
M. SHIROSAKI
KODAI MATH. J.
36 (2013), 386–395

ON MEROMORPHIC FUNCTIONS SHARING FOUR TWO-POINT

SETS CM
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Abstract

We show that if two meromorphic functions sharing four two-point sets CM, then

one of them is a Möbius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in C ¼ C U fyg, we say that f and g share S CM (counting multiplicities)
if f �1ðSÞ ¼ g�1ðSÞ and if for each z0 A f �1ðSÞ two functions f � f ðz0Þ and
g� gðz0Þ have the same multiplicity of zero at z0, where the notations f �y and
g�y mean 1=f and 1=g, respectively. Also, if f �1ðSÞ ¼ g�1ðSÞ, then we say
that f and g share S IM (ignoring multiplicities). In particular if S is a one-
point set fag, then we say also that f and g share a CM or IM.

In [4] and [5], R. Nevanlinna showed the following theorems:

Theorem A. Let f and g be two distinct nonconstant meromorphic functions
on C and let a1; . . . ; a4 be four distinct points in C . If f and g share a1; . . . ; a4
CM, then f is a Möbius transform of g, i.e., f ¼ ðagþ bÞ=ðcgþ dÞ for some
complex numbers a, b, c, d with ad � bc0 0. Moreover, there exists a permuta-
tion s of f1; 2; 3; 4g such that asð3Þ and asð4Þ are Picard exceptional values of f and
g and the cross ratio ðasð1Þ; asð2Þ; asð3Þ; asð4ÞÞ ¼ �1.

Theorem B. Let f and g be two nonconstant meromorphic functions on C
sharing distinct five points in C IM, then f ¼ g.

In this paper we treat some uniqueness theorems, but we do not require the
conclusion that two meromorphic functions considered are identical. The con-
clusion required is that one of two meromorphic functions is a Möbius transform
of the other. In [7], the author generalized Theorem B as following:
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Theorem C. Let S1; . . . ;S5 be pairwise disjoint one-point or two-point sets in
C . If two nonconstant meromorphic functions f and g on C share S1; . . . ;S5 IM,
then f is a Möbius transform of g.

It is not so di‰cult to show that Theorem C contains Theorem B by using
the little Picard theorem.

The first half of Theorem A can be generalized as following, which is a
constant target version of Theorem 1 of [3]:

Theorem D. Let f and g be two nonconstant meromorphic functions on
C . Let x1; . . . ; x4 be four distinct points in C and let h1; . . . ; h4 be four distinct
points in C . If f � xj and g� hj share zero CM ð j ¼ 1; . . . ; 4Þ, then f is a
Möbius transform of g.

On the other hand, Tohge considered two meromorphic functions sharing
1, �1, y and a two-point set containing none of them, and Theorem 4 in [10]
induces the following

Theorem E. Let S1, S2, S3 be one-point sets in C and let S4 be a two-point
set in C . Assume that S1, S2, S3, S4 are pairwise disjoint. If two nonconstant
meromorphic functions f and g on C share S1, S2, S3, S4 CM, then f is a Möbius
transform of g.

Also, Theorem 1.2 in [9] and its proof induce

Theorem F. Let S1, S2 be one-point sets in C and let S3, S4 be two two-
point sets in C . Assume that S1, S2, S3, S4 are pairwise disjoint. If two non-
constant meromorphic functions f and g on C share S1, S2, S3, S4 CM, then f is a
Möbius transform of g.

Moreover, the author prove in [8]

Theorem G. Let S1 be one-point set in C and let S2, S3, S4 be three two-
point sets in C . Assume that S1, S2, S3, S4 are pairwise disjoint. If two non-
constant meromorphic functions f and g on C share S1, S2, S3, S4 CM, then f is a
Möbius transform of g.

In this paper we consider two meromorphic functions on C sharing four two-
point sets in C CM.

Theorem 1.1. Let S1, S2, S3, S4 be four two-point sets in C . Suppose that
S1, S2, S3 and S4 are pairwise disjoint. If two nonconstant meromorphic functions
f and g on C share S1; . . . ;S4 CM, then f is a Möbius transform of g.

387on meromorphic functions sharing four two-point sets cm



By arranging these theorems we will get

Theorem. Let S1, S2, S3, S4 be four one-point or two-point sets in C .
Suppose that S1, S2, S3 and S4 are pairwise disjoint. If two nonconstant
meromorphic functions f and g on C share S1; . . . ;S4 CM, then f is a Möbius
transform of g.

The aim of this paper is to prove Theorem 1.1.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N. Let
G be a torsion-free abelian multiplicative group, and consider a q-tuple A ¼
ða1; . . . ; aqÞ of elements ai in G.

Definition 2.1. Let N be a positive integer. We call integers mj represen-
tations of rank N of aj if

Yq

j¼1

a
ej
j ¼

Yq

j¼1

a
e 0j
jð2:1Þ

and

Xq

j¼1

ejmj ¼
Xq

j¼1

e 0jmjð2:2Þ

are equivalent for any integers ej, e 0j with
Pq

j¼1 jejjaN and
Pq

j¼1 je 0j jaN.

For the existence of representations of rank N, see [6].
For two entire function a and b without zeros we say that they are

equivalent if a=b is constant. Then we denote a@ b. This relation ‘‘equivalent’’
is an equivalence relation.

We introduce following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [2].

Lemma 2.2. If entire functions a0; a1; . . . ; an without zeros satisfy

a0 þ a1 þ � � � þ an ¼ 0;

then for each j ¼ 0; 1; . . . ; n there exists some kð0 jÞ such that aj @ ak, and the
sum of all elements of each equivalence class in fa0; . . . ; ang is zero.

Now we investigate the torsion-free abelian multiplicative group G ¼ E=C,
where E is the abelian group of entire functions without zeros and C is the
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subgroup of all non-zero constant functions. We represent by ½a� the element
of E=C with the representative a A E. Let a1; . . . ; aq be elements in E. Take
representations mj of rank N of ½aj�. For a ¼

Qq
j¼1 a

ej
j we define its index

IndðaÞ by
Pq

j¼1 ejmj. The indices depend only on ½
Qq

j¼1 a
ej
j � under the condi-

tion
Pq

j¼1 jejjaN. Trivially Indð1Þ ¼ 0, and hence IndðaÞ ¼ 0 and the con-
stantness of a are equivalent, and IndðaÞ ¼ Indða 0Þ is equivalent to that

a=a 0 is constant, where a ¼
Qq

j¼1 a
ej
j and a 0 ¼

Qq
j¼1 a

e 0
j

j with
Pq

j¼1 jejjaN andPq
j¼1 je 0j jaN.

We use the following Lemma in the proof of Theorem 1.1 which is an
application of Lemma 2.2 (for the proof see Lemma 2.3 of [9]).

Lemma 2.3. Assume that there is a relation Cða1; . . . ; aqÞ1 0 where
CðX1; . . . ;XqÞ A C ½X1; . . . ;Xq� is a nonconstant polynomial of degree at most N
of X1; . . . ;Xq. Then each term aX e1

1 � � �X eq
q of CðX1; . . . ;XqÞ has another term

bX
e 0
1

1 � � �X e 0q
q such that ae1

1 � � � aeq
q and a

e 0
1

1 � � � ae 0q
q have the same indices, where a and b

are non-zero constants.

3. A lemma from the theory of general resultants

For the proof of Theorem 1.1 a result from the theory of general resultants is
represented in this section. We give it by proceeding as in Chapter 3 of [1].

Let d be a positive integer and let F1; . . . ;F4 be four homogeneous poly-
nomials of degree d of four variables X , Y , Z, W with the form FjðX ;Y ;Z;WÞ
¼ PjðX ;YÞ þQjðZ;WÞ, where PjðX ;Y Þ are homogeneous polynomials of degree
d of X , Y and QjðZ;WÞ are homogeneous polynomials of degree d of Z and
W . Denote their Jacobian determinant by J:

J ¼ qFj

qX

qFj

qY

qFj

qZ

qFj

qW

����

����
1aja4

:

Lemma 3.1. Let P be a non-trivial common zero of F1, F2, F3, F4. Then

(i) J is zero at P; (ii) all the partial derivatives
qJ

qX
,
qJ

qY
,
qJ

qZ
,

qJ

qW
are zero

at P; (iii) the second partial derivatives
q2J

qXqZ
,

q2J

qXqW
,

q2J

qYqZ
,

q2J

qYqW
have zero

at P.

Proof. By Euler’s relation we have

XJ ¼ X
qFj

qX

qFj

qY

qFj

qZ

qFj

qW

����

����
1aja4

¼ d Fj

qFj

qY

qFj

qZ

qFj

qW

����

����
1aja4

ð3:1Þ

and, by the same way,
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YJ ¼ d
qFj

qX
Fj

qFj

qZ

qFj

qW

����

����
1aja4

;ð3:2Þ

ZJ ¼ d
qFj

qX

qFj

qY
Fj

qFj

qW

����

����
1aja4

;ð3:3Þ

WJ ¼ d
qFj

qX

qFj

qY

qFj

qZ
Fj

����

����
1aja4

ð3:4Þ

are obtained. Since FjðPÞ ¼ 0 for j ¼ 1; 2; 3; 4, all XJ, YJ, ZJ, WJ have
zero at P by (3.1), (3.2), (3.3) and (3.4). Put P ¼ ðX0;Y0;Z0;W0Þ, then
JðPÞ ¼ 0 because at least one of X0, Y0, Z0, W0 is not zero. We have showed
(i).

By di¤erentiating (3.1), (3.2), (3.3) and (3.4) by X and noting
q2Fj

qXqZ
¼

q2Fj

qXqW
¼ q2Fj

qYqZ
¼ q2Fj

qYqW
¼ 0, we get

J þ X
qJ

qX
¼ dJ þ d Fj

q2Fj

qXqY

qFj

qZ

qFj

qW

�����

�����
1aja4

;ð3:5Þ

Y
qJ

qX
¼ d

q2Fj

qX 2
Fj

qFj

qZ

qFj

qW

�����

�����
1aja4

;ð3:6Þ

Z
qJ

qX
¼ d

q2Fj

qX 2

qFj

qY
Fj

qFj

qW

�����

�����
1aja4

þ d
qFj

qX

q2Fj

qXqY
Fj

qFj

qW

�����

�����
1aja4

;

W
qJ

qX
¼ d

q2Fj

qX 2

qFj

qY

qFj

qZ
Fj

�����

�����
1aja4

þ d
qFj

qX

q2Fj

qXqY

qFj

qZ
Fj

�����

�����
1aja4

:ð3:7Þ

Hence X
qJ

qX
, Y

qJ

qX
, Z

qJ

qX
, W

qJ

qX
are all zero at P, and hence

qJ

qX
ðPÞ ¼ 0 since

some of X0, Y0, Z0, W0 are not zero. Similarly, we have
qJ

qY
ðPÞ ¼ qJ

qZ
ðPÞ ¼

qJ

qW
ðPÞ ¼ 0, which is (ii).
Now di¤erentiate (3.5), (3.6) and (3.7) by Z, then we have

qJ

qZ
þ X

q2J

qXqZ
¼ d

qJ

qZ
þ d Fj

q2Fj

qXqY

q2Fj

qZ2

qFj

qW

�����

�����
1aja4

ð3:8Þ

þ d Fj

q2Fj

qXqY

qFj

qZ

q2Fj

qZqW

�����

�����
1aja4

;
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Y
q2J

qXqZ
¼ d

q2Fj

qX 2
Fj

q2Fj

qZ2

qFj

qW

�����

�����
1aja4

þ d
q2Fj

qX 2
Fj

qFj

qZ

q2Fj

qZqW

�����

�����
1aja4

;

W
q2J

qXqZ
¼ d

q2Fj

qX 2

qFj

qY

q2Fj

qZ2
Fj

�����

�����
1aja4

þ d
qFj

qX

q2Fj

qXqY

q2Fj

qZ2
Fj

�����

�����
1aja4

and hence X
q2J

qXqZ
¼ Y

q2J

qXqZ
¼ W

q2J

qXqZ
¼ 0 at P. By using the alternate

equation

qJ

qX
þ Z

q2J

qXqZ
¼ d

qJ

qX
þ d

q2Fj

qX 2

qFj

qY
Fj

q2Fj

qZqW

�����

�����
1aja4

þ d
qFj

qX

q2Fj

qXqY
Fj

q2Fj

qZqW

�����

�����
1aja4

of (3.8), we have Z
q2J

qXqZ
¼ 0 at P. Since some of X0, Y0, Z0, W0 are not

zero, we see that
q2J

qXqZ
have a zero at P. By the same way we obtain that

q2J

qXqW
ðPÞ ¼ q2J

qYqZ
ðPÞ ¼ q2J

qYqW
ðPÞ ¼ 0, as desired. r

Let

FjðX ;Y ;Z;WÞ ¼ aj1X
2 þ aj2XY þ aj3Y

2 þ aj4Z
2

þ aj5ZW þ aj6W
2 ð j ¼ 1; 2; 3; 4Þ

be four quadratic homogeneous polynomials. Then we have

J ¼ j2aj1X þ aj2Y aj2X þ 2aj3Y 2aj4Z þ aj5W aj5Z þ 2aj6W j1aja4

¼ 4D1X
2Z2 þ 8D2X

2ZW þ 4D3X
2W 2 þ 8D4XYZ

2 þ 16D5XYZW

þ 8D6XYW
2 þ 4D7Y

2Z2 þ 8D8Y
2ZW þ 4D9Y

2W 2;

where

391on meromorphic functions sharing four two-point sets cm



D1 ¼ jaj1 aj2 aj4 aj5j1aja4; D2 ¼ jaj1 aj2 aj4 aj6j1aja4;

D3 ¼ jaj1 aj2 aj5 aj6j1aja4; D4 ¼ jaj1 aj3 aj4 aj5j1aja4;

D5 ¼ jaj1 aj3 aj4 aj6j1aja4; D6 ¼ jaj1 aj3 aj5 aj6j1aja4;

D7 ¼ jaj2 aj3 aj4 aj5j1aja4; D8 ¼ jaj2 aj3 aj4 aj6j1aja4;

D9 ¼ jaj2 aj3 aj5 aj6j1aja4;

and we get

q2J

qXqZ
¼ 16ðD1XZ þD2XW þD4YZ þD5YW Þ;

q2J

qXqW
¼ 16ðD2XZ þD3XW þD5YZ þD6YW Þ;

q2J

qYqZ
¼ 16ðD4XZ þD5XW þD7YZ þD8YW Þ;

q2J

qYqW
¼ 16ðD5XZ þD6XW þD8YZ þD9YW Þ:

Therefore, if there exists a common zero P ¼ ðX0;Y0;Z0;W0Þ of F1, F2, F3, F4

such that some of X0Z0, X0W0, Y0Z0, Y0W0 are not zero, then we see, by
considering Lemma 3.1, that

D :¼

D1 D2 D4 D5

D2 D3 D5 D6

D4 D5 D7 D8

D5 D6 D8 D9

���������

���������

¼ 0:ð3:9Þ

4. The key theorem and the proof of Theorem 1.1

Theorem 4.1. Let f ¼ f1=f0 and g ¼ g1=g0 be nonconstant meromorphic
functions on C , where f0 and f1 are entire functions without common zero and so
are g0 and g1. Let PjðzÞ ¼ z2 þ ajzþ bj ð j ¼ 1; 2; 3; 4Þ be polynomials such that
PjðzÞ and PkðzÞ have no common zero for distinct j, k and let QjðzÞ ¼ z2 þ pjzþ qj
ð j ¼ 1; 2; 3; 4Þ be polynomials such that QjðzÞ and QkðzÞ have no common zero for
distinct j, k. Assume that there exist entire functions aj without zeros such that

f 2
1 þ aj f1 f0 þ bj f

2
0 ¼ ajðg21 þ pjg1g0 þ qjg

2
0Þ ð j ¼ 1; 2; 3; 4Þ:

Then there exist distinct j1 and j2 such that aj1=aj2 is constant, and hence

f 2 þ aj1 f þ bj1
f 2 þ aj2 f þ bj2

¼ c
g2 þ aj1gþ bj1
g2 þ aj2gþ bj2

;

where c is a non-zero constant.

392 manabu shirosaki



Proof. Take z A C which is not zero of any of f1, f0, g1, g1. Then
ð f1ðzÞ; f0ðzÞ; g1ðzÞ; g0ðzÞÞ is a common zero of

X 2 þ ajXY þ bjY
2 þ AjðZ2 þ pjZW þ qjW

2Þ ð j ¼ 1; 2; 3; 4Þ;

where Aj ¼ �ajðzÞ. By (3.9), we have D ¼ 0 for any z A C since the zero sets of
f1, f0, g1, g0 are discrete. Since each Dj is a quadratic homogeneous polynomial
of a1, a2, a3, a4 which consists of terms akal ðk0 lÞ, D is a homogeneous
polynomial of degree eight whose terms are

Q4
m¼1 ajmakm , where jm 0 km, m ¼

1; 2; 3; 4, with complex coe‰cients. Now take representations m1, m2, m3, m4 of
½a1�, ½a2�, ½a3�, ½a4� of rank 8. Suppose that any aj=ak is not constant for j0 k.
Then we have that mj 0 mk for j0 k and we may assume that m1 > m2 > m3 > m4.
In terms of the expansion of D, only the term ða1a2Þ4 has the maximal index.
By Lemma 2.3, its coe‰cient must be zero, and so we calculate the coe‰cient.
Now, we have

D1 ¼ j1 aj aj pjajj1aja4; D2 ¼ j1 aj aj qjajj1aja4;

D3 ¼ j1 aj pjaj qjajj1aja4; D4 ¼ j1 bj aj pjajj1aja4;

D5 ¼ j1 bj aj qjajj1aja4; D6 ¼ j1 bj pjaj qjajj1aja4;

D7 ¼ jaj bj aj pjajj1aja4; D8 ¼ jaj bj aj qjajj1aja4;

D9 ¼ jaj bj pjaj qjajj1aja4:

Put ajk ¼ aj � ak, bjk ¼ bj � bk, cjk ¼ akbj � ajbk, pjk ¼ pj � pk, qjk ¼ qj � qk,
rjk ¼ pkqj � pjqk, then in their expansions a1a2 has the coe‰cients a34p21,
a43q21, a43r21, b43p21, b43q21, b43r21, c43p21, c43q21, c43r21, respectively. Hence

in the expansion of D the term ða1a2Þ4 has the coe‰cient

a43p21 a43q21 b43p21 b43q21

a43q21 a43r21 b43q21 b43r21

b43p21 b43q21 c43p21 c43q21

b43q21 b43r21 c43q21 c43r21

���������

���������

¼

p21 q21 0 0

q21 r21 0 0

0 0 p21 q21

0 0 q21 r21

���������

���������

�

a43 0 b43 0

0 a43 0 b43

b43 0 c43 0

0 b43 0 c43

���������

���������

¼ ðp21r21 � q221Þ
2

a43 b43 0 0

b43 c43 0 0

0 0 a43 b43

0 0 b43 c43

���������

���������

¼ ðp21r21 � q221Þ
2ða43c43 � b243Þ

2

¼ fRðQ1;Q2ÞRðP3;P4Þg2;

where RðP;QÞ denotes the resultant of two polynomials P and Q. By assump-
tion RðP3;P4Þ0 0, RðQ1;Q2Þ0 0, which is a contradiction. Therefore we con-
clude that some aj=ak ð j0 kÞ are constant. r
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Note that, in Theorem 4.1, we did not assume that Pj , Qj have no double
zeros. We mention that it is not so di‰cult to prove Theorem D, Theorem E
and Theorem F by Theorem 4.1.

Proof of Theorem 1.1. We set

Sj ¼ fxj; hjg ¼ fz; z2 þ ajzþ bj ¼ 0g ð j ¼ 1; 2; 3; 4Þ

and we can take PjðzÞ ¼ QjðzÞ ¼ z2 þ ajzþ bj in Theorem 4.1 with some entire
functions aj without zeros such that

f 2
1 þ aj f1 f0 þ bj f

2
0 ¼ ajðg21 þ ajg1g0 þ bjg

2
0Þ ð j ¼ 1; 2; 3; 4Þ:

Then we may assume, by Theorem 4.1, that a1=a2 is constant. Put c ¼ a1=a2.
Then we have

f 2 þ a1 f þ b1

f 2 þ a2 f þ b2
¼ c

g2 þ a1gþ b1

g2 þ a2gþ b2
:

If there exists a point z A C such that f ðzÞ ¼ gðzÞ B S1 US2, then we get c ¼ 1 and
hence we see that f is a Möbius transform of g. Otherwise, by assumption we
have f �1ðxjÞ ¼ g�1ðhjÞ, f �1ðhjÞ ¼ g�1ðxjÞ ð j ¼ 3; 4Þ, and by Theorem D we con-
clude that f is a Möbius transform of g.
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