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ATTRACTORS OF ITERATED FUNCTION SYSTEMS

AND ASSOCIATED GRAPHS
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Abstract

The aim of this article is to establish some conditions under which the attractors of

iterated function systems become dendrites. We associate to an attractor of an iterated

function system (IFS) some graphs and we prove that for a large class of IFSs their

attractors are dendrites if the associated graphs are trees. We also give some examples

of such sets.

1. Introduction

We start by a brief presentation of iterated function systems, IFSs for
short. Iterated function systems were conceived in the present form by John
Hutchinson in [6], popularized by Michael Barnsley in [2] and are one of the
most common and general ways to generate fractals. Many of the important
examples of functions and sets with special and unusual properties turn out to be
fractal sets or functions whose graphs are fractal sets and a great part of them are
attractors of IFSs. There is a current e¤ort to extend the classical Hutchinson’s
framework to more general spaces and infinite iterated function systems (IIFSs) or,
more generally, to multifunction systems and to study them ([1], [8–15], [17–19]).
A recent such example can be found in [9], where the Lipscomb’s space, which is
an important example in dimension theory, can be obtain as an attractor of an
IIFS defined in a very general settings. Although the fractal sets are defined
with measure theory, being sets with noninteger Hausdor¤ dimension ([4], [5]), it
turns out that they have interesting topological properties (see [7], [14], [20]).
The topological properties of fractal sets have a great importance in analysis on
fractals as we can see in [7]. One of the most important results in this direction,
which states when the attractor of an IFS is a connected set, is given in [7] or
[20]. Other results on this problem can be found in [3].

In this article we intend to find su‰cient conditions for an attractor of an
IFS to be a dendrite. These conditions are necessary for a large class of IFSs.
The paper is divided in four parts. The first part is the introduction. In the
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second part is given the description of the shift space of an iterated function
system. The main result, theorem 3.1, is contained in the third part. The last
part contains some examples: the Hata’s tree-like set, the Cross set.

For a metric space ðX ; dÞ, we denote by KðX Þ the set of nonempty compact
subsets of X . For a set AHX we denote by dðAÞ the diameter of A, that is
dðAÞ ¼ supx;y AA dðx; yÞ.

Definition 1.1. Let ðX ; dÞ be a metric space. The application h : KðX Þ�
KðXÞ ! ½0;þyÞ defined by hðA;BÞ ¼ maxðdðA;BÞ; dðB;AÞÞ, where dðA;BÞ ¼
supx AA dðx;BÞ ¼ supx AAðinfy AB dðx; yÞÞ is called the Hausdor¤-Pompeiu metric.

Remark 1.1 ([1], [2], [9], [16]). ðKðXÞ; hÞ is a complete metric space if
ðX ; dÞ is a complete metric space, compact if ðX ; dÞ is compact and separable
if ðX ; dÞ is separable.

Definition 1.2. Let ðX ; dÞ be a metric space. For a function f : X ! X
let us denote by Lipð f Þ A ½0;þy� the Lipschitz constant associated to f ; which is

Lipð f Þ ¼ supx;y AX ;x0y

dð f ðxÞ; f ðyÞÞ
dðx; yÞ .

We say that f is a Lipschitz function if Lipð f Þ < þy and a contraction if
Lipð f Þ < 1.

Definition 1.3. An iterated function system ðIFSÞ on a metric space ðX ; dÞ
consists in a finite family of contractions ð fkÞk¼1;n

on X and it is denoted by
S ¼ ðX ; ð fkÞk¼1;n

Þ.

Definition 1.4. For an IFS, S ¼ ðX ; ð fkÞk¼1;nÞ, the function FS : KðX Þ
! KðX Þ defined by FSðBÞ ¼ 6n

k¼1
fkðBÞ is called the fractal operator associated

with the IFS S.

Remark 1.2 ([1], [2], [4], [5], [16]). The function FS is a contraction
satisfying LipðFSÞamax

k¼1;n
Lipð fkÞ.

Using Banach’s contraction theorem there exists, for an IFS S ¼
ðX ; ð fkÞk¼1;nÞ, an unique set AðSÞ such that FSðAðSÞÞ ¼ AðSÞ, which is called
the attractor of the IFS S. More precisely we have the following well-known
result.

Theorem 1.1 ([1], [2], [4], [5], [16]). Let ðX ; dÞ be a complete metric space
and S ¼ ðX ; ð fkÞk¼1;nÞ an IFS with c ¼ max

k¼1;n Lipð fkÞ < 1. Then there exists

a unique set AðSÞ A KðX Þ such that FSðAðSÞÞ ¼ AðSÞ. Moreover, for any
H0 A KðXÞ the sequence ðHnÞnb1 defined by Hnþ1 ¼ FSðHnÞ is convergent to
AðSÞ. For the speed of the convergence we have the following estimation

hðHn;AðSÞÞa cn

1� c
hðH0;H1Þ.
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Definition 1.5. 1) By a graph we understand a pair ðI ;GÞ; where G is a
subset of the set ffi; jg j i; j A I and i0 jg.

2) A graph ðI ;GÞ is called connected if for every i; j A I there exists
ðikÞk¼1;n

H I such that i1 ¼ i, in ¼ j and fik; ikþ1g A G for every k A f1; 2; . . . ;
n� 1g.

3) Let ðI ;GÞ be a graph. A family of vertices ði1; . . . ; imÞ is a cycle if
fik; ikþ1g A G for every k A f1; . . . ; ng and ik B fikþ1; ikþ2g for every k A f1; . . . ; ng,
where by imþ1 we understand i1, by imþ2 we understand i2 and so on.

4) A graph ðI ;GÞ is called a tree if it is connected and has no cycles.

Remark 1.3. We remark that a cycle has at least 3 elements.

Definition 1.6. Let X be a nonempty set and ðAiÞi A I a family of nonempty
subsets of X : Then:

1) The graph ðI ;GÞ where G ¼ ffi; jg j i; j A I such that Ai VAj 0j and
i0 jg is called the graph of the intersections associated with the family ðAiÞi A I .

2) The family ðAiÞi A I is said to be connected if for every i; j A I there exists
ðikÞk¼1;n

H I such that i1 ¼ i, in ¼ j and Aik VAikþ1
0j for every k A f1; 2; . . . ;

n� 1g. If a family ðAiÞi A I is not connected we say that it is disconnected. The
family ðAiÞi A I is connected if and only if the graph ðI ;GÞ is connected.

3) The family ðAiÞi A I is said to be a tree of sets if for every i; j A I , such that
i0 j, there exists a unique sequence ðikÞk¼1;n H I ; with i1; i2; . . . ; in di¤erent, such
that i1 ¼ i, in ¼ j, and Aik VAikþ1

0j for every k A f1; 2; . . . ; n� 1g. The family
ðAiÞi A I is a tree of sets if and only if the graph of the intersections of the family
ðAiÞi A I is a tree.

4) On the family of sets ðAiÞi A I we consider the following equivalence
relation: Ai @Aj if and only if there exists ðikÞk¼1;n H I such that i1 ¼ i, in ¼ j

and Aik VAikþ1
0j for every k A f1; 2; . . . ; n� 1g. A component of the family of

sets ðAiÞi A I is a class of equivalence which corresponds to a connected subgraph
of the graph of the intersections of the family ðAiÞi A I .

Remark 1.4. 1) If the family of sets ðAiÞi A I is a tree of sets then the
intersection of three di¤erent sets of the family is empty.

2) Let ðAiÞi A I be a family of sets, X ;Y be sets and f : X ! Y be such that
6

i A I Ai HX . If the family of sets ðAiÞi A I is connected then the family of sets

ð f ðAiÞÞi A I is connected. If the family of sets ðAiÞi A I is a tree and the function f
is injective then the family of sets ð f ðAiÞÞi A I is a tree.

3) Let ðAiÞi A I be a family of sets and I1; I2; . . . ; In be a partition of the
set I . We denote by Bk the set 6

i A Ik
Ai for k A f1; 2; . . . ; ng and by Ck the

set 6
i; j A Ik ; i0j

ðAi VAjÞ. If the family of sets ðAiÞi A I1 ; ðAiÞi A I2 ; . . . ; ðAiÞi A I3 and

ðBkÞk A f1;2;...;ng are trees and Bk VCk 0 ¼ j for every k; k 0 A f1; 2; . . . ; ng di¤erent

then the family of sets ðAiÞi A I is a tree.

Definition 1.7. A metric space ðX ; dÞ is arcwise connected if for every
x; y A X there exists a continuous function j : ½0; 1� ! X such that jð0Þ ¼ x and
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jð1Þ ¼ y. A continuos function j as above is called a path between x and y.
We say that two continuous, injective functions j;c : ½0; 1� ! X are equivalent
if there exists a function u : ½0; 1� ! ½0; 1� continuous, bijective and increasing
such that j � u ¼ c. A class of equivalence is named a curve. A curve is called
injective if the functions from the definitions of the curve are injective.

Remark 1.5. We remark that two equivalent, continuous, injective functions
have the same images.

Concerning the connectedness of the attractor of an IFS we have the follow-
ing theorem.

Theorem 1.2 ([7], [20]). Let ðX ; dÞ be a complete metric space, S ¼
ðX ; ð fkÞk¼1;n

Þ an IFS with c ¼ max
k¼1;n

Lipð fkÞ < 1 and AðSÞ the attractor of

S. The following are equivalent:
1) The family ðAiÞi¼1;n is connected, where Ai ¼ fiðAðSÞÞ for k A f1; . . . ; ng.
2) AðSÞ is arcwise connected.
3) AðSÞ is connected.

2. The shift space of an iterated function systems

In this section we briefly present the shift space of an IFS. For more details
one can see [2], [12] and [16]. We start with some set notations: N denotes the
natural numbers, N� ¼ N� f0g, N�

n ¼ f1; 2; . . . ; ng: For two nonempty sets A
and B, BA denotes the set of functions from A to B. By L ¼ LðBÞ we will
understand the set BN �

and by Ln ¼ LnðBÞ we will understand the set BN �
n .

The elements of L ¼ LðBÞ ¼ BN �
will be written as infinite words o ¼ o1o2 � � �

omomþ1 � � � , where om A B and the elements of Ln ¼ LnðBÞ ¼ BN �
n will be written

as finite words o ¼ o1o2 � � �on. By l we will understand the empty word.
Let us remark that L0ðBÞ ¼ flg. L� ¼ L�ðBÞ is the set of all finite words;
L� ¼ L�ðBÞ ¼ 6

nb0
LnðBÞ. We denote by joj the length of the word o. An

element of L ¼ LðBÞ is said to have length þy. If o ¼ o1o2 � � �omomþ1 � � �
or if o ¼ o1o2 � � �on and nbm then ½o�m :¼ o1o2 � � �om. More generally if
l < m, ½o� lm ¼ olþ1olþ2 � � �om and we have ½o�m ¼ ½o�l ½o�

l
m for o A LnðBÞ if

nbm > lb 1 and for o A LðBÞ if m > lb 1. For two words a; b A L�ðBÞU
LðBÞ, a0 b means jaja jbj and ½b�jaj ¼ a. For a A LnðBÞ and b A LmðBÞ or

b A LðBÞ, by ab we will understand the joining of the words a and b namely
ab ¼ a1a2 � � � anb1b2 � � � bm and respectively ab ¼ a1a2 � � � anb1b2 � � � bmbmþ1 � � � .
On L ¼ LðN�

n Þ ¼ ðN�
n Þ

N �
we consider the metric

dsða; bÞ ¼
Xy
k¼1

1� dbkak
3k

; where dyx ¼ 1 if x ¼ y

0 if x0 y

�
; a ¼ a1a2 � � � and b ¼ b1b2 � � � :

484 dan dumitru and alexandru mihail



Let ðX ; dÞ be a complete metric space, S ¼ ðX ; ð fkÞk¼1;nÞ an IFS on X and
A ¼ AðSÞ the attractor of the IFS S. For o ¼ o1o2 � � �om A LmðN�

n Þ, fo
denotes fo1

� fo2
� � � � � fom

and Ho denotes foðHÞ for a set HHX . By Hl

we will understand the set H. In particular Ao ¼ foðAÞ.
The main results concerning the relation between the attractor of an IFS and

the shift space is contained in the following theorem.

Theorem 2.1 ([2], [11], [16]). Let ðX ; dÞ be a complete metric space. If
A ¼ AðSÞ is the attractor of the IFS S ¼ ðX ; ð fkÞk¼1;nÞ then:

1) For o A L ¼ LðN�
n Þ, A½o�mþ1

HA½o�m and dðA½o�mÞ ! 0 when m ! y; more
precisely

dðA½o�mÞa cmdðAÞ:

2) If ao is defined by faog ¼ 7
mb1

A½o�m , then dðe½o�m ; aoÞ ! 0 when m ! y,

where e½o�m is the unique fixed point of f½o�m .

3) A ¼ AðSÞ ¼ 6
o ALfaog, Aa ¼ 6

o ALfaaog for every a A L�, A ¼
6

o ALm
Ao for every m A N� and more general Aa ¼ 6

o ALm
Aao for every a A L�

and every m A N�.
4) The set fe½o�m jo A L and m A N�g is dense in A.
5) The function p : L ! A defined by pðoÞ ¼ ao is continuous and surjective.

Definition 2.1. The function p : L ! A ¼ AðSÞ from the theorem 2.1. is
called the canonical projection from the shift space on the attractor of the IFS S.

3. Main results

The aim of this article is to establish su‰cient conditions under which the
attractor of an iterated function system becomes a dendrite.

We will start with some general properties of the dendrites.

Definition 3.1. The metric space ðX ; dÞ is called a dendrite if for any
x; y A X there exists an unique equivalence class of continuous, injective functions
j : ½0; 1� ! X such that jð0Þ ¼ x and jð1Þ ¼ y (i.e. there exists an unique injective
curve joining x with y).

Lemma 3.1. Let ðX ; dÞ be a dendrite and B a subset of X. Then B is a
dendrite if and only if B is arcwise connected.

Lemma 3.2. Let ðX ; dÞ be a dendrite and A1;A2; . . . ;An be subsets of X such
that A1;A2; . . . ;An are also dendrites. Then A1 VA2 V � � �VAn is a dendrite.

Proof. We denote the set A1 VA2 V � � �VAn by B and we consider x; y A B.
Thus x; y A Aj ; for every j A f1; . . . ; ng. So for all j A f1; . . . ; ng there exist the
continuous, injective functions jj : ½0; 1� ! Aij such that jjð0Þ ¼ x and jjð1Þ ¼ y.
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Since X is a dendrite, j1; . . . ; jm must be equivalent, which means that
j1ð½0; 1�Þ ¼ � � � ¼ jmð½0; 1�ÞHB. It follows that B is arcwise connected and
from lemma 3.1 B is a dendrite.

Corollary 3.1. Let ðX ; dÞ be a complete metric space and S ¼
ðX ; ð fkÞk¼1;nÞ an IFS. We denote by A the attractor of S, by Ak the set

fkðAÞ for k A f1; . . . ; ng. We suppose that fk is an injective function on A for all
k A f1; . . . ; ng and A is a dendrite. Then Ai1 VAi2 V � � �VAim is a dendrite for all
i1; . . . ; im A f1; . . . ; ng.

Proof. Let us suppose that A is a dendrite. Since fk is injective on A it
follows that Ak ¼ fkðAÞ is also a dendrite. We can apply lemma 3.2 to ðA; djAÞ
and Ai1 ;Ai2 ; . . . ;Aim .

Notation 3.1. Let a, b be real numbers such that a < b. Dð½a; b�Þ denotes
the set of the divisions of the interval ½a; b�. For a division of the interval ½a; b�,

D ¼ ða ¼ y0 < y1 < � � � < yn ¼ bÞ; kDk ¼ max
k¼0;n�1

jyk � ykþ1j:

Lemma 3.3. Let ðX ; dÞ be a metric space and j; j 0 : ½0; 1� ! X be continuous,
injective functions such that there exist two sequences of divisions of the interval
½0; 1�, ðDlÞl AN A Dð½0; 1�Þ and ðD 0

l Þl AN A Dð½0; 1�Þ with the following properties:

a) Dl ¼ ð0 ¼ yl
0 < yl

1 < � � � < yl
nl
¼ 1Þ and D 0

l ¼ ð0 ¼ zl0 < zl1 < � � � < zlnl ¼ 1Þ
have the same number of elements for all l A N;

b) kDlk ��!l!y
0 and kD 0

lk ��!l!y
0,

c) max
k¼0;nl

dðjðyl
kÞ; j 0ðzlkÞÞ ��!l!y

0.

Then there exists an unique continuous, bijective and increasing function
u : ½0; 1� ! ½0; 1� such that j 0 � u ¼ j (i.e. j and j 0 are equivalent).

Proof. Let t A ½0; 1�. Then there exists a sequence ðklðtÞÞl AN of natural
numbers such that yl

klðtÞ a ta yl
klðtÞþ1.

It is easy to see that dðjðyl
klðtÞÞ; jðtÞÞ ��!l!y

0. Therefore from point c)

dðj 0ðzlklðtÞÞ; jðtÞÞ ��!l!y
0. If u A ½0; 1� is a limit point of the sequence ðzlklðtÞÞl AN,

from the continuity of j 0 we should have j 0ðuÞ ¼ jðtÞ. Since ½0; 1� is a compact
set and ðzlklðtÞÞl AN H ½0; 1� it follows that the sequence ðzlklðtÞÞl AN has at least one

limit point. If u 0 A ½0; 1� is such that j 0ðu 0Þ ¼ jðtÞ, we should have
j 0ðu 0Þ ¼ jðtÞ ¼ j 0ðuÞ. Since j 0 is injective, it follows that u ¼ u 0. We remark
that, if u 0 is another limit point of the sequence ðzlklðtÞÞl AN, we should have

j 0ðu 0Þ ¼ jðtÞ and so u ¼ u 0. Since the sequence ðzlklðtÞÞl AN has an unique limit

point, ðzlklðtÞÞl AN H ½0; 1� and ½0; 1� is a compact set it follows that zlklðtÞ ��!l!y
u.

Thus, we have proved that for every t A ½0; 1� there exists an unique
uðtÞ A ½0; 1� such that jðtÞ ¼ j 0ðuðtÞÞ. This means that there exists an unique
function u : ½0; 1� ! ½0; 1� such that j 0 � u ¼ j. Since j is injective it results that
u is also injective. We will prove that u is strictly increasing.
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Let t1; t2 A ½0; 1� be such that t1 < t2. Then there exist the sequences
ðklðt1ÞÞl AN HN and ðklðt2ÞÞl AN HN such that yl

klðt1Þ a t1 a yl
klðt1Þþ1 and yl

klðt2Þ a

t2 a yl
klðt2Þþ1. It follows that yl

klðt1Þ a yl
klðt2Þþ1 and so zlklðt1Þ a zlklðt2Þþ1. Since

zlklðt1Þ ��!l!y
uðt1Þ, zlklðt2Þ ��!l!y

uðt2Þ and jzlklðt2Þ � zlkl ðt2Þþ1ja kD 0
lk ��!l!y

0 it follows that

uðt1Þa uðt2Þ.
Interchanging j 0 with j, there exists an unique function v : ½0; 1� ! ½0; 1� such

that j 0 ¼ j � v. Since j and j 0 are injective functions, it follows that v is the
inverse of u. Therefore u is bijective. Also u is a continuous function, since
every bijective and increasing function between two closed intervals is continuous.

Lemma 3.4. Let ðX ; dÞ be a complete metric space such that X ¼ 6n

i¼1
Ai,

where Ai are compact sets for i A f1; . . . ; ng. We suppose that the associated
graph of the family ðAiÞk¼1;n

is a tree. Let x; y A X , x0 y a chain of sets
fAijgj¼0;m such that i0; i1; . . . ; im are di¤erent, x A Ai0 , x B Ai1 , y A Aim , y B Aim�1

and Aij VAijþ1
0j for every j A f1; . . . ;m� 1g, m A N.

Then for any continuous, injective function j : ½0; 1� ! X such that jð0Þ ¼ x
and jð1Þ ¼ y there exists a division D ¼ ð0 ¼ y0 < y1 < � � � < y

m
¼ 1Þ of the

interval ½0; 1� such that jðyjÞ A Aij VAijþ1
for every j A f0; . . . ;m� 1g.

Notation 3.2. Let ðX ; dÞ be a complete metric space and S¼ ðX ; ð fkÞk¼1;nÞ
an IFS on X . For every m A N�, we denote by Sm the IFS Sm ¼ ðX ; ð foÞo ALm

Þ
and we remark that AðSÞ ¼ AðSmÞ.

Theorem 3.1. Let ðX ; dÞ be a complete metric space and S ¼ ðX ; ð fkÞk¼1;n
Þ

an IFS. We denote by A the attractor of S and by Gm the graph of intersections
associated with the family of sets ðAoÞo ALm

, for every m A N�. If the graphs Gm

are trees for every m A N�, then A ¼ AðSÞ is a dendrite.

Proof. Since G is a tree it results that G is connected. From theorem 1.2.
it follows that A is arcwise connected. We will prove that A is a dendrite.

Let x; y A A, x0 y. We suppose that there exist two continuous, injective
functions j; j 0 : ½0; 1� ! A such that jð0Þ ¼ j 0ð0Þ ¼ x and jð1Þ ¼ j 0ð1Þ ¼ y: To
prove that A is a dendrite it is enough to prove that j and j 0 are equivalent.
We intend to use lemma 3.3 to prove the equivalence. For that, we will
construct two sequences ðDlÞlb0 and ðD 0

l Þlb0 of divisions of the unit interval ½0; 1�
such that:

a) Dl ¼ ð0 ¼ yl
0 < yl

1 < � � � < yl
nl
¼ 1Þ and D 0

l ¼ ð0 ¼ zl0 < zl1 < � � � < zlnl ¼ 1Þ
have the same number of elements for all l A N,

b) kDlk ��!l!y
0 and kD 0

lk ��!l!y
0,

c) max
k¼0;nl

dðjðyl
kÞ; j 0ðzlkÞÞ ��!l!y

0.

Let l A N be fixed. If there exists an a A LlðN�
n Þ such that x; y A Aa then

we take D0 ¼ ðy00 ¼ 0 < y01 ¼ 1Þ and D 0
0 ¼ ðz00 ¼ 0 < z01 ¼ 1Þ. We have jðy00Þ ¼

jð0Þ ¼ j 0ð0Þ ¼ j 0ðz00Þ ¼ x and jðy01Þ ¼ jð1Þ ¼ j 0ð1Þ ¼ j 0ðz01Þ ¼ y.
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If there does not exist an a A LlðN�
n Þ such that x; y A Aa, then there exists

ax; ay A LlðN�
n Þ such that x A Aax , y A Aay and ax 0 ay.

Since Gl is a tree, the sets Aax and Aay are joined by an unique chain of
sets fAoj

g
j¼1;ml

such that ax ¼ o1, ay ¼ oml
, oj A LlðN�

n Þ, Aoj
VAojþ1

0j, for
j A f1; . . . ;ml � 1g and i1; i2; . . . ; iml

di¤erent. We can suppose that x B Ao2
and

y B Aoml�1
by replacing ax with o2 if x A Ao2

; and ay with om�1 if y A Aoml�1
.

From lemma 3.4. there exist Dl ¼ ð0 ¼ yl
0 < yl

1 < � � � < yl
ml

¼ 1Þ and D 0
l ¼

ð0 ¼ zl0 < zl1 < � � � < zlml
¼ 1Þ divisions of the unit interval ½0; 1� such that

jðyl
j Þ; j 0ðzljþ1Þ A Aoj

VAojþ1
.

It results that max
k¼0;ml

dðjðyl
kÞ; j 0ðzlkÞÞamax

k¼0;ml
dðAok

Þa cldðAÞ, where
c ¼ max

k¼1;n Lipð fkÞ < 1: Therefore max
k¼0;nl

dðjðyl
kÞ; j 0ðzlkÞÞ ��!l!y

0.

We remark now that dl ¼max
k¼0;ml�1 dðjðyl

kÞ; jðyl
kþ1ÞÞamax

k¼0;ml�1 dðAok
Þ

a cldðAÞ. Therefore dl ¼ max
k¼0;ml�1 dðjðyl

kÞ; jðyl
kþ1ÞÞ ��!l!y

0.

Let dm ¼ infx;y A ½0;1�; jx�yjbm dðjðxÞ; jðyÞÞ; for every m A ½0; 1Þ.
It is obvious that dm a dn if ma n. Since j is injective and ½0; 1� is a

compact set, we have dm > 0 for every m > 0.
We suppose by contradiction that the sequence ðkDlkÞlb0 is not convergent

to 0. Then there exist e > 0 and a subsequence ðkDlkkÞkb0 such that kDlkkb e.
Then dlk ¼ max

j¼0;nl�1 dðjðy
lk
jþ1Þ; jðy

lk
j ÞÞb dkDlk

k b de > 0. This contradicts the

fact that dl ��!l!y
0. It follows that kDlk ��!l!y

0. In a similar way one can prove

that kD 0
lk ��!l!y

0.

Corollary 3.1. Let ðX ; dÞ be a complete metric space, l A N� and S ¼
ðX ; ð fkÞk¼1;nÞ an IFS. We denote by A the attractor of S and by Gm the graph

of intersections associated with the family of sets ðAoÞo ALm
, for every m A N�. If

the graph Gml is a tree for every m A N�, then A is a dendrite.

Proof. We can apply the theorem 3.1. to the IFS S l .

Corollary 3.2. Let ðX ; dÞ be a complete metric space, ðnlÞlb1 HN� a
strictly increasing sequence of natural numbers and S ¼ ðX ; ð fkÞk¼1;nÞ an IFS.
We denote by A the attractor of S and by Gm the graph of intersections associated
with the family of sets ðAoÞo ALm

, for every m A N�. If the graphs Gnl are trees

for every l A N�, then A is a dendrite.

Proof. Similar to the proof of theorem 3.1.

4. Examples

We give now some examples of attractors of IFSs which are dendrites.

Example 4.1. Let X ¼ R. We consider the IFS S¼ ðR; ð fkÞk¼0;n�1
Þ, where

fk : R ! R are the functions defined by fkðxÞ ¼
x

n
þ k

n
, for k A f0; 1; ::; n� 1g.

488 dan dumitru and alexandru mihail



The attractor of S is AðSÞ ¼ ½0; 1�. We remark that Ak ¼ fkðAÞ ¼
k � 1

n
;
k

n

� �
for k A f0; 1; ::; n� 1g.

An extension of this example for countable IFSs can be found in [17], [18].
We compute the associated graphs and we obtain the following edges for

every graph Gm, m A N�, which prove that these are trees. Moreover, Gm has
nm � 1 edges for every m A N� and we have the followings edges:

G1 : ð0; 1Þ; ð1; 2Þ; . . . ; ðn� 2; n� 1Þ.
G2 : ð00; 01Þ; ð01; 02Þ; . . . ; ð0ðn� 2Þ; 0ðn� 1ÞÞ; ð0ðn� 2Þ; 10Þ
ð10; 11Þ; ð11; 12Þ; . . . ; ð1ðn� 2Þ; 1ðn� 1ÞÞ; ð1ðn� 1Þ; 20Þ;

. . .
ððn� 1Þ0; ðn� 1Þ1Þ; ððn� 1Þ1; ðn� 1Þ2Þ; . . . ; ððn� 1Þðn� 2Þ; ðn� 1Þðn� 1ÞÞ:
In general:
Gm ¼ ð0 � � � 00; 0 � � � 01Þ; ð0 � � � 01; 0 � � � 02Þ; . . . ; ð0 � � � 0ðn� 2Þ; 0 � � � 0ðn� 1ÞÞ;
ð0 � � � 0ðn� 1Þ; 0 � � � 010Þ
ð0 � � � 010; 0 � � � 011Þ; ð0 � � � 011; 12Þ; . . . ; ð0 � � � 01ðn� 2Þ; 0 � � � 01ðn� 1ÞÞ;
ð0 � � � 01ðn� 1Þ; 0 � � � 020Þ;

. . .
ð0 � � � 0ðn� 1Þ0; 0 � � � 0ðn� 1Þ1Þ; ð0 � � � 0ðn� 1Þ1; 0 � � � 0ðn� 1Þ2Þ; . . . ;
ð0 � � � 0ðn� 1Þðn� 2Þ; 0 � � � 0ðn� 1Þðn� 1ÞÞ:

. . .
ððn� 1Þ � � � ðn� 1Þ0; ðn� 1Þ � � � ðn� 1Þ1Þ; ððn� 1Þ � � � ðn� 1Þ1;
ðn� 1Þ � � � ðn� 1Þ2Þ; . . . ; ððn� 1Þ � � � ðn� 1Þðn� 2Þ; ðn� 1Þ � � � ðn� 1Þðn� 1ÞÞ:

Notation 4.1. Let ðX ; dÞ be a complete metric space and S ¼
ðX ; ð fkÞk¼1;nÞ an IFS. Let Lm ¼ Lmðf1; 2; . . . ; ngÞ the set of the words of
length m with the letters from the alphabet f1; 2; . . . ; ng and ðLm;GÞ be a graph.
By fkððLm;GÞÞ we will understand the graph ðkLm; fkðGÞÞ ¼ ðfka j a A Lmg;
fðka; kbÞ j ða; bÞ A GgÞ for k A f1; 2; . . . ; ng.

Example 4.2. (The Hata’s tree-like set).
Let X ¼ C. We set f1ðzÞ ¼ cz and f2ðzÞ ¼ ð1� jcj2Þzþ jcj2; where c A C

and jcj; j1� cj A ð0; 1Þ: The attractor of the IFS formed with the functions is
called a Hata’s tree-like set and it is denoted by K: We put A1 ¼ f1ðKÞ and
A2 ¼ f2ðKÞ:

We compute the associated graphs and we obtain the following edges for
every graph Gm, m A N�, which prove that these are trees. Moreover, Gm has
2m � 1 edges for every m A N� and we have the followings edges:

G1 : ð1; 2Þ.
G2 : ð12; 11Þ; ð11; 21Þ; ð21; 22Þ.
G 3 : ð122;121Þ;ð121;112Þ;ð112;111Þ;ð112;211Þ;ð211;212Þ; ð212;221Þ;ð221;222Þ:
In general:
Gm : f1ðGm�1Þ; ð1122 � � � 2; 211 � � � 1Þ; f2ðGm�1Þ:
From remark 1.4 points 2) and 3) it follows that the graph Gm is a tree for

every m. Hence using theorem 3.1. K is a dendrite.
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Example 4.3. (The Cross Set).
Let X ¼ C, and A ¼ fz ¼ xþ iy j jxj þ jyja 1g. We consider the functions

fj : C ! C, where j ¼ 0; 1; . . . ; 4, defined by f0ðzÞ ¼
z

3
, f1ðzÞ ¼

z

3
þ 2

3
, f2ðzÞ ¼

z

3
þ 2i

3
, f3ðzÞ ¼

z

3
� 2

3
and f4ðzÞ ¼

z

3
� 2i

3
. The attractor of the IFS formed with

the functions f0; f1; . . . ; f4, S ¼ ðC; f f0; f1; f2; f3; f4gÞ; is called the the cross.
The fixed points of the functions f0; f1; . . . ; f4; are 0, 1, i, �1, �i and so
0; 1; i;�1;�i A AðSÞ.

We remark that f0ðAÞ ¼
A

3
, f1ðAÞ ¼

A

3
þ 2

3
HA, f2ðAÞ ¼

A

3
þ 2i

3
HA, f3ðAÞ ¼

A

3
� 2

3
HA and f4ðAÞ ¼

A

3
� 2i

3
HA. Therefore FSðAÞHA and AðSÞHA.

Also f1ðAðSÞÞV f3ðAðSÞÞH A

3
þ 2

3

� �
V

A

3
� 2

3

� �
¼ j.

In a similar way one can obtain that flðAðSÞÞV fjðAðSÞÞ ¼ j, for every
l; j A f1; 2; 3; 4g such that l0 j.

We also remark that on one side we have f0ðAðSÞÞV f1ðAðSÞÞH A

3
V

A

3
þ 2

3

� �
¼ 1

3

� �
and on the other side

1

3
¼ f0ð1Þ ¼ f1ð�1Þ. Thus f0ðAðSÞÞV

f1ðAðSÞÞ ¼ 1

3

� �
. In a similar way one can obtain that f0ðAðSÞÞV f2ðAðSÞÞ ¼

2i

3

� �
, f0ðAðSÞÞV f3ðAðSÞÞ ¼ � 2

3

� �
and f0ðAðSÞÞV f4ðAðSÞÞ ¼ � 2i

3

� �
.

We compute the associated graphs and we obtain the following edges for
every graph Gm, m A N�, which prove that these are trees. Moreover, Gm has
5m � 1 edges for every m A N� and are described below:

G1 : ð0; 1Þ; ð0; 2Þ; ð0; 3Þ; ð0; 4Þ:
G2 : ð00; 01Þ; ð00; 02Þ; ð00; 03Þ; ð00; 04Þ;
ð01; 13Þ; ð13; 10Þ; ð10; 11Þ; ð10; 12Þ; ð10; 14Þ;
ð02; 24Þ; ð24; 20Þ; ð20; 21Þ; ð20; 22Þ; ð20; 23Þ;
ð03; 31Þ; ð31; 30Þ; ð30; 32Þ; ð30; 33Þ; ð30; 34Þ;
ð04; 42Þ; ð42; 40Þ; ð40; 41Þ; ð40; 43Þ; ð40; 44Þ:
In general:
Gm : f0ðGm�1Þ; ð011 � � � 1; 133 � � � 3Þ; f1ðGm�1Þ; ð022 � � � 2; 244 � � � 4Þ;
f2ðGm�1Þ; ð033 � � � 3; 311 � � � 1Þ; f3ðGm�1Þ; ð022 � � � 2; 244 � � � 4Þ; f4ðGm�1Þ;
From remark 1.4 points 2) and 3) it follows that the graph Gm is a tree for

every m. Hence using theorem 3.1. the cross set is a dendrite.
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