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PRINCIPAL TORUS BUNDLES OF LORENTZIAN S-MANIFOLDS

AND THE j-NULL OSSERMAN CONDITION

Letizia Brunetti and Angelo V. Caldarella

Abstract

In this short note we provide a few results about the projectability of the j-null

Osserman condition onto the classical and the null-Osserman condition, via semi-

Riemannian submersions as projection maps of principal torus bundles induced by a

Lorentzian S-manifold.

1. Introduction

The Jacobi operator is, for several reasons, one of the most interesting
objects induced by the curvature operator.

On a (semi-)Riemannian manifold ðM; gÞ, let us consider the unit spacelike
SþðMÞ (resp. timelike S�ðMÞ) sphere bundle with fiber

SG
p ðMÞ ¼ fz A TpM j gpðz; zÞ ¼G1g;

and put SðMÞ ¼6
p AM Sþp ðMÞUS�p ðMÞ.

For any z A SpðMÞ, p A M, the Jacobi operator with respect to z is the
endomorphism Rz : z

? ! z? such that Rzð�Þ ¼ Rpð�; zÞz ([20]), where R is the
ð1; 3Þ-type curvature tensor on ðM; gÞ.

The Jacobi operator is obviously self-adjoint, hence a great deal of study has
been carried out about the behaviour of its eigenvalues in the Riemannian case
since R. Osserman proposed his Conjecture in [33] (see also [32]). Indeed, one
easily sees that Riemannian space-forms are characterized by having Jacobi
operators with exactly one constant eigenvalue corresponding to the sectional
curvature. Those Riemannian manifolds whose Jacobi operators have eigen-
values independent both of the vector z A SpðMÞ and of the point p A M are the
Osserman manifolds. Any locally flat or locally rank-one symmetric space is an
Osserman manifold, whilst the converse statement is known as the Osserman
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Conjecture. Several authors have dealt with this Conjecture, providing positive
answers in many cases ([12], [13], [14], [28], [29], [30]).

One gets a di¤erent situation when considering the indefinite setting, where a
semi-Riemannian manifold ðM; gÞ is said to be spacelike (resp. timelike) Osser-
man, if the characteristic polynomial of Rz is independent of both z A Sþp ðMÞ
(resp. z A S�p ðMÞ) and p A M. It is known that ðM; gÞ being spacelike Osserman
is equivalent to ðM; gÞ being timelike Osserman ([19], [20]). Several counter-
examples to the Osserman Conjecture were found (see for example [5], [6], [21])
for non-Lorentzian semi-Riemannian manifolds.

Finally, in the Lorentzian setting a complete solution for the Osserman
Conjecture was provided in a sequence of works by E. Garcı́a-Rı́o, D. N. Kupeli
and M. E. Vázquez-Abal ([17], [18]), together with N. Blažić, N. Bokan and P.
Gilkey ([4]). They proved that a Lorentzian manifold is Osserman if and only if
it has constant sectional curvature (see also [20]).

A very fruitful, new Osserman-related condition for Lorentzian manifolds
was defined in [18]. There, the authors introduced the Jacobi operator Ru with
respect to a null (lightlike) vector u, and then they studied the so-called null
Osserman conditions with respect to a unit timelike vector (see also [20]).

Here, we are concerned with an Osserman-related condition derived by the
null Osserman condition, which we call the j-null Osserman condition, introduced
and studied by the first author in [7] for manifolds carrying Lorentzian globally
framed f -structures. This condition appears to be a natural generalization of
the null Osserman condition, to which it reduces when considering Lorentzian
almost contact structures. This new definition was mainly motivated by the
following considerations: although any Lorentzian Sasaki manifold ðM; j; x; h; gÞ
with constant j-sectional curvature is globally null Osserman with respect to the
timelike vector field x, there is no similar result when we consider Lorentzian
S-manifolds, which generalize Lorentzian Sasaki ones, and moreover, as we
proved in [8], no Lorentzian S-manifold can be neither null Osserman, nor
Osserman. For more details about the j-null Osserman condition we refer the
reader to [7], where basic properties of such condition are studied, and to [8],
where the study is furtherly developed and generalized. The main reference for
the whole Osserman framework is [20].

In this short note, we deal with the study of some relationships among the
above three Osserman-related notions, providing a few results of equivalence,
obtained by considering a natural structure of principal torus bundle arising from
a Lorentzian S-manifold, which involves semi-Riemannian submersions.

Indeed, from [3], a strong link between f -structures and Riemannian sub-
mersions is well-known. Namely, any compact and connected manifold endowed
with a regular and normal g: f : f -structure is the total space of a principal torus
bundle over a complex manifold, which, under suitable hypotheses, can be a
Kähler manifold. Moreover, as also proved in [3], a compact, connected and
regular Riemannian S-manifold ðM; j; xa; h

a; gÞ, with each xa regular, projects
itself onto a compact Kähler manifold and onto a compact and regular Sasakian
manifold. These results have been extended to the semi-Riemannian case by
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the first author, together with A. M. Pastore, who in [10] proved that a com-
pact, connected and regular indefinite (in particular, Lorentzian) S-manifold
ðM; j; xa; h

a; gÞ projects itself onto a compact (indefinite) Kähler manifold and
onto a compact and regular indefinite (Lorentzian) Sasakian manifold, via semi-
Riemannian submersions.

Based on the above, after recalling, in Section 2, some basic features of
(almost) S-manifolds, in Section 4 we carry on an investigation on the possibi-
lities of projectability of the j-null Osserman conditions via semi-Riemannian
submersions with a Lorentzian S-manifold as total space, and either a Lorentzian
Sasakian manifold or a Kähler manifold as base space. Using some properties
established in [8], which we briefly recall in Section 3, together with a few
properties of semi-Riemannian submersions, and under an additional assumption
on the eigenvectors of the Jacobi operators, we obtain equivalence results relating
the j-null Osserman condition with the classical and the null Osserman condition
in the framework of principal torus bundles constructed on a given Lorentzian
S-manifold.

In what follows, all smooth manifolds are supposed to be connected, and
all tensor fields and maps are assumed to be smooth. Moreover, according
to [25], for the Riemannian curvature tensor of a semi-Riemannian manifold
ðM; gÞ we use the definition RðX ;Y ;Z;WÞ ¼ gðRðZ;WÞY ;X Þ ¼ gðð½‘Z;‘W � �
‘½Z;W �ÞY ;X Þ for any vector fields X , Y , Z, W on M.

Finally, for any p A M and any linearly independent vectors x; y A TpM
spanning a non-degenerate plane p ¼ spanðx; yÞ, that is gpðx; xÞgpðy; yÞ�
gpðx; yÞ2 0 0, the sectional curvature of ðM; gÞ at p with respect to p is, by
definition, the real number

kpðpÞ ¼ kpðx; yÞ ¼
Rpðx; y; x; yÞ

DðpÞ ;

where DðpÞ ¼ gpðx; xÞgpðy; yÞ � gpðx; yÞ2.

2. Preliminaries

Let us recall some basic definitions and facts about (almost) S-manifolds
needed in the rest of the paper.

Framed f -manifolds were originally considered by H. Nakagawa in [26] and
[27], based on the notion of f -structure, which was firstly introduced in 1963 by
K. Yano ([36]) as a generalization of both (almost) contact and (almost) complex
structures. Such structures were later studied and developed by S. I. Goldberg
and K. Yano (see, for example, [22], [23]) and, in the subsequent years, by several
authors ([1], [3], [11], [24], [35]).

A globally framed f -structure (briefly g: f : f -structure) on a manifold M is a
non-vanishing ð1; 1Þ-type tensor field j on M of constant rank satisfying the
following conditions: j3 þ j ¼ 0, and the subbundle kerðjÞ is parallelizable.
This is equivalent to the existence of s linearly independent vector fields xa and
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1-forms ha (a A f1; . . . ; sg), s being the dimension of kerðjÞ at any point p A M,
such that

j2 ¼ �I þ ha n xa and haðxbÞ ¼ dab :ð2:1Þ

Each xa is said to be a characteristic vector field of the structure, and a manifold
M carrying a g: f : f -structure is denoted by ðM; j; xa; h

aÞ, and called a g: f : f -
manifold. When s ¼ 1 (resp.: s ¼ 0), we have an almost contact (resp.: almost
complex) structure. From (2.1) one easily has jxa ¼ 0 and ha � j ¼ 0, for any
a A f1; . . . ; sg. Furthermore, ImðjÞ is a distribution on M of even rank r ¼ 2n
on which j acts as an almost complex tensor field, and one has the splitting
TM ¼ ImðjÞl kerðjÞ, hence dimðMÞ ¼ 2nþ s. A g: f : f -manifold is said to be
normal if the ð1; 2Þ-type tensor field N ¼ ½j; j� þ 2dha n xa vanishes.

In [9], the authors study the properties of a g: f : f -manifold ðM; j; xa; h
aÞ

endowed with a compatible indefinite metric, that is a semi-Riemannian metric g
verifying

gðjX ; jYÞ ¼ gðX ;YÞ �
Xs

a¼1
eah

aðXÞhaðY Þ;ð2:2Þ

for all X ;Y A GðTMÞ, where ea ¼ gðxa; xaÞ ¼G1. Such a manifold is said to be
an indefinite metric g: f : f -manifold and denoted by ðM; j; xa; h

a; gÞ. From (2.2)
one also has gðX ; xaÞ ¼ eah

aðX Þ and gðX ; jYÞ ¼ �gðjX ;YÞ, for any X ;Y A
GðTMÞ, and the splitting TM ¼ ImðjÞl kerðjÞ becomes orthogonal.

The fundamental 2-form F of an indefinite metric g: f : f -manifold
ðM; j; xa; h

a; gÞ is defined by FðX ;YÞ ¼ gðX ; jY Þ. If F ¼ dha, for any a A
f1; . . . ; sg, the manifold is said to be an indefinite almost S-manifold. Finally, a
normal indefinite almost S-manifold is, by definition, an indefinite S-manifold.
Such a manifold is characterized by the identity ð‘XjÞY ¼ gðjX ; jY Þxþ
hðY Þj2X , where x ¼

Ps
a¼1 xa and h ¼

Ps
a¼1 eah

a. It follows that ‘Xxa ¼ �eajX
and ‘xaxb ¼ 0, for any a; b A f1; . . . ; sg, and each xa is a Killing vector field.

For more details on (almost) S-manifolds the reader is referred to [15] in the
Riemannian case, and to [9] for the indefinite case.

3. Lorentzian S-manifolds and the j-null Osserman condition

The notion of j-null Osserman condition is derived from that of null
Osserman, which we briefly recall here, following [18] and [20].

Let ðM; gÞ be a Lorentzian manifold and p A M. If u A TpM is a lightlike
(or null) vector, that is u0 0 and gpðu; uÞ ¼ 0, then spanðuÞH u?. We can
endow the quotient space u? ¼ u?=spanðuÞ, whose canonical projection is
p : u? ! u?, with a positive definite inner product g defined by gðx; yÞ ¼
gpðx; yÞ, where pðxÞ ¼ x and pðyÞ ¼ y, obtaining the Euclidean vector space

ðu?; gÞ.
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The Jacobi operator with respect to u is the endomorphism Ru : u
? ! u?

defined by RuðxÞ ¼ pðRpðx; uÞuÞ, for all x ¼ pðxÞ A u?. It is easy to see that Ru

is a self-adjoint endomorphism, hence it is diagonalizable.
If z A TpM is a unit timelike vector, the null congruence set of z is defined to

be the set NðzÞ ¼ fu A TpM j gpðu; uÞ ¼ 0; gpðu; zÞ ¼ �1g. The elements of NðzÞ
are in one-to-one correspondence to those of the set SðzÞ ¼ fx A z? j gpðx; xÞ ¼ 1g,
called the celestial sphere of z, via the map c : NðzÞ ! SðzÞ such that cðuÞ ¼
u� z.

Definition 3.1 ([18, 20]). A Lorentzian manifold ðM; gÞ is said to be null
Osserman with respect to z, z A TpM being a unit timelike vector, if the eigen-
values of Ru and their multiplicities are independent of u A NðzÞ.

Following [7] and [8], we recall the basic facts related with the definition of
the j-null Osserman condition.

Let ðM; j; xa; h
a; gÞ be a Lorentzian g: f : f -manifold, with dimðMÞ ¼ 2nþ s,

and a A f1; . . . ; sg, sd 1. It is easy to see that one of the characteristic vector
fields has to be timelike and, without loss of generality, we assume it is x1. If
p A M, we define the j-celestial sphere of ðx1Þp to be the set Sjððx1ÞpÞ ¼ Sððx1ÞpÞV
ImðjpÞ, and the j-null congruence set of ðx1Þp to be Njððx1ÞpÞ ¼ c�1ðSjððx1ÞpÞÞ.

Definition 3.2 ([7, 8]). A Lorentzian g: f : f -manifold ðM; j; xa; h
a; gÞ is said

to be j-null Osserman with respect to ðx1Þp, p A M, if the eigenvalues of Ru and
their multiplicities are independent of u A Njððx1ÞpÞ.

Fix p A M and consider u A Njððx1ÞpÞ. Since we can write u ¼ ðx1Þp þ x,
with x A Sjððx1ÞpÞ, there is a natural one-to-one correspondence between the two
kinds of Jacobi operator Rx : x

? ! x? and Ru : u
? ! u?. In [8] it is provided

the relationship between these two operators with respect to the j-null Osserman
condition, which we summarize in the following proposition.

Proposition 3.3 ([8]). Let ðM; j; xa; h
a; gÞ be a Lorentzian S-manifold,

dimðMÞ ¼ 2nþ s, sd 1. For any p A M, M is j-null Osserman with respect
to ðx1Þp if and only if the eigenvalues of Rx with their multiplicities are independent
of x A Sjððx1ÞpÞ.

The above result enables us to write the definition of the j-null Osserman
condition in terms of operator Rx, x A Sjððx1ÞpÞ, instead of Ru, u A Njððx1ÞpÞ. It
is clear that, in the case of a Lorentzian Sasaki manifold, the j-null Osserman
condition reduces to that of null Osserman one.

4. Principal torus bundles and the j-null Osserman condition

From [3] it is known that under an assumption of regularity it is possible to
relate metric g: f : f -manifolds both to almost complex and to almost contact
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metric manifolds via Riemannian submersions. The semi-Riemannian version of
the results of [3] is provided in [10], where it is possible to find the following
result.

Theorem 4.1. Let ðM; j; xa; h
a; gÞ be a compact, connected and regular

indefinite S-manifold, with dimðMÞ ¼ 2nþ s, sd 2. Then, there exists a com-
mutative diagram

M ������!t
M 0

p p 0

N
 �

���
����!

where N is a 2n-dimensional compact Kähler manifold, either indefinite or not, and
M 0 is a ð2nþ 1Þ-dimensional compact and regular Sasakian manifold, indefinite or
not. All the maps are semi-Riemannian submersions with totally geodesic fibres,
and more precisely:

� t is the projection of a principal T s�1-bundle over M 0;
� p 0 is the projection of a principal S1-bundle over N;
� p is the projection of a principal T s-bundle over N.

where Tk is the k-dimensional torus, for any k A N, kd 1.

For the notion of regularity of a distribution and of a g: f : f -structure the
reader is referred to [34] and [3]. The general idea of this result, as contained in
[3], is to fibrate M by any s� r of the vector fields xa’s, to obtain a principal
Ts�r-bundle over a ð2nþ rÞ-dimensional manifold M 0. The remaining r char-
acteristic vector fields are then projectable to M 0, inducing a g: f : f -structure on
M 0 and preserving the regularity. Thus, M 0 can be fibrated again by its r
characteristic vector fields, obtaining a principal Tr-bundle over N, which finally
produces a commutative diagram. In particular, if we fibrate a Lorentzian S-
manifold M by the s� 1 spacelike characteristic vector fields, in Theorem 4.1 we
obtain that N is a Kähler manifold and M 0 is a Lorentz Sasakian manifold.

We are going to find out some informations about the possibility of pro-
jecting the j-null Osserman condition both onto the null Osserman condition and
the classical Osserman condition, via the previous fibrations.

In general (see [16], [31]), given a Cy-submersion f : ðM; gÞ ! ðB; g 0Þ be-
tween semi-Riemannian manifolds, i.e. a map whose di¤erential ðdf Þp is sur-
jective, for all p A M, then V ¼ ðkerðdf ÞpÞp AM and H ¼ ðkerðdf Þ?p Þp AM are, by

definition, the vertical and the horizontal distributions of f . Such a map is
said to be a semi-Riemannian submersion if each fibre f �1ðp 0Þ, p 0 A B, is a
(semi-)Riemannian submanifold of M and the restriction of ðdf Þp to Hp is an
isometry between ðHp; gpÞ and ðTf ðpÞB; g

0
f ðpÞÞ, for all p A M. A vector field U

(resp. X ) on M such that Up A Vp (resp. Xp A Hp) is called vertical (resp.
horizontal ). A vector field X on M such that there exists a vector field X 0

on B for which f�X ¼ X 0 is said to be projectable, and any horizontal,
projectable vector field on M is said to be basic. The vertical distribution is
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always integrable, with the fibres of f as leaves. Denoting by v and h the
projections of TM onto V and H, respectively, the O’Neill tensors of f are the
ð1; 2Þ-type tensor fields T and A on M defined by:

TðX ;YÞ ¼ TXY :¼ v‘vXhY þ h‘vX vY ;

AðX ;YÞ ¼ AXY :¼ v‘hXhY þ h‘hX vY :

They are both g-skew-symmmetric tensors, and they satisfy the following fun-
damental properties:

TUW ¼ TWU U ;W A V

AXY ¼ �AYX ¼
1

2
v½X ;Y � X ;Y A H

It follows that the horizontal distribution is integrable if and only if A ¼ 0, and in
this case the leaves are totally geodesic submanifolds of M. Furthermore, the
fibres of f are totally geodesic semi-Riemannian submanifolds of M if and only
if T ¼ 0.

Lemma 4.2. Let ðM; j; xa; h
a; gÞ be a Lorentzian S-manifold, with dimðMÞ

¼ 2nþ s, sd 1. Let p : M ! N be a principal T s-bundle over a Kähler manifold,
as in Theorem 4.1. We have:

AXY ¼ �gðX ; jYÞx; AXxa ¼ �eajX ;ð4:1Þ

for any X ;Y A ImðjÞ and any a A f1; . . . ; sg, where x ¼
Ps

a¼1 xa.

Proof. By construction of p, we have Hp ¼ ImðjpÞ and Vp ¼ spanððx1Þp;
. . . ; ðxsÞpÞ for any p A M. Thus, since ‘Xxa ¼ �eajX , by direct calculation we
get:

AXY ¼ vð‘XYÞ ¼
Xs

a¼1
eagð‘XY ; xaÞxa ¼ �

Xs

a¼1
eagðY ;‘XxaÞxa

¼
Xs

a¼1
gðY ; jXÞxa ¼ �gðX ; jYÞx;

for all X ;Y A H. Analogously, we have AXxa ¼ hð‘XxaÞ ¼ �eajX for all
X A H and a A f1; . . . ; sg. r

For a semi-Riemannian submersion f : ðM; gÞ ! ðB; g 0Þ, let us denote by
R� the ð1; 3Þ-type H-valued tensor field on M such that, if X ;Y ;Z A GðTMÞ
are basic vector fields f -related to X 0;Y 0;Z 0 A GðTBÞ, then R�ðX ;Y ÞZ is the
unique basic vector field f -related to R 0ðX 0;Y 0ÞZ 0. Thus, for any x A Hp, one
can consider the self-adjoint endomorphism R�x : x? VHp ! x? VHp such that
R�xðyÞ ¼ R�p ðy; xÞx.
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Lemma 4.3. Let f : ðM; gÞ ! ðB; g 0Þ be a semi-Riemannian submersion.
For any orthogonal vectors x; y A Hp one has

R�xðyÞ ¼ hpRxðyÞ � 3AxAxðyÞ:ð4:2Þ

Proof. From standard formulas on the curvature tensors of a submersion
(see [16], pag. 13), we have

gpðR�xðyÞ; zÞ ¼ R�p ðx; y; x; zÞ

¼ Rpðx; y; x; zÞ þ 2gpðAxðyÞ;AxðzÞÞ � gpðAyðxÞ;AxðzÞÞ
¼ gpðhpRxðyÞ; zÞ � 3gpðAxAxðyÞ; zÞ

for any z A x? VHp, which yields (4.2). r

Proposition 4.4. Let ðM; j; xa; h
a; gÞ be a Lorentzian S-manifold, with

dimðMÞ ¼ 2nþ s, sd 1. Let p : M ! N be a principal T s-bundle over a Kähler
manifold ðN; J;GÞ, as in Theorem 4.1. Let p A M, and suppose that, for any
x A Sjððx1ÞpÞ, jx is an eigenvector of Rx. Then, M is j-null Osserman with
respect to ðx1Þp if and only if N is Osserman at p 0 ¼ pðpÞ.

Proof. Suppose first that sd 2. Fix p 0 A N, with p 0 ¼ pðpÞ, p A M, and let
x 0 A Tp 0N a unit vector, and y 0; z 0 A x 0?. Let x A Sjððx1ÞpÞ, V ¼ x? V ImðjpÞ and
y; z A V such that x 0 ¼ ðdpÞpðxÞ, y 0 ¼ ðdpÞpðyÞ and z 0 ¼ ðdpÞpðzÞ. Then

gpðR�xðyÞ; zÞ ¼ Gp 0 ððdpÞpðR�xðyÞÞ; ðdpÞpðzÞÞ ¼ Gp 0 ðR 0x 0 ðy 0Þ; z 0Þ;
which implies that the Jacobi operators R�x : V ! V and R 0x 0 : x

0? ! x 0?

have the same characteristic polynomial. Using (4.1) one has AxAxðyÞ ¼
�ðs� 2Þgpðy; jxÞjx and since Rx leaves the subspace V invariant, (4.2) gives

R�xðyÞ ¼ RxðyÞ þ 3ðs� 2Þgpðy; jxÞjx
for any y A V . Observe that if jx is an eigenvector of Rx, we have

gpðRxðyÞ; jxÞjx ¼ gpðy;RxðjxÞÞjx ¼ Rxðgpðy; jxÞjxÞ;

that is the endomorphism of V such that y 7! gpðy; jxÞjx commutes with Rx.
This implies they are simultaneously diagonalizable, and if li, i A f1; . . . ; rg are
the eigenvalues of Rx, counted with multiplicities, with l1 relative to jx, then
l1 þ 3ðs� 2Þ, lj , j A f2; . . . ; rg are the eigenvalues of R�x . By Proposition 3.3 we
obtain our statement.

If s ¼ 1 then the proof goes through as above, except for the fact that one
has AxAxðyÞ ¼ gpðy; jxÞjx. r

Remark 4.5. It is clear, from the previous proof, that in case s ¼ 2 the
hypothesis of jx being an eigenvector of Rx can be dropped without a¤ecting the
result. Furthermore, in case s ¼ 1, the statement is relative to the projection p 0

of the commutative diagram in the Theorem 4.1.
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Lemma 4.6. Let ðM; j; xa; h
a; gÞ be a Lorentzian S-manifold, with dimðMÞ

¼ 2nþ s, sd 2. Let t : M !M 0 be a principal T s�1-bundle over a Lorentz
Sasakian manifold, as in Theorem 4.1. We have:

AXY ¼ �gðX ; jY Þ
Xs

a¼2
xa; AXxa ¼ �jX ;ð4:3Þ

for any X ;Y A ImðjÞl spanðx1Þ and any a A f2; . . . ; sg.

Proof. By construction of t, we have the splitting Hp ¼ ImðjpÞl spanðx1Þ
and Vp ¼ spanððx2Þp; . . . ; ðxsÞpÞ for any p A M. Proceeding along the same lines
as the proof of Lemma 4.2, we get (4.3). r

Proposition 4.7. Let ðM; j; xa; h
a; gÞ be a Lorentzian S-manifold, with

dimðMÞ ¼ 2nþ s, sd 2. Let t : M !M 0 be a principal Ts�1-bundle over a
Lorentz Sasakian manifold M 0 with structure ðj 0; x 0; h 0; g 0Þ as in Theorem 4.1.
Let p A M, and suppose that, for any x A Sjððx1ÞpÞ, jx is an eigenvector of Rx.

Then, M is j-null Osserman with respect to ðx1Þp if and only if M 0 is null Osserman
with respect to x 0p 0 , p 0 ¼ tðpÞ.

Proof. One can follow the same proof of Proposition 4.4 where, using (4.3),
one has AxAxðyÞ ¼ �ðs� 1Þgpðy; jxÞjx. r

Propositions 4.4 and 4.7 can be summarized as follows.

Theorem 4.8. Let ðM; j; xa; h
a; gÞ be a compact, connected and regular

Lorentzian S-manifold, with dimðMÞ ¼ 2nþ s, sd 2. Consider the commutative
diagram of principal torus bundles

M ������!t
M 0

p p 0

N

 �
���

����!

where N is a 2n-dimensional compact Kähler manifold and M 0 is a ð2nþ 1Þ-
dimensional compact and regular Lorentz Sasakian manifold, with unit timelike
characteristic vector field x 0 ¼ t�ðx1Þ. Let p A M, and suppose that jx is an
eigenvector of Rx for any x A Sjððx1ÞpÞ. The following three statements are
equivalent.

(a) M is j-null Osserman with respect to ðx1Þp;
(b) N is Osserman at q ¼ pðpÞ;
(c) M 0 is null Osserman with respect to x 0p 0 , p 0 ¼ tðpÞ.

Remark 4.9. It is clear that the three Osserman-type conditions in the above
theorem can be also considered either pointwise or globally. Moreover, if we
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use the pointwise conditions, from the equivalence ðaÞ , ðbÞ it follows that N is
Einstein at each point and the connectedness implies that it is a Kähler-Einstein
manifold.

Remark 4.10. In case t : M !M 0 is a principal T s�1-bundle from a
Lorentzian S-manifold ðM; j; xa; h

a; gÞ with dimðMÞ ¼ 2nþ s, sd 2, over a
Sasakian manifold M 0 with structure ðj 0; x 0; h 0; g 0Þ as in Theorem 4.1, we could
ask about the Osserman condition on M 0. Let us suppose M 0 pointwise
Osserman, since it is odd-dimensional, it has constant sectional curvature c
([12, 20]). Being kðX 0; x 0Þ ¼ 1, for any X 0 A Imðj 0Þ, then c ¼ 1 and M 0 is
locally isometric to the sphere S2nþ1 with its standard Sasakian structure (see
[2], p. 114). By construction of the bundle projection t, we can suppose that
Hp ¼ ImðjpÞl spanððxsÞpÞ and Vp ¼ spanððx1Þp; . . . ; ðxs�1ÞpÞ. Hence, with cal-
culations similar to those of Lemma 4.2, one has AXY ¼ gðY ; jX Þ

Ps�1
a¼1 xa. By

standard formulas on sectional curvatures of the total and the base spaces of a
semi-Riemannian submersion (see [16], p. 14) we have

kðx; jxÞ ¼ k 0ðx 0; j 0x 0Þ � 3gðAxjx;AxjxÞ ¼ 1� 3ðs� 3Þ; x A ImðjpÞ;

which gives a necessary condition on the j-sectional curvature of M for M 0 to
be an Osserman Sasakian manifold.

Remark 4.11. Analogously, in case t : M !M 0 is a principal T s�1-bundle
from a Lorentzian S-manifold ðM; j; xa; h

a; gÞ, with dimðMÞ ¼ 2nþ s, sd 2,
over a Lorentz Sasakian manifold M 0 with structure ðj 0; x 0; h 0; g 0Þ as in Theorem
4.1, we could ask again about the Osserman condition on M 0. It is known
that any connected Lorentzian Osserman manifold is a space-form ([20]), and
since kðX 0; x 0Þ ¼ �1, for any X 0 A Imðj 0Þ, M 0 has constant sectional curvature
c ¼ �1. As in the previous calculations, using (4.3), we have

kðx; jxÞ ¼ k 0ðx 0; j 0x 0Þ � 3gðAxjx;AxjxÞ ¼ �1� 3ðs� 1Þ; x A ImðjpÞ;

which is a necessary condition on the j-sectional curvature of M for M 0 to be a
Lorentzian Osserman manifold.
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