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ON MEROMORPHIC FUNCTIONS SHARING FOUR TWO-POINT
SETS CM

MANABU SHIROSAKI

Abstract

We show that if two meromorphic functions sharing four two-point sets CM, then
one of them is a Mobius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in C=CU{x}, we say that f and g share S CM (counting multiplicities)
if £=1(S)=¢""(S) and if for each zpe f~!(S) two functions f — f(z) and
g — g(z0) have the same multiplicity of zero at zy, where the notations f — oo and
g — oo mean 1/f and 1/g, respectively. Also, if f~1(S) = g~'(S), then we say
that f and g share S IM (ignoring multiplicities). In particular if S is a one-
point set {a}, then we say also that f and g share « CM or IM.

In [4] and [5], R. Nevanlinna showed the following theorems:

THEOREM A. Let f and g be two distinct nonconstant meromorphic functions
on C and let ay, ..., a4 be four distinct points in C. If f and g share ay, ..., a4
CM, then f is a Mdébius transform of g, ie., f = (ag+b)/(cg+d) for some
complex numbers a, b, ¢, d with ad — bc #0. Moreover, there exists a permuta-
tion ¢ of {1,2,3,4} such that a,3) and a4y are Picard exceptional values of f and
g and the cross ratio (1), ds(2), do(3), do4)) = —1.

THEOREM B. Let f and g be two nonconstant meromorphic functions on C

sharing distinct five points in C IM, then [ =g.

In this paper we treat some uniqueness theorems, but we do not require the
conclusion that two meromorphic functions considered are identical. The con-
clusion required is that one of two meromorphic functions is a Mdbius transform
of the other. In [7], the author generalized Theorem B as following:
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_ Tueorem C. Let Sy,...,Ss be pairwise disjoint one-point or two-point sets in
C. If two nonconstant meromorphic functions f and g on C share Sy,...,Ss IM,
then f is a Mdbius transform of g.

It is not so difficult to show that Theorem C contains Theorem B by using
the little Picard theorem.

The first half of Theorem A can be generalized as following, which is a
constant target version of Theorem 1 of [3]:

THEOREM D. Let [ and g be two nonconstant meromorphic functions on
C. Let &y,...,¢ be four distinct points in C and let n,,...,n, be four distinct
points in C. If f—¢& and g—n; share zero CM (j=1,...,4), then f is a
Mébius transform of g.

On the other hand, Tohge considered two meromorphic functions sharing
1, —1, oo and a two-point set containing none of them, and Theorem 4 in [10]
induces the following

TuroreMm E.  Let Sy, S», Si be one-point sets in C and let Sy be a two-point
set in C. Assume that Sy, S, S3, Sy are pairwise disjoint. If two nonconstant
meromorphic functions f and g on C share S|, S, S3, Sy CM, then f is a Mdbius
transform of g.

Also, Theorem 1.2 in [9] and its proof induce

Turorem F. Let S|, S» be one-point sets in C and let Si, Sy be two two-
point sets in C. Assume that Sy, S», S3, Sy are pairwise disjoint. If two non-
constant meromorphic functions [ and g on C share Sy, S>, S3, S4 CM, then f is a
Mébius transform of g.

Moreover, the author prove in (8]

Turorem G. Let S| be one-point set in C and let S, S3, Sy be three two-
point sets in C. Assume that Sy, S», S3, Sy are pairwise disjoint. If two non-
constant meromorphic functions f and g on C share Sy, Sy, S3, S4 CM, then [ is a
Mébius transform of g.

In this paper we consider two meromorphic functions on C sharing four two-
point sets in C CM.

THEOREM 1.1.  Let Sy, S», S3, Sy be four two-point sets in C. Suppose that
S1, 8o, S3 and Sy are pairwise disjoint.  If two nonconstant meromorphic functions
f and g on C share S,...,S4 CM, then [ is a Mdbius transform of g.



388 MANABU SHIROSAKI

By arranging these theorems we will get

THEOREM. Let Sy, S, S3, S4 be four one-point or two-point sets in C.
Suppose that Sy, S», S3 and Sy are pairwise disjoint. If two nonconstant
meromorphic functions f and g on C share Sy,...,S4 CM, then f is a Mdbius
transform of g.

The aim of this paper is to prove Theorem 1.1.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N. Let
G be a torsion-free abelian multiplicative group, and consider a g-tuple A4 =
(ai,...,as) of elements g; in G.

DeriNiTION 2.1, Let N be a positive integer. We call integers y; represen-
tations of rank N of g; if

q q
(2.1 Ha;’ = Haj’

~.

—_
~.
I

—_

and

q
(2.2) >ty = gk
=

. . ;o p ¢
are equivalent for any integers ¢, ¢ with 3 7, [ <N and > 7, [¢[ < N.

For the existence of representations of rank N, see [6].

For two entire function « and S without zeros we say that they are
equivalent if o/f is constant. Then we denote o ~ . This relation “equivalent”
is an equivalence relation.

We introduce following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [2].

LemMma 2.2. If entire functions og,ay,...,d, without zeros satisfy
ag o+ 4oy =0,

then for each j=0,1,... n there exists some k(# j) such that oj ~ oy, and the
sum of all elements of each equivalence class in {ag,...,0,} is zero.

Now we investigate the torsion-free abelian multiplicative group G = &/%,
where & is the abelian group of entire functions without zeros and € is the
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subgroup of all non-zero constant functions. We represent by [«] the element
of &/% with the representative « € &. Let oy,...,%, be elements in &. Take
representations g; of rank N of [o]. For o= A;Izloc;" we define its index
Ind(e) by Y7, &u;. The indices depend only on [[], o] under the condi-
tion ijle lejl < N. Trivially Ind(1) =0, and hence Ind(x) =0 and the con-
stantness of o are equivalent, and Ind(z) =Ind(a’) is equivalent to that
oc/%’ is/ constant, where o =[]’ o/ and o' =T[", o;;" with 37 |g <N and
2ol < N.

We use the following Lemma in the proof of Theorem 1.1 which is an
application of Lemma 2.2 (for the proof see Lemma 2.3 of [9]).

LemMma 2.3. Assume that there is a relation ¥(oy,...,0u,) =0 where
Y(Xi,...,X,) e C[Xy,...,X,] is a nonconstant polynomial of degree at most N
of Xi,..., X, Then each term aX)' ~--X;:’ of W(Xi,...,X,) has another term

& e : g, & g ..
bX|"--- X, such that of" - -- oy and o' - -- a4 have the same indices, where a and b

are non-zero constants.

3. A lemma from the theory of general resultants

For the proof of Theorem 1.1 a result from the theory of general resultants is
represented in this section. We give it by proceeding as in Chapter 3 of [1].

Let d be a positive integer and let Fy,...,F; be four homogeneous poly-
nomials of degree d of four variables X, Y, Z, W with the form F;(X,Y,Z, W)
= P;(X,Y)+ Q;(Z, W), where P;(X,Y) are homogeneous polynomials of degree
d of X, Y and Q;(Z, W) are homogeneous polynomials of degree d of Z and
W. Denote their Jacobian determinant by J:

J_|oE o aE o
0X J0Y oz ow

1<j<4

Lemma 3.1. Let P be a non-trivial common zero of Fy, F», F3, Fy. Then
oo
0X’ oY’ 0Z> oW
a0 SELY SRNLN SR A
Z;‘ 11‘;; (iil) the second partial derivatives Y37’ X’ 3V07" 5;6W have zero

(i) J is zero at P; (ii) all the partial derivatives are zero

Proof. By Euler’s relation we have

(3.1) XJ= & & & oF;

oF, 0F, 0F, OF,
oxX oY 0Z oW

oY oZ ow

—d|F,

I<j<4 1<j<4

and, by the same way,
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OF; OF;, 0F;

(3.2) YI=d-L F 2 L ,
oxX N0z oWl
oF, OF OF;

(3.3) Zl=d|=l 2L F L ,
oxX oy oWl
0F, OF;, O0F,

(3.4) wWl=d-< L —L F
X oY oz |,

are obtained. Since F;(P)=0 for j=1,2,3,4, all XJ, YJ, ZJ, WJ have
zero at P by (3.1), (3.2), (3.3) and (3.4). Put P=(Xy, Yo,Zo, Wy), then
J(P) =0 because at least one of Xy, Yy, Zy, Wy is not zero. We have showed
(i). 2F.

By differentiating (3.1), (3.2), (3.3) and (3.4) by X and noting 0X6JZ:
0’F,  0’F,  O'F

OXOW —0YOZ 0YOW

=0, we get

oJ ’F, 0F, 0F,
3.5 J+X—=—=dJ+d|F L =L L
(33)  JHXoy=d+dF o5y 7w
1<j<
oJ  |0°F; oF;, OF,
(3:6) YaX_daXZ £ 0Z oW ’
1<j<4
6J:d62P} 0F; . O L al?E 0*F 5
ox ox: oy 1 oowl| ox oxoy Y o ow|
1<j<4 1<j<4
oJ ’F, OF, 0F, OF, 0°F, 0F
3.7 w g Y g ] VA
(37) ox Yox oy az Y Tx axay az |
1<j< 1<j<4

oJ oJ oJ

oJ oJ .
Hence Xﬁ’ Yﬁ’ Zﬁ’ Wﬁ are all zero at P, and hence W(P) = 0 since

. J oJ
some of Xy, Yy, Zy, Wy are not zero. Similarly, we have (P) :&(P) =

oY
;—I'/]V(P) =0, which is (ii).
Now differentiate (3.5), (3.6) and (3.7) by Z, then we have

2
o T i

K PF R
— 4+ X— = . .
0Z 0XoZ 0Z

(3.8) aXor 22 ow

d|F,

1<j<4

*F,  0F,  0°F

+d 0X0Y 0Z 0Zow

£

)

1<j<4
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v o’J  |0°F, r 0*F;  OF;
oxoz |ox? Y o0z ow|
1<j<4
ox2 oz ozow|
1<j<
- o’J  |0*F;, 0F;, 0°F .
0Xoz |ox* oy o0z®> /|
1<j<4
B i B A
ox oxoy oz>
1<j<4
*J *J *J
and hence X = — =W
Cquation 5X@Z 5XOZ

oY 6Z:0 at P. By using the alternate

FLPPR i Y A (ol R R
oxX ToXxoz “ox  |ox? oy ) ozow|
1<j<4
L4l ’F . OF
oX oXoy 7 ozZow

1<j<4
2

of (3.8), we have Z s

oz 0 at P. Since some of Xy, Yy, Zy, Wy are not
~2

zero, we see that
or7 o
pP) = P
6X6W( ) GY(?Z( )

Yo7 have a zero at P. By the same way we obtain that
0%J :
= — P = .
6Y6W( ) =0, as desired

O
Let

F(X,Y,Z, W) =apnX* + apXY + a3 Y* + auZ*
+asZW +agW?  (j=1,2,3,4)

be four quadratic homogeneous polynomials. Then we have

J = |2LZj1X +apY apX +2a3Y 2apuZ +asW o aisZ + 2a56 W|l£j£4
= 4D\ X?Z? + 8D, X ZW + 4D X*W? + 8Dy XYZ? + 16DsXYZW

+ 8D XYW? +4D,Y?Z> + 8Dy Y?ZW + 4Dy Y> W2,
where
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Dy =laj ap i as|icjeqs Da=lan ap au el iy,
Dy =lap ap a5 peli<jca, Da=lap ap ap ajslicjo4
Ds=laj ap au aplicjcay Do =lapn ap a5 ajsli<j<as
Dy=lap ap @i asliojoas Ds=lap ap ap ajsli<jca

Dy =lap ap a5 apl <<

and we get

62] = 16(D1XZ+D2XW+D4YZ+D5YW)
0Xo0Z ’
627.] = 16(DyXZ + D3 XW + DsYZ + DsYW)
0Xow ’

oy = 16(D4XZ + DsXW + D7;YZ + Dy YW)
Yoz ’
627‘] =16(DsXZ + D¢XW + DsYZ + Do YW).
oYow

Therefore, if there exists a common zero P = (Xo, Yo, Zo, W) of Fi, F>», F5, Fy
such that some of XyZy, XoWy, YoZo, YoWy are not zero, then we see, by
considering Lemma 3.1, that

D, Dy D, Ds

D, Ds Ds D
(3.9) A= |72 737 0,

D, Ds D; Dg

Ds Ds Dg Dy

4. The key theorem and the proof of Theorem 1.1

THEOREM 4.1. Let f = fi/fo and g = gi/go be nonconstant meromorphic
functions on C, where fy and fi are entire functions without common zero and so
are gy and gy. Let Pi(z) = 2> +aiz+b; (j=1,2,3,4) be polynomials such that
P;(z) and Py (z) have no common zero for distinct j, k and let Q;(z) = z*> + p;z + g;
(j=1,2,3,4) be polynomials such that Q;(z) and Qk(z) have no common zero for
distinct j, k. Assume that there exist entire functions o; without zeros such that

SE+aififo+bifs = %97 + pigigo + ¢i95)  (/=1,2,3,4).
Then there exist distinct ji and j, such that o; /o, is constant, and hence
f2 + aj1f+bjl _ ng +a9 + bjl
[Prapf+b, g*t+apg+by’

where ¢ is a non-zero constant.
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Proof. Take ze C which is not zero of any of fi, fo, g1, gi. Then
(f1(2), fo(2),91(2),90(z)) is a common zero of

X2+ a XY + b Y+ 4;(Z° + pZW + g W?)  (j=1,2,3,4),

where 4; = —o;(z). By (3.9), we have A =0 for any z € C since the zero sets of
J1, fo, g1, go are discrete. Since each D; is a quadratic homogeneous polynomial
of oy, on, a3, a4 which consists of terms oxoy (kK #1/), A is a homogeneous
polynomial of degree eight whose terms are H;‘q:l %, %, Where j, # ky, m=
1,2,3,4, with complex coefficients. Now take representations u;, i, tz, Hs of
[a1], [o2], [o3], [4] of rank 8. Suppose that any o; /o is not constant for j # k.
Then we have that y; # g for j # k and we may assume that 1 > w1, > w3 > .
In terms of the expansion of A, only the term (oa)* has the maximal index.
By Lemma 2.3, its coefficient must be zero, and so we calculate the coefficient.
Now, we have

Di=1 a o pi%ilicjcas D=1 a o gl
Dy =1 g poy q%licjcq, Da=1|1 bj o pjoyli<jcs
Ds=|1 b o qolicicas  De=1I1 b pjoy qioliojcas
Dy =la; by o piwylicjess  Ds=la; by o qoylioj

Dy =l|a; b pioy qi%li<jca

Put aj = a; —ax, bjx =b; —br, i =arbj — aib, pjx = pj — Pk qjk = 4j — Gk
Yik = Dkq; — Pjqgk, then in their expansions «jor has the coefficients asspor,
asqa1, assra, bapar, basqar, basra, cazpar, cazqai, ca3ra, respectively. Hence
in the expansion of A the term (aa2)* has the coefficient

agpat  agzqar baspr bazg pa g1 0 0| |az O bz O

agzqar  amr bpqar basry _ g2 T2 0 0110 a3 0 by
byzpar byzqar  cazpar  cazqgoi 0 0 pu qu| |bszs 0 c3 O
bizgar  bazra cazqar ca3ran 0 0 g m 0 bz 0 g3

a3 by 0 0
20ba3 ez 0 0
0 0 ag b
0 0 by a3

(p21r21 — 431)

= (pura — 3)) (asseas — b;)?
= {R(Q17 QZ)R(P3aP4)}2a
where R(P, Q) denotes the resultant of two polynomials P and Q. By assump-

tion R(P3, Ps) #0, R(Q1,Q2) # 0, which is a contradiction. Therefore we con-
clude that some o;/ay (j # k) are constant. O
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Note that, in Theorem 4.1, we did not assume that P;, Q; have no double
zeros. We mention that it is not so difficult to prove Theorem D, Theorem E
and Theorem F by Theorem 4.1.

Proof of Theorem 1.1. We set
Si={&n}={z"+aqz+b =0} (j=1,23,4)

and we can take P;(z) = Q;(z) = z> + ajz + b; in Theorem 4.1 with some entire
functions o; without zeros such that

L+ aififo+bify =w(gr + aigrgo + bigg)  (j=1,2,3,4).

Then we may assume, by Theorem 4.1, that o /o, is constant. Put ¢ = oy /0.
Then we have

fP+raf+b cgz+alg+b1

fPtraf+by g tagt+b

If there exists a point z € C such that f(z) = g(z) ¢ S; U S, then we get ¢ =1 and
hence we see that f is a Mobius transform of g. Otherwise, by assumption we
have f~1(&) =g '(m;), /' (n;) = 97" (&) (j =3,4), and by Theorem D we con-
clude that f is a Mobius transform of g¢.
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