the attractors of
iterated function systems become dendrites. We associate to an attractor of an iterated
function system (IFS) some graphs and we prove that for a large class of IFSs their
attractors are dendrites if the associated graphs are trees. We also give some examples
of such sets.

1. Introduction

We start by a brief presentation of iterated function systems, IFSs for
short. TIterated function systems were conceived in the present form by John
Hutchinson in [6], popularized by Michael Barnsley in [2] and are one of the
most common and general ways to generate fractals. Many of the important
examples of functions and sets with special and unusual properties turn out to be
fractal sets or functions whose graphs are fractal sets and a great part of them are
attractors of IFSs. There is a current effort to extend the classical Hutchinson’s
framework to more general spaces and infinite iterated function systems (IIFSs) or,
more generally, to multifunction systems and to study them ([1], [8—15], [17-19]).
A recent such example can be found in [9], where the Lipscomb’s space, which is
an important example in dimension theory, can be obtain as an attractor of an
IIFS defined in a very general settings. Although the fractal sets are defined
with measure theory, being sets with noninteger Hausdorftf dimension ([4], [5]), it
turns out that they have interesting topological properties (see [7], [14], [20]).
The topological properties of fractal sets have a great importance in analysis on
fractals as we can see in [7]. One of the most important results in this direction,
which states when the attractor of an IFS is a connected set, is given in [7] or
[20]. Other results on this problem can be found in [3].

In this article we intend to find sufficient conditions for an attractor of an
IFS to be a dendrite. These conditions are necessary for a large class of IFSs.
The paper is divided in four parts. The first part is the introduction. In the
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second part is given the description of the shift space of an iterated function
system. The main result, theorem 3.1, is contained in the third part. The last
part contains some examples: the Hata’s tree-like set, the Cross set.

For a metric space (X,d), we denote by ' (X) the set of nonempty compact
subsets of X. For a set 4 = X we denote by d(A4) the diameter of A4, that is

d(A) = SUDy e 4 d(x7 y)

DeriniTION 1.1, Let (X, d) be a metric space. The application 4 : #°(X) x
A (X) — [0,400) defined by h(A4, B) = max(d(A,B),d(B,A)), where d(A4,B) =
SUp,c 4 d(x, B) = sup,. 4(inf,cp d(x, y)) is called the Hausdorff-Pompeiu metric.

Remark 1.1 ([1], [2], [9], [16]). (A (X),h) is a complete metric space if
(X,d) is a complete metric space, compact if (X,d) is compact and separable
if (X,d) is separable.

DEerFINITION 1.2. Let (X,d) be a metric space. For a function f: X — X
let us denote by Lip(f) € [0, +0o0] the Lipschitz constant associated to f, which is

We say that f is a Lipschitz function if Lip(f) < +oc0 and a contraction if
Lip(f) < 1.

DerNITION 1.3, An iterated function system (IFS) on a metric space (X,d)
consists in a finite family of contractions (f) on X and it is denoted by

I = (X, (ﬁ»)k:ﬁ)

DerINITION 1.4, For an IFS, % = (X, (fi),_1), the function Fg : #(X)

— A'(X) defined by Fy(B) = J,_, fk(B) is called the fractal operator associated
with the IFS .

k=Ln

Remark 1.2 ([1], [2], [4], [5], [16]). The function F¢ is a contraction
satisfying Lip(Fy) < max,_1 Lip(fi).

Using Banach’s contraction theorem there exists, for an IFS ¥ =
(X, (fi);—15)> an unique set 4(%’) such that Fy(A(Y)) = A(), which is called
the attractor of the IFS . More precisely we have the following well-known
result.

THeEOREM 1.1 ([1], [2], [4], [5], [16]). Let (X,d) be a complete metric space
and & = (X, (fi)_17) an IFS with ¢ = max,_i Lip(fx) < 1. Then there exists
a unique set A(S) e A (X) such that Fy(A(S)) = A(S). Moreover, for any
Hye A (X) the sequence (H,),., defined by H,.| = Fy(H,) is convergent to
A(S). For the speed of the convergence we have the following estimation

h(Hy, A(7)) < 1"" h(Ho, Hy).

—C



ATTRACTORS OF ITERATED FUNCTION SYSTEMS AND ASSOCIATED GRAPHS 483

DerNiTioN 1.5, 1) By a graph we understand a pair (I, G), where G is a
subset of the set {{i,j}|i,j€l and i # j}.

2) A graph (I,G) is called connected if for every i,jel there exists
(ik)j_15 =1 such that ij =i, i, = j and {ix,ix11} € G for every ke {l,2,...,
n—1}.

3) Let (I,G) be a graph. A family of vertices (i1,...,0,) iS a cycle if
{ik,ix11} € G for every ke {1,...,n} and iy ¢ {ixs1, ik} for every k e {1,...,n},
where by i,.; we understand i, by i, we understand i, and so on.

4) A graph (I,G) is called a free if it is connected and has no cycles.

Remark 1.3. We remark that a cycle has at least 3 elements.

DEFINITION 1.6.  Let X be a nonempty set and (4;),.; a family of nonempty
subsets of X. Then:

1) The graph (I,G) where G = {{i,j}|i,jel such that 4,NA4; # 0 and
i # j} is called the graph of the intersections associated with the family (4;);,.

2) The family (4;),., is said to be connected if for every i, j eI there exists
(i)_75 =1 such that iy =i, i, =j and 4, N4, # 0 for every ke {l,2,...,
n—1}. If a family (4;),., is not connected we say that it is disconnected. The
family (A4;),., is connected if and only if the graph (7, G) is connected.

3) The family (A4;),., is said to be a tree of sets if for every i, j € I, such that
i # j, there exists a unique sequence (i),_1 < I, with i, 1, .., i, different, such
that iy =i, i, = j, and 4, N4, #0 for every ke {1,2,...,n—1}. The family
(A;);c; 1s a tree of sets if and only if the graph of the intersections of the family
(A;);e; 1s a tree.

4) On the family of sets (A4;),., we consider the following equivalence
relation:  A4; ~ A; if and only if there exists (ix),_1, = I such that ij =i, i, = j
and 4; N4, #0 for every ke {1,2,...,n—1}. A component of the family of
sets (4;);.; is a class of equivalence which corresponds to a connected subgraph
of the graph of the intersections of the family (4;),,.

Remark 1.4. 1) If the family of sets (A4;);., is a tree of sets then the
intersection of three different sets of the family is empty.

2) Let (A;),.; be a family of sets, X, Y be sets and /' : X — Y be such that
J;o; 4i = X. If the family of sets (4,),.; is connected then the family of sets
(f(4)));e; is connected. If the family of sets (4;);_,; is a tree and the function f
is injective then the family of sets (f(4;)),.; is a tree.

3) Let (4i);,.; be a family of sets and I;,l,...,I, be a partition of the
set I. We denote by By the set Uielk A; for ke{l,2,...,n} and by C; the
set \J; jepin (4iN4;). If the family of sets (4i)icy, (Ai)iep,,-- -, (Ai)icy, and
Bi)ieqia,..ny are trees and BN Cp =0 for every k k' e {1,2,...,n} different
then the family of sets (4;),.; is a tree.

DErFINITION 1.7. A metric space (X,d) is arcwise connected if for every
x,y € X there exists a continuous function ¢ : [0,1] — X such that ¢(0) = x and
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¢(l) = y. A continuos function ¢ as above is called a path between x and y.
We say that two continuous, injective functions ¢,y : [0,1] — X are equivalent
if there exists a function u:[0,1] — [0,1] continuous, bijective and increasing
such that pou =1. A class of equivalence is named a curve. A curve is called
injective if the functions from the definitions of the curve are injective.

Remark 1.5. We remark that two equivalent, continuous, injective functions
have the same images.

Concerning the connectedness of the attractor of an IFS we have the follow-
ing theorem.

TueoreM 1.2 ([7], [20]). Let (X,d) be a complete metric space, & =
(X, (fidy17) an IFS with ¢ =max,_1- Lip(fi) <1 and A(S) the attractor of
. The following are equivalent:

1) The family (A;),_1 is connected, where A; = fi(A(¥)) for ke {1,... n}.

2) A(S) is arcwise connected.

3) A(Y) is connected.

2. The shift space of an iterated function systems

In this section we briefly present the shift space of an IFS. For more details
one can see [2], [12] and [16]. We start with some set notations: N denotes the
natural numbers, N* =N — {0}, N ={1,2,...,n}. For two nonempty sets A4
and B, B* denotes the set of functions from 4 to B. By A = A(B) we will
understand the set BN and by A, = A,(B) we will understand the set BN: .
The elements of A = A(B) = BN will be written as infinite words @ = wj; - - -
Oy -+, where wy, € B and the elements of A, = A,(B) = BN: will be written
as finite words w = wjw;---w,. By A we will understand the empty word.
Let us remark that A¢(B) = {1}. A" = A"(B) is the set of all finite words;
A" =A"(B)=1],., Au(B). We denote by |w| the length of the word w. An
element of A:A(B) is said to have length +o0. If w =wiw; - W11 -+
or if w=wwy---w, and n>m then [w], = wiw;---w,. More generally if
I <m, [a)],iq = w1042 -,y and we have (o], = [w}l[a)},; for we Ay(B) if
n>m>1>1 and for we A(B) if m>1>1. For two words o, e A*(B)U
A(B), o <f means || <|f] and [f], =o. For aeA,(B) and e Au(B) or
p e A(B), by aff we will understand the joining of the words o and £ namely

ofi = ooy 0y fiy - B, and  respectively off = ono - oy BBy
On A =A(N;) = (NAN' we consider the metric

n

< 1 — ok 1 ifx=y

dy(a, B) = — | where 6 :{ , :
kz::l 3k 0 ifx#y

a=oop--- and f=p00,---.
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Let (X,d) be a complete metric space, & = (X, (fk),_ ﬁ) an IFS on X and
A=A(9) the attractor of the IFS . For w=wiwy-- @wmn e An(N;), fo
denotes fi, © fw, 00 fu, and H, denotes f,(H) for a set H c X. By H,
we will understand the set H. In particular 4, = f,(A4).

The main results concerning the relation between the attractor of an IFS and
the shift space is contained in the following theorem.

THEOREM 2.1 ([2], [11], [16]). Let (X,d) be a complete metric space. If
A= A(Y) is the attractor of the IFS & = (X, (fi),_17) then:

1) For e A= A(N;), A . < A, and d(Ay,) ) — 0 when m — oo; more
precisely

m+1

d(A [w]m) < Cmd(A) .

2) If ay, is defined by {an} = (5| Aw),» then d(e) ,a,) — 0 when m — o,
where e, is the unique fixed point of fiu), .

3) A=AS) =, crflt0}, As=, r{t0} for every oaeA*, A=
UwEAm Ay, for every m e N* and more general A, = U Ay for every a e A*

and every me N”™.
4) The set {ej, |we A and meN"} is dense in A.
5) The function n: A — A defined by n(w) = a,, is continuous and surjective.

weN,

DermNiTION 2.1, The function 7: A — 4 = A(¥) from the theorem 2.1. is
called the canonical projection from the shift space on the attractor of the IFS .%.

3. Main results

The aim of this article is to establish sufficient conditions under which the
attractor of an iterated function system becomes a dendrite.
We will start with some general properties of the dendrites.

DEerFINITION 3.1. The metric space (X,d) is called a dendrite if for any
X, y € X there exists an unique equivalence class of continuous, injective functions
@ :[0,1] — X such that ¢(0) = x and ¢(1) = y (i.e. there exists an unique injective
curve joining x with ).

LemMa 3.1. Let (X,d) be a dendrite and B a subset of X. Then B is a
dendrite if and only if B is arcwise connected.

LemmA 3.2, Let (X,d) be a dendrite and Ay, A>, ..., A, be subsets of X such
that A\, A>,..., A, are also dendrites. Then A\NA,N---NA, is a dendrite.

Proof. We denote the set 4N A,N---N A, by B and we consider x, y € B.
Thus x, y € 4;, for every je{l,...,n}. So for all je{l,...,n} there exist the
continuous, injective functions ¢; : [0,1] — 4; such that ¢;(0) = x and ¢;(1) = y.
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Since X is a dendrite, ¢;,...,p, must be equivalent, which means that
0 ([0,1)) =---=9,(0,1]) = B. Tt follows that B is arcwise connected and
from lemma 3.1 B is a dendrite.

CoroLLARY 3.1. Let (X,d) be a complete metric space and & =
(X, (fi)g1s) an IFS. We denote by A the attractor of &, by Ay the set
fe(A) for ke{l,...,n}. We suppose that f; is an injective function on A for all
ke{l,....,n} and A is a dendrite. Then A; NA,N---NA; is a dendrite for all
Iyeee iy G{l,...,ﬂ}.

Im

Proof. Let us suppose that A4 is a dendrite. Since f; is injective on A4 it
follows that 4; = fi(A) is also a dendrite. We can apply lemma 3.2 to (4,d,)
and Ail’Ai27"'7A[m'

NortaTioN 3.1.  Let @, b be real numbers such that a < b.  Z([a,b]) denotes
the set of the divisions of the interval [a,b]. For a division of the interval [a, b],

A=(@=po<y<--<y=b), |A] = max | vk = Yiaal.

=0,n—1

LemMa 3.3. Let (X,d) be a metric space and ¢, ¢’ : [0,1] — X be continuous,
injective functions such that there exist two sequences of divisions of the interval
0,1], (A);en € 2([0,1]) and (A));cn € 2([0,1]) with the following properties:

a) A;:(Ozyé<y{<~--<y,l”:1) andA,':(Ozz(l)<zf<--~<z,1”:1)
have the same number of elements for all | € N,

b) [[A/| =% 0 and [|A] =0,

¢) max,_g d(p(y}), () — 0.

Then there exists an unique continuous, bijective and increasing function
u:[0,1] = [0,1] such that ¢’ ou=¢ (i.e. ¢ and ¢' are equivalent).

Proof. Let te[0,1]. Then there exists a sequence (k;()),.n of natural
numbers such that y,i](o <t< y,imﬂ. ]

It is easy to see that d(ga(y,il(,)),gp(t))—ﬂo. Therefore from point c)
d((/,/(zli/(t>),¢(t)) T80, Ifue [0,1] is a limit point of the sequence (z,’([(t))leN,
from the continuity of ¢’ we should have ¢’(u) = ¢(z). Since [0, 1] is a compact
set and (z,ilm)]eN < [0,1] it follows that the sequence (z;,,),cx has at least one
limit point. If u'e[0,1] is such that ¢'(u’) =¢(t), we should have
o'(u') = ¢(t) = ¢'(u). Since ¢’ is injective, it follows that u =u’. We remark
that, if u' is another limit point of the sequence (z,i/<t>),eN, we should have
¢'(u") = ¢p(¢) and so u=u'. Since the sequence (z,i[(t)),eN has an unique limit
point, (z );en = [0,1] and [0,1] is a compact set it follows that z; ke

Thus, we have proved that for every 7e[0,1] there exists an unique
u(t) € [0,1] such that ¢(r) = ¢'(u(r)). This means that there exists an unique
function u : [0, 1] — [0, 1] such that ¢’ ou = ¢. Since ¢ is injective it results that
u is also injective. We will prove that u is strictly increasing.
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Let ¢, €[0,1] be such that 7, <. Then there exist the sequences
(ki(t1));en = N and (ki(12));en = N such that yi o <t <y, and y ) <

tzgy,]q(,z)H. It follows that y,lq(m gy,g(,z)ﬂ and so z,il(tl) gz,lm)ﬂ. Since

|— o0 [— o0 [— w0 .
Zzl(,(tl) — u(t1), Z;i,@z) — u(ty) and |Z,i,<,2) - Z/i,(;z)+1| < ||A/ll == 0 it follows that

u(t) < u(ty).

Interchanging ¢’ with ¢, there exists an unique function v : [0, 1] — [0, 1] such
that ¢’ = powv. Since ¢ and ¢’ are injective functions, it follows that v is the
inverse of u. Therefore u is bijective. Also u is a continuous function, since
every bijective and increasing function between two closed intervals is continuous.

LemMA 3.4. Let (X,d) be a complete metric space such that X =), A4;,
where A; are compact sets for i€ {l,...,n}. We suppose that the associated
graph of the family (A;),_1 is a tree. Let x,ye X, x#y a chain of sets
{A,}.}/:&—m such that iy, i, ..., 05, are different, x € A;,, x¢ A, yeA;,, v¢ A
and Ay N Ay, #0 for every je{l,....m—1}, meN.

Then for any continuous, injective function ¢ : [0,1] — X such that ¢(0) = x
and ¢(1) =y there exists a division A= 0=yo<y;<---<y =1) of the
interval [0,1] such that ¢(y;) € A; NA,,, for every je{0,...,m—1}.

b1

fjs1

NoOTATION 3.2.  Let (X, d) be a complete metric space and & = (X, (fk),_15)
an IFS on X. For every m e N*, we denote by & the IFS " = (X, (fu),cn,)
and we remark that A(%) = A(S"™).

THEOREM 3.1.  Let (X,d) be a complete metric space and & = (X, (fi);_1)
an IFS. We denote by A the attractor of & and by G™ the graph of intersections
associated with the family of sets (Aw), ., for every me N*. If the graphs G™
are trees for every meN”, then A = A(Y) is a dendrite.

Proof. Since G is a tree it results that G is connected. From theorem 1.2.
it follows that A4 is arcwise connected. We will prove that 4 is a dendrite.

Let x,ye A, x #y. We suppose that there exist two continuous, injective
functions ¢, ¢’ : [0,1] — A such that ¢(0) = ¢’(0) = x and ¢(1) = ¢'(1) = y. To
prove that 4 is a dendrite it is enough to prove that ¢ and ¢’ are equivalent.
We intend to use lemma 3.3 to prove the equivalence. For that, we will
construct two sequences (A;),., and (A)),., of divisions of the unit interval [0, 1]
such that: N N

a) A=(0=pj<y<---<yp=Dand Aj=(0=z{<z{ < - <z} =1)
have the same number of elements for all /e N,

l— o0

b) 1A/ = 0 and A/ =% 0,

¢) max,_g d(p(yl),¢'(z])) =5 0.

Let /e N be fixed. If there exists an a € A;(N;) such that x, y € 4, then
we take Ag= (y0=0< ) =1)and Aj=(z) =0<:z) =1). We have ¢(»)) =
9(0) = ¢'(0) = ¢'(z5) = x and p(3}) = p(1) = ¢'(1) = ¢'(z}) = ».



488 DAN DUMITRU AND ALEXANDRU MIHAIL

If there does not exist an o € A;(N;) such that x, y € 4,, then there exists
o, oy € Aj(N;) such that xe 4, , ye A4, and o, # a,.

Since G' is a tree, the sets 4, and A, 2, are joined by an unique chain of
sets {Aw/}/ T such that o, 7a)1, oty = Wy, 05 € A(N)), Ay, N Ay, #0, for
je{l,...;my—1} and iy, i, ..., iy different. We can suppose that x ¢ 4,, and
y ¢Awm,4 by replacing o, with wz if xe A,,, and o, with w,_1 if y eAme.

From lemma 3. 4 there exist A; = (0= yj < y{ <--- <y}, =1) and Aj =
(0=1z{ < z1 <<zl =1) divisions of the unit interval [0,1] such that
0(¥)):9'(z],1) € ij NA,.,.

It results that max,_g-- d(p(¥]),9'(z])) < max

d(Ay,) < c'd(A), where

k=0,m;
¢ =max,_1 Lip(fi) <1. Therefore max, g d(p(y]),9'(z])) =%,
We remark now that d; = max,_g.— d(¢p(y;),9(y; ) <max,_go— d(4e,)

[—o0

< c'd(4). Therefore d; = max,_g— d(p(y1), (yiy1)) — 0.

Let 0, = infy (0,1 |x—y|=u d(p(x),0(y)), for every uel0,1).

It is obvious that J, <, if u<v. Since ¢ is injective and [0,1] is a
compact set, we have 6, > 0 for every u> 0.

We suppose by contradiction that the sequence (||A;]|);~, is not convergent
to 0. Then there exist ¢ >0 and a subsequence (I1A;])kso such that ||A, || > e.
Then dj, = max, d(go(y/+1) (p(yj ) >5HA/ | =20; > 0. This contradicts the

] 0,m—1
fact that dj —=5 0. It follows that ||A]| %0, In a similar way one can prove

l— o0

that ||A]] =% 0.

CorOLLARY 3.1. Let (X,d) be a complete metric space, | €e N* and & =
(X, (fi)g_1) an IFS.  We denote by A the attractor of S and by G" the graph

of intersections associated with the family of sets (Aw),cp,, for every meN*. If
the graph G™ is a tree for every me N*, then A is a dendrite.

Proof. We can apply the theorem 3.1. to the IFS &'

COROLLARY 3.2. Let (X,d) be a complete metric space, (n;);; = N" a
strictly increasing sequence of natural numbers and & = (X, (fi),_ 1n) an IFS.
We denote by A the attractor of & and by G™ the graph of intersections associated
with the family of sets (Aw),cn,» for every meN". If the graphs G" are trees
for every e N*, then A is a dendrite.

Proof. Similar to the proof of theorem 3.1.

4. Examples

We give now some examples of attractors of IFSs which are dendrites.

Example 4.1. Let X =R. We consider the IFS & = (R, (fi),_g5—7), Where
fi : R— R are the functions defined by fi(x) :%Jr%, for ke {0,’1,..,n — 1}
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-1
The attractor of &% is A(%) =[0,1]. We remark that Ay = fi.(4) = [k ,E]

for ke {0,1,...,n—1}. neon
An extension of this example for countable IFSs can be found in [17], [18].
We compute the associated graphs and we obtain the following edges for
every graph G, m e N*, which prove that these are trees. Moreover, G" has
n™ — 1 edges for every m e N* and we have the followings edges:
G':(0,1),(1,2),...,(n—2,n—1).
G?:(00,01),(01,02),...,(0(n—2),0(n— 1)), (0(n —2),10)
(10,11), (11,12),...,(1(n = 2),1(n = 1)), (1(n — 1), 20),

((I’l— 1)07 (I’l— 1)1)7((11— 1)17(11— 1)2),7((11— 1)(1/[_2)’(”_ 1)(1’1— 1))
In general:
G"=(0---00,0---01),(0---01,0---02),...,(0---0(n—2),0---0(n—1)),
(0---0(m—1),0---010)
(0---010,0---011),(0---011,12),...,(0---01(n —2),0---01(n — 1)),
(0---01(n—1),0---020),

(0--0(n—1)0,0---0(n— 1)1),(0---0(n — 1)1,0---0(n — 1)2),...,
0---0m—1)(n—2),0---0(n—1)(n—1)).

(= 1) (n=1)0,(n = 1)~ (n = D1), (1= 1)~ (n — D)L,
(1= 1) (=12, (1= 1)+ (1= 1) = 2), (n— 1)+ (1 — D) — 1)),

NoratioN 4.1. Let (X,d) be a complete metric space and &% =
(X, (fk)i—17) an IFS. Let A, =A,({1,2,...,n}) the set of the words of
length m with the letters from the alphabet {1 2 ,n} and (A, G) be a graph.
By fi((Am,G)) we will understand the graph (k/\m7 f(@) = ({ko|oe Ay},
{(ko, kp) | (o, ) € G}) for ke {1,2,...,n}.

Example 4.2. (The Hata’s tree-like set).

Let X =C. We set fi(z) =cz and fo(z) = (1 — |¢|))Z+|¢|?, where ce C
and |c|,|]1 —¢| €(0,1). The attractor of the IFS formed with the functions is
called a Hata’s tree-like set and it is denoted by K. We put 4, = f;(K) and
4> = fr(K).

We compute the associated graphs and we obtain the following edges for
every graph G, m e N*, which prove that these are trees. Moreover, G™ has
2™ — 1 edges for every m e N* and we have the followings edges:

G':(1,2).

G?: (12,11),(11,21),(21,22).

G*:(122,121),(121,112),(112,111),(112,211),(211,212),(212,221),(221,222).

In general:

G": fi(G™ 1), (1122---2,211--- 1), H(G™ 7).

From remark 1.4 points 2) and 3) it follows that the graph G™ is a tree for
every m. Hence using theorem 3.1. K is a dendrite.
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Example 4.3. (The Cross Set).
Let X=C, and A ={z=x+1iy||x|+ |y < 1}. We consider the functions

VE C—>C where j=0,1,...,4, defined by fo(z) ==, fi(z) = , f(z) =
4 f3( ) = i and fi(z) = ;—% The attractor of the IFS formed with

the functlons fo,fl,...,f4, S = (C,{fo, N1, /2, f3, fa}), is called the the cross.
The fixed points of the functions fo, fi,...,fs, are 0, 1, ii —1, —i and so

0,1,i,—1,—i € A(Y). p

We remark that fy(A4) = fl( )*—Jri c A, fr(A) = g %CA f3(A4) =
A 2 A 21
373 <A and fi(A) =373 < A. Therefore Fy(A) c A and A(¥) < A.

Also fi(A(L))N f(A(F)) (%J%) N (? —%) =0.

In a similar way one can obtain that f;(A(%))N f;(4(¥)) =0, for every
l,je{1,2,3,4} such that [ # j. y
We also remark that on one side we have fy(A(F))N fi(A(F)) < 3 n

1

(%—&-%) z{g} and on the other side g—fo( )= fi(=1). Thus f(A4A(¥))N

[H(A(F)) = {%} In a similar way one can obtain that fy(A4(%)) ﬂfz(f‘l(y)) =
) waennpuey {3} ad s naaen -{-3}.

We compute the associated graphs and we obtain the following edges for
every graph G, m e N*, which prove that these are trees. Moreover, G has
5" — 1 edges for every m e N* and are described below:

G':(0,1),(0,2),(0,3),(0,4).

G2 : (00,01), (00,02), (00, 03), (00,04),

(01,13),(13,10),(10,11),(10,12), (10, 14),

(02,24), (24,20), (20,21), (20,22), (20,23),

(03,31), (31, 30), (30,32), (30,33), (30, 34),

(04,42), (42,40), (40,41), (40,43), (40,44).

In general:

G": fo(G™ 1), (011---1,133---3), f1(G™1),(022---2,244 - - - 4),

H(G™1),(033---3,311---1), 5(G™1),(022---2,244 - - - 4), f4,(G™ 1),

From remark 1.4 points 2) and 3) it follows that the graph G™ is a tree for
every m. Hence using theorem 3.1. the cross set is a dendrite.
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