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BUNDLE DECOMPOSITION AND INFINITESIMAL CR
AUTOMORPHISM APPROACHES TO CR AUTOMORPHISM
GROUP OF GENERALIZED ELLIPSOIDS

ATSusHI HAYASHIMOTO

Abstract

Two types of elementary and direct proofs of the classification theorem for CR
automorphisms of generalized ellipsoids by [MM10] are given. The first proof is to use
an invariant decomposition of holomorphic tangent bundle, and the second is to use
infinitesimal CR automorphisms. The advantages of our proofs are: (1) The con-
ditions on the number 7; of the variables and the exponents »; in the defining equation
are weakened, (2) the proofs are more direct than [MMI10], (3) our proofs may be
applicable to wider class of hypersurfaces.

1. Introduction

In this note, we give two types of elementary proofs of the classification
theorem in [MM10] posted in archive “arXiv:1004.1922v1[math.CV]”. Let M be
a strictly pseudoconvex part of the boundary of a generalized ellipsoid defined by
the equation

(1) Im zyeq = [20)™ 4 [z P+ 2]
Here, we use multi-index notation for z = (z1,...,z,) e C" x --- x C" = C" and
|z = (|zj1 P4+ |Z;1/|2)mj. For more precise notation, refer to section 2. R.

Monti and D. Morbidelli proved the following classification theorem in [MM]10].

TuEOREM 1.1. Let N and N be connected open subsets of M and f : N — N
a CR diffeomorphism. Then for a suitable choice of  below, r>0, a=
ag,a1) € C™ x C, and ayyy = t° + i|as\2, we have f = o0d,0Jo0d, where

) 1/m

1/my

I(Zl,...,Zs,I,ZS,Z,H,l):<Zl/(Zn+1) 7"')ZA'f1/(Zn+1) 717ZS/Zn+1a_1/Zn+1>7

4
5

(ay

(2)

(3) 0/(z1y. -y 251y 25y Zntl) = (rl/’"‘zl, Mgz, 201,
4) Y(z,2001) = (Bizo(1ys - - - Bs1Zg(5-1)5 ByZs + by, buy1 + zuy1 + 2i(Bszs - by)),
(5)

G,(Z15 oy 251y Zsy Zni1) = (Z1y -« oy Zsm1, Zs + Ay, Zng1 + 1 + 20z, - Gy).
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G is a permutatton of indices {1,. 1} B;’s are unitary matrices, by € C™,
buy1 = t' +ilbs* € C. m,,nJZZfor]_l s—l and ng > 0. stamappzng
either I as above or the identity mapping.

D. Morbidelli [M09] proved a classification theorem for conformal homeo-
morphisms with respect to a certain distance. As an application of his tech-
nique, R. Monti and D. Morbidelli [MM10] proved Theorem 1.1 by constructing
transformation rules of Chern curvatures, Ricci tensors and some invariants.
Since we treat generalized ellipsoids, the transformation rules of them, which are
usually difficult to compute, are calculated.

As an application of a Riemannian case to a CR case, their proof is
successful and very interesting, but from the view point of the CR geometry,
we can give an elementary and more direct proof without using any curvature,
tensors and invariants.

The technique of the first proof is to use the decomposition of the holo-
morphic tangent bundle 7'°M of the boundary M of a generalized ellipsoid
into its subbundles, which are invariant under CR mappings as introduced in
[MM10]. Expand each component f; of the CR mapping f and write down the
conditions that the bundle decomposmon is invariant under the push forward of
f. Tt determines a Taylor expansion of f. The advantages of this proof are the
following: [MM10] assumes that m; > 2 for any j. In case of m; =1, since the
mapping ¥ in Theorem 1.1 can not be reconstructed from its CR factor uy, =1 as
in Theorem 4.3 in [MM10], the condition m; > 2 can not be removed in their
proof. Such case is studied in [M09]. On the contrary, our proof works also
for any positive integers my; after small modification of a bundle decomposition as
noted in the section 4. Note that if all n; = 1, the hypersurface M is a boundary
of pseudoellipsoid and its CR automorphism group is well known. Therefore
interesting case is that some »; equals to one, and our argument also works for
such a case after modification. We assume m;,n; > 2 throughout this paper
except for section 4.2 (and section 7.2). About the proof of Theorem 3.5 in
[MM10] (Lemma 2.1 in the present paper), they wrote in the head of section 5,
“The proof is rather involved, but we were not able to find a more direct one.” But
our proof is more direct and simple one.

Our proof must work for the hypersurfaces defined by a variables splitting
defining equation:

(6) Imz,1+1 :fl(Zl,Z_l)‘F""an(Zn,Z_n)

for zje C%, z,11 € C and f’s are real analytic functions.

The technique of the second proof is to use an infinitesimal CR automor-
phism. A real vector field X is an infinitesimal CR automorphism if the one-
parameter group of transformation exp tX is a CR diffeomorphism of M. Let
hol(M, py) be a set of infinitesimal CR automorphisms. [BER98] gave con-
ditions on which hol(M, py) is a Lie algebra of Aut(M, py), the automorphism
group of M fixing py. Remark that the boundary of generalized ellipsoid M
defined by the equation (1) satisfies the condition. Refer §7 for more precise
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statement of their theorem. Therefore, we know the classification of CR auto-
morphisms if we classify the infinitesimal CR automorphisms. Note that comput-
ing infinitesimal CR automorphisms is much easier than doing transformation
rules of curvatures and tensors. From the proof of the classification theorem in
[MM10], we do not know the reason why mappings /, J,, ¥ and ¢, appear. But
using infinitesimal CR automorphisms method, these mappings appear naturally
as one-parameter group of transformations.

The organization of this note is the following. In the part 1, we use a
bundle decomposition method. In section 2, we decompose a holomorphic
tangent bundle and give some properties of it. In section 3, some relations
among coefficients of the mapping are obtained. In section 4, we specify the
coefficients in order to compare our result with [MM10]. We also give some
remark about modification of a holomorphic tangent bundle decomposition
there. In the part 2, we use infinitesimal CR automorphisms to obtain CR
automorphisms. In section 5, we classify infinitesimal CR automorphisms, and
in section 6, we obtain the local one-parameter group of diffeomorphism of
exp tX for X € hol(M, py), which leads to a classification of CR automorphisms
of M. In the last section, we compare the one-parameter group of transfor-
mations with the mappings in Theorem 1.1 and give remark on the integers m;
and n;.

Part 1. Bundle decomposition method
2. Decomposition of holomorphic tangent bundle and its invariancy

In this section, we define some notation following the paper [MM10].
Throughout this paper, we use a multi-index notation, for example, for z =
(z1,...,zp)eC"anda = (ai,...,a,) eN", (2)“ =z{" -z and |a| = a; + - - - + a,.
Since we shall use upper index z as the ath component of z; = (z/l, . ,z}”) e C",
we use (z)“ for the a-th power of z instead of z% Let M, be a boundary of a
generalized ellipsoid defined by My = {(z,z,41) € ™l Im z,, = p(z, Z)}, where

p(2,2) =21+ F |z [P+ |z for z=(z1,...,2,) € CM X - x € = C",
We assume that m;, n; are integers such that m;,n; >2 for 1 <j<s—1 and
ny > 0. For a set of integers [; = {1,2,...,n;}, we put |zj|2 =2 ey, |zj‘?‘|2. Let

M be the strictly pseudoconvex part of M;, namely,

s—1
(7) M:{(z,zn+1)eM0:H|zj|7é0}.
=1

j=

Note that Q = {(z,2,,1) € C""! : Im 2z, > p(z,%)} is the unbounded set which is
biholomorphically equivalent to the bounded domain

(8) E= {(Z7Zn+1) eCtl: Z 122" + |zp | < 1}.

j=1
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On M, we define vector fields Z!, E;, W for j=1,...,s such as

0 0
9) VAR @+imjz‘j9‘|zj|2<mﬁl>a for t=Rez,1 and o€},
J
1
(10) £ = ;ZZJ?Z/‘“’
Jael;
.0 22l g
(11) Wj:aza_zjj_ﬁ for ael;

2
7 Bel |Zj| azj
Let & be the subbundle of a holomorphic tangent bundle 7'°M spanned by the

vector fields Ei, ..., E,, and #; the subbundle of T'°M spanned by the vector
fields W/ with ae ;. 1t follows from z! W/ +... 4+ 2 W/ =0 that

(12) %:span{le,...,I/Vj""}:span{W/z,...,Wj"’}.
Then by [MM10], an orthogonal decomposition
(13) TM=9® - OW.1 ®@W;®E

holds. Observe that #;® & =span{Ey,...,E,_,Z} e l}. Let N,NcM
be connected open sets and f: N — N a CR automorphism. We put “tilde”
on the target objects. Following [MMI10], there are two possible cases:

(14) L (W@ E), = (W@ E) ),

(15) f*(“/ﬂ@cg’)p = ("/I/j)f(p) for some j=1,...,5s—1.

The first case (14) means that the decomposition (13) is invariant under the
push forward by a CR automorphism. [MMI10] proved that the second case
does not occur by using the transformation rules for Chern tensors, scalar
curvatures and so on. We shall give a simple and elementary proof of it. In
what follows, we shall omit indices p and f(p) in (14) and (15), which will not
make any confusion.

LemMma 2.1. Let NNNc M be open subsets and f:N—N a CR auto-
morphism.  Then f.(W;® &) = (W;® &) holds. Therefore, after permutation of
indices j=1,...,s—1, we have f.(W;)=W;.

Proof. Put f=(fi,...,f) and ]j-:(j;l,...,];"j). Assume that there
exists jo such that f,(#;® &)= ¥j, and fix it. Since, as noted, #; @ & =
span{Ey,..., E, 1, Z} :a eI}, the push forwards of E; and ZP by f are
expressed by a combinations of Wy, a=2,...,n; in view of (12) as follows:

njO I‘l]l)

e JE =SSR 7 =SSR
=2 a=2
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for some functions P;, and R/j on N. Applying the coordinate function zr
with m=1,...s, m # j, and ye]m to the both sides of (16), we get E;f) =
ZBfr = 0. Expand £ as

(17) Tty = > A ()t +ip).

lal,b=0

Then we have

b ﬂ7 n
(18) Zxﬁfnﬁ ZAmaba '(Zf)ax 1,,,(235) ( +lp)
b>0
a\v>1
+iZf " A) b(E) (t+ip)” =0,
b>0

ale

Here we have used a multi-indices notation for a = (ai,...a;) and a; =

(a},...a;’f ). Therefore the expansion of f;! is reduced to

(19) T= Y AL ()M ()™

a=(ay,...,as_1)

Next we apply E; to this expansion to get

(20) Ef) =33 Alaf(z)" - (z)"" =0.

{1611(1 >1

This implies that f = A4’ ., which contradicts to f being a diffeomorphism.
This completes the proof of Lemma 2.1. O

Now we may assume that

(21) L) =W, [V 08) =W, 08
after reordering #1,..., %5 1.

3. Expansion of CR automorphisms

In this section, we shall give expansions of the components of f =
(fi,--s fs, fur1) making use of (21).

Recall that fi = (f,..., /). First we prove that f; is a function with
variables zx, z; and z,.; =t +ip(z,Z) for k=1,....s, y=1,... m, and f,, is
a function with z; and z,,; = 1+ ip(z, 2).

We expand f; as

(22) flzt+ip)= Y 4], (2 (+ip)’

lal.b>0
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For any fixed j=1,...,5—1 and a € l;, put
(23) LWy =>_piw!
pel;

and apply it to the coordinate function z; for k=1,...,s with k # j and

y=1,...,m, to get W*f’ =0 and it is calculated as follows.
JjJk
|Z“| 7 al a*—1 al'
(24)  Wifl = <1 — L )N AL @ D) () ) (i)
|Z]‘ a/?‘zl
-1, 0p
+2Akab t+lp) l&zo‘
b>1 J
Z%
—42 Z Akaba t+1p)
|Zj| ﬁil/ a] >1

_1.0p
+2Ak b “+ip) == Y = 0.
h>1 “ aZJ"B

First, multiply |zj|2 to (24), and pick up the terms which contain the first order
of Z and do not contain Z7 to get

) aj a*— s
%) S Al @@ @) @) =0
al>1
for j=1,...,5s—1, j # k. This means that 4], = 0 if at least one ofaj‘, . ._aj”/'

is positive for j # k. Therefore we conclude that /! is expanded in z, z; and
t+ip as

(26) Szt +ip) = Z Ay (= “(1+ip)"
lag),b>0
+ 3 Al s (2 @)+ ip)
ax] =1
lag),b=0

for k=1,...,s—1 and
(27) Sz, t+ip) = Z AM b (z5)“(1 _Hp)
lag|,b=0

Similarly, we apply the coordinate function Z,.; to (23), and we conclude that
far1 1s a function with variables z, and z,;.
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The rest of this section, we shall show that 4], .» =0 and that A], apoa b
appears only for |ax| =1 in (26) and obtain relatlons among coefficients.

Coam 1. 4, ,=0 for k=1,....5—1 in (26).

By mean of Lemma 2.1, the push forward

s—1
(28) fwr=3" 3" Pywl+ Z 0/'E+Y RYZ!
I=1 pe{2,...,n;} pel

should imply Qj?"l:R]?fﬁ:O. Apply the coordinate function z/ to (28) for
j=1,...,5—1 to get

F2 17 F7 7 oy %j
(29) W;cf}' _ f] fj P%zj f f') P“j 7];jfj P?J + Qj f"/
: 2, > P, —fi'-
" N/ Via I/
Since o and y move from 1 to n;, this can be written as the matrices form:
1 £l (P
(30) :
el e
Wi, Wil
Lj LJ Lj
Pis o By G
nj>J mi o
LCIA Y
2 Ve Ve n
7J§~2];~1 17|ij| 7]32133 7/?'2]{/1
2 2 2 2
i il il il
- ~ ) [
_J§'3fjl _]?3sz 1_|fj3‘ _ﬁ}f//
2 2 12 2
1] 1] il il
X

N Al

Vs 41 R
/s /i Y/ /i
m; m; m; m;

Since the inverse of the second matrix in the right hand side is calculated as
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A

mpm;my m; Vs
1 172
_ 0 --- 0 f]; Ji
m; Vi
m; _
(31) - /s 57
(o -2 0 o 0 Y
" /il
. 1 .1 i
0 0 0 S/

2
nj |l

the coefficients Q,“"[ can be solved from (30) and they should be zero. It leads to
a system of equations:

mlﬁl'ﬁl+"'+mlﬁj'ﬁjzo
(32)

WG R b W =0

Substltute the expansion (26) and vector field (11) into this system and multiply
|z,\ to the both sides. Then the terms in the ath equation in (32) with the

B o dg as b
variables z/'Z7(z,)"(Z,)“1” with o # f satisfy

(33) Z Z J as, b Z Ajvu/ffl u,\v,b(z‘y) “S[b =0.

v=1 | |as >0 lag| =0
b>0 b>0

Here, A ' —1an means that 47, , , with ¢; =(0,...,1,...,0) (the fth compo-

nent is 1 and the others are all 0) This equation holds for j=1,...,s—1
and fel;. Therefore this is written in the matrix equation as follows:

Z‘%lez()o A/‘lzajlzlﬁax,b(zs)a“tb Z\a‘\>0 Ja 1 b(z )astb
(34) . :
Va0 iy 00 e Dlalzodin )"
Zlasbo b (5)5 t
X =0.

Z|“\‘>0 jll b() lb
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Since the mapping f is a diffeomorphism on N, the determinant of the first
matrix in (34) is nonzero there. Therefore it implies

(35) Y Ay Q010 ==Y AL ()01 =0,
b>0 b>0

which proves Claim 1. []

CLAamM 2. A]

feap,a b =0 Jor |ar] =2 in (26).

We use an induction on |ai|. First, pick up the terms with the first order

of z; and the third order of Z; for j=1,...,5—1 from the «th equation in (32),
then we get

(36) Y| D AL, .3 E)

vel | lajl=2

s b S0 y b
xq 151’ > Al a (7)1 _ZJWZA}“F:la.szﬁ(zs)as”

b>0
pel;
=0.
for any fixed « =1,...,n;. Since the terms with Z7 satisfy the matrix equation:
> A/‘l:ajlzl,a_\.7b(23)a“lb ... ZA;ZJ}:L%},(ZS)H"”
(37) :
1 asb nj a b
ZAja /=1 agb(z‘v) ! ZA/a ’=1,ay, h(ZS) !
Z|a/| 2 ja, ag, b (Z )u/ (ZS)aAlb
X =0,

Z|aj|:2 A_./Ifi’j,as,b(ij)a" (Zs) as ¢b

we obtain A, ,,=0 for |a|=2. Secondly, we assume A, ,,=0 for
lax] =d —1. Now pick up the (d+2)nd order terms of z; and z for
j=1,...s—1. The same argument leads to the matrix equation:

Z A] al—l a_\.,b(zs) “rho Z Ajr:l/t‘ljlzl,as,b(zs) “rf

(38)
1 as b . nj as b
ZA] a J=1 S dy, b(ZS) ! ZAj:u;jzl,ahb(Zs) !
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Z\aj| =d /(Jj ag,b ( )11/ (Z_s)ajtb
% : =0.
Z‘”ﬂ =d ja/ ag, b (_ ) .(Z_s)axlb

Therefore we obtain A =0 for |al

k:ap,ag,b —

As a result, the expansion (26) of f; is reduced to

ZAkla bZ/cZS (t+lp)b+"'

lag| >0
b>0

. o,
+ ) AL 7 ) (t+ ip)

lag| >0
b>0

(39) Kz t+ip) =

for k=1,...,s—1.
Next we shall obtain the relations among coefficients A/ﬁ:l‘aj. hre e

CLAM 3. The relation

Al)() 2,0,0

y _ 4,0, 1

(40) A yoan = T Akia
k:2,0,0

holds for A=1,... n

We apply the coordinate function z; (j=1,...,s—1) to
(41) Z Z ﬂWﬁ+ZQ’E,+ZR, WA
=1 fe{2,.., oely

to get a matrix equation

_ﬁzj;l _ﬁfjl _fjn,f];l Ji
Wik Vi V-

BV /A &/ S/ W

E;f; ViV s m

(42) _ ];2 j3 |];3|2 f”/fS f/’3 Z'

o, _ 3 1 — 5 - L P/ v

Ef" 5 i |f| m (|

: : : : J
fzfn/ ]33];_”1 |f/_"/|2 f/_”/

s P m

= d, which proves Claim 2.

541

O

14

’ Ak:nk,as,b'
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Note that the inverse matrix in the right hand side is the transposition of (31). It
follows from P/, =0 that

(43) Ef S B =0
for f=1,...,n; and j=1,...,5—1. This means that
afl of?
BYJ 17
(44) -

Similarly we write down f,Z by the combination of W/j , E;, and ZP, and apply
the coordinate function Z/ to get
o Lo
45 h 127 —
(43) Ji 62“ e/ 62“

The equations (44) and (45) imply that f; by ; ! is independent of z* and ¢. Pick
up the terms with (z )% from

(46) [zt + lp)lzyzf:of,»ﬁ (zt+ip) = Lz t+ i)l o S (2, 1+ ip),
we obtain Claim 3. []

The coefficient A;M , 18 decomposed into “A-part” and “non A-part”.

y
CLAIM 4. The coefficient A’ L ra b = AMO OA]/1 . b/ 200 1S decomposed as

2 n
A_/z)v,o,o i0, |A_il:1,0.,0| Tt |A/j‘ 0, Ol
1 2
Aj:l,O‘O |Aj1:1‘0,0| +oeet |A/ﬂ 0, 0|

(47) Ajyi agb = 341, a,b-

3

For simplicity, we divide into the “A-part” and “‘non A-part”.

43 o _Ajioo ol 4 100| +- |A,’100
( ) JiA T Al A

:1,0,0 AL 00l + -+ 147 0ol
(49) &ij:aﬁb = Ajl:l,a.\.b'

We use the first equation in (32). Since lefjﬁ is calculated as
—1

AP
i :1,0,0 ay
(50) ”/If// = E ‘/1 Ajll as,b( ) (Z + lp) - j;/ja

\axl,bZOAj:LO,O | jl

the first equation in the system (32) is written as

2 rd 7hj . \b
(51) |21 (A]‘I:I,O,Ojj‘l + - 1 0.0fi) Z 1 an(2)“(t+ip)
lag),b=0

_ 2 2
Z A 001+ 1) =0
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Pick up the coefficient of |zj’ﬂ”\zz’jl with 1 #y to get

2
1 5 b
(52) Z Aj/LaY ( A)at
‘“x‘abZO
: 1 2 1 2 n
1 a, b |A/,100| |A/100| |A]’100
- Z Ay g p(25) "1 |
l0=0 4 100| |A )00| +|A[/u00|
This leads to the relation:
1 1 2, n
53 Al _ ,i0; A] AJA07() |14j:1,(),0| ‘Aj/100|
( ) jidanb = € JlanA] I 2 y -
#1,0,0 | j:)~,0,0| +‘ /A00|

and therefore to the conclusion of Claim 4. []

Now we have proved that the expansion (39) of f/’ is reduced to

nj
, , . \b
(54) 5= th5 Y Araw(z)(t+ip)
=1 lag|,b>0
for j=1,...,5—1.
Next, we show that the matrix (19/]’/1)/ , 1s a constant multiple of a unitary
matrix.

CLAIM 5.
Ay e Ay
(55) oo € aU(n).
1 n;
&/]n, . &7]:;4,-

Here ae R and U(n;) is a unitary matrix of size ;.

Substitute (54) into the ath equation in (32) and we get

n; n;
Z Lz |5 sy = 272 gy + -+ Y A |z oA — 2] iy = 0.
— =1
The coefficients of |zﬂ|2z‘?‘ satisfy the equation:
2 n nj 2 2 n
(57) |yl -+ A = |y A = = A P Iézf],i/

We denote this constant by a. The coefficients with the variable Z? zj zj n (56)
with o, f and y being different mutually, satisfy

1 41 7" oy —
(58) Sy S+ oo+ Ay Sy = 0.

These two relations imply the conclusion of Claim 5. []
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By substituting (48) into (57), we conclude that
(59) \Aj‘l;leo\zJF Jr|A,100| =14 ,100| +- Jr|A,,oo|

for 2=2,...,n;. Therefore we get M =4F

121.0.0¢" [ A}y .o from (48). There-
fore f. can be written as

(60) Z ;ooe /Z)Z jlas (Zs)as(t"‘lp)

]100

where ((1/a)4], o), , € U(n;). Applying the coordinate functions Z, Z/ and
Z,.1 to the push forward

(61) ZQIEI+ZR/ ,{Z“

aels

for j #k, we get

k

(©) B =2y,

(63) Ef) = ij

(64) Efn+1—2<ZQ|f|2m’+lZRHf>
el

The j =k case, ij is calculated from (42). Substitute the expansion of f into
(62), then we obtain

2m,z kit a, b (%) (t+ip)” lb.
S ALy 4 p(20)“( + ip)”

On the other hand, E;f* and E;f,, are calculated explicitly as

(65) OF = 5F + 2mylz)|

o : m; g 30( . . mj U

(66) B =20 L B f = 2z Lt
t ot
Combining these with (62), (63), (64) and (65), and the fact that
((l/a)AJ?:M’O)N_ e U(n;), and setting z; =--- =z, =0, we conclude that
fnti

67 —2i “
(7 ot j==Zs o;<ﬁ (%) ==zg1=0

2m/-

1 b
A/IOO

Al
- ‘Z—“ () 14 i) Va




CR DIFFEOMORPHISMS OF GENERALIZED ELLIPSOIDS 545

which implies that the right hand side does not depend on j and therefore we can
write as
1

Al "
(68) (Z#( % (t+ip)” ) ZA“\ b(z5)“ (1 + ip)”.

45100
This does not vanish locally as the next Claim.

CLAIM 6. Ao o # 0, therefore we can write as

Allab b
ST () (1 4 ip)*Ja =

I
Aj:l,O,O

1
> Daﬁb(zs)as([ + ip)b) m;

Assume that Dy # 0. Remind that the decomposition in Theorem 1.1 has
two cases: J =1 or identity. The case Dy # 0 corresponds to the case of
J=1. We shall treat the case Dy | =0 at the end of this section. It follows
from (68) that

(69)

(70) LGP = 15" " Aan(z)® (¢ + ip) \2

for j=1,...,s—1. Expand f” and f,4; as

(71) f“:ZSasb z)®(t + ip) ZA”s Zg t+lp)
(72) Sor = N s(20)®(t+ip)" Y A p(20) (1 +ip)".

Substitute these expansions into
! - =
(73) 5 (et = 1) Z|f|2 AL
and pick up the terms without z; and Z;, which satisfy the following:
(74) > Aos(t+ip)" Y Now(t+ips)” =D Aos(t—ips)" > Now(t —ipy)’

N 2 N 2
= Zi’Z Aot + ips)h‘ ps+ Zi’ZAO,b(Z + ips)”‘ )Z So,5(t + ipy)”

2}’}1[

2

Here we denote by p, = 317/ |z/]
ps are the following:

(75> Aowt” S Nowt® =" Ao pt® S No st
=213 do [ |3 00|
(76) " Aoslip)” > Nowlips)” =" Aos(~ip)" > No(—ipy)”
=23 Aoslip)”| 2+ 23 Aostip)| |3 Sostip0)"|

In this equation, the terms with 7 and with

)
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Assume that Ao 0o =0. Pick up the terms with t! from (75) and terms with p;
from (76), then we get Ao 1Noo=0. So, we have three cases, Case (1)
Aoo—Ao]—O and Noo 7&0 Case ( ) A()()—No()—o and A01 750 Case ( )
Ao,o —AO,I = No,o=0. First we consider Case (1). We pick up the terms
with * from (75) and *~'p; from (74) for b=2,... repeatedly, then we get
Ao, = 0. Substitute this into (70) and expansions of f* and f,;;. Pick up the
terms which contain only 7 and z; from (73). Then we conclude that f,; =0,
which is a contradiction Next we consider the Case (2). Pick up the terms
with 72 in (75), with (p,)? in (76), with 1p, in (74), with £2p, in (74) and with (p,)°

n (76), we obtain Ay ; = 0, which is a contradiction. Therefore only Case (3)
remains. In Case (3), by plckmg up the terms with #* in (75) and with (ps)’ in
(76), we have three cases: Case (1) Ao o = Ao, 1= Ao 2 =Np,o=0and Ny #0,
(;ase (2) Aoo—Ao]—Noo—N()1—0 and A02 7'50 Case (3) 14070:/10‘1 =
Aop2 = No o= Ny, =0. Making use of the same arguments as above, we prove
that only Case (3) remains. Then we repeat this proccess and by 1nduct10n we
obtain that only the case Ao 0= Ao | = Ao )= =0 and Ny o= No1 = =0
happens, which implies that f,,; = 0. Therefore we conclude Claim 6. D

Now we have shown that components of f are expanded as

UYL 1

(1) B e -
(X, 520 Day.p () (t+ip)")'
1
(78) 1= Sab(z) (¢ + ip)” >
’ \a,\\,zbzo Zw,hzo Dy 5(z5)“ (2 + lp)b
1
(79) Sl = Na(z0)“(t+ip)” YRRV
\ax\,zb:zo Z\a.\\,bzoDas,b(zs)a"(f + lp)b

and, for each j, the matrix (A;fie"”i/\/c‘l)»

)¢ 18 @ unitary matrix.

CLam 7. Dg.p, Sa.» and Ny p vanish for |as| +b = 2.

Applying vector fields Z?, E;, Z*ZF, E;Z* and E;E; to (73), the following
relations hold:

Z Dy, »(Z,) (1 — ip)]7 Z Na.b <§?‘> (zg)“(t+ lP>b
#2057 = 3 Naal2) =)' 5 Dans () 20"+ )’
—21‘;(2 Si p(2) (= ip)"ZS;;;.b(%) (zs)“'*<r+ip)b) =0,

ZN“ »(Z5)“ (¢ — ip) ZDas ) “b(t +ip)b‘1+l
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=S Dusz) (1 ip)" S Nay(z0) bt + ip) ™!
+2ZZ<ZS (z)“(t —ip) Z )“b(t + ip)"~ 1>:0,

yelg

(X M5 70— )" =20 S sty — i)
30 D555 ) 2"+ )
(2 i -2 Dz b= )"
SN )zo“‘(mp)
xZ ( ) )“(t+ip)" — 20} =0,

83 SN (5 ) GO0 )" X Dusla) e+ i)

—ZD%,,<W> )" Navo(z:) bt + ip) ™!
P2y (S8 (ai) @)= )" Y8720 b0+ )" ) =0

vel

jo)

(84) > Nus(z) bt —ip)"™" 3" Day s zs)““b(tJrip)b*1
~ "Dy b(2)" t—iprZNa\ (z0)“b(t +ip)""
+2iZ(ZS —ip)"” IZ p(2)” b(t+ip)"” ):0.

yels

The constant terms in (82), (83) and (84) satisfy

(85)  Ny_yoDaz=1.0 = Dy_y oNuz=1.0+ ZiZ Sjﬁzl‘osggzl,o —2i0f =0,

yels
1 _ , _
(86) Noz=10 = 5— (Dug—l,oNo,l +2i) S;S,_LOS&l) ;
0.1 yel
(87) No.1Do.1 — Do 1No 1 +2iz 85185, =0.

yel;
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Define C7, to be S;._; o = C!, + Dyz=1,05;,/Do,1. Then the above three equa-
tions imply that the matrix (Cj_’a)m is a unitary matrix. Next we pick up the
coefficients of 7, p; and Z7 from (80), (83) and (82), those of 7 and p; from
(84) and those of ¢ from (81). The constant term of (84) together with these

coefficients lead the matrix equations:

Dy,» Dyz—1,1 D=3 0
No,» Nyz=11 Naz—2,0
(88) A S0172 =4 S;le,l = A SJ;:LO =0
S Sa-1,1 Sar=2.0
for
Noo —Dy,9 21'5370 .- 21',5_’6':"0
NO,I —50,1 2i§01y1 e Zigg“'l
(89) A=| Na=10 —Da-10 21'5;;:1’0 2i§:§:170
N D + ol Lo
Nepoi0 —Dyporo 208, 0 -+ 208

By substituting (86) and the constant terms in (81) into 4, it is easy to show that
the determinant of 4 equals to —(2i)" Dy 1/Do 1(# 0). Therefore we obtain the
result of Claim 7 for |a;| + b =2. Assume that Claim 7 holds for 2 < |a,| + b <
k—1. Let

(90) K ={(as,b) : |a)| +b=k,a*>1}, J*={(anb): |a)|+b=kb>1}

Pick up the terms of order k£ — 1 from (80) to (84). Then we obtain the matrix
equations:
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and
ZJ’( Da,x.,b(ZS)asblb_l
Zﬂ' Na.\vb(ZS)aiblh_]
(92) a4 2 S;.\.,b(zs)a“blb_l =0

Z]k S:‘s , (Zs) ag btb71

for the matrix 4 above. Therefore Claim 7 holds for (a,,b) € KX¥UJ*. Since
o moves in I, Claim 7 holds for all |¢,| +b =k. By induction, we conclude
Claim 7. [J

Now we have proved that the Taylor expansions of components of f are the
following:

93) Z 1

dg 1 ,‘7
Z\a;|+b<lDa» p(z) (1 +ip)") "

1
(94) S 4 (z)“ (t + ip)” —
|a\\+zb<1 D las b <1 Day,p(z5)“(t + ip)
1
(95)  fur = Na..p(25) " (1 4 ip)” =t
|ax\+zb:sl Z\a.\Hbsl Dy, p(z5)" (t +ip)
where the matrix (AJ’A)y ; Is a unitary matrix for each j=1,...,5s—1.

Next we shall obtain the relations of the coefficients of f. First, we pick up
the constant terms in (80) and (81). They satisfy the following:

N + Q1 ng
Dyi-1.0 _ZISal\,l:l,O 21511 1,0 Noo
: : So.0
Dyp_r0 —2i8ki_y _2is" 10
— — n
Dy, ~2i83, - -2i8p Soo
Do,oNgi-1,0

Do,0Ny_1.0
—1 4 D,0No,1

The determinant of the matrix in this equation does not vanish and therefore
we get



550 ATSUSHI HAYASHIMOTO

DO-OS(}.I 1 _
So.0 Doi  2iDo (C 1 Dyyo+ -+ Cl, Dy o)
(97) | =
Sm. DO‘ OS(I),lYl 1 3 o
" D() 1 o 2ZDQ | (C:SIDLJA!:LO + -4 CS.Xn\-Daf"'zl,O)
and
Do oNo1 —1
(98)  Npo=—"200 = 120180
0.1 |D 01\
1
D S Cx D] +---+ C DnA
(D01)2{ 01( 17a;=1,0 ~1,0)

+ S&H(C:Alﬁa}:l,o +oet Csnn D, 571‘0)}~

CLamm 8. The coefficients of f satisfy the relations:
(99) No.1Do,1 — No,1Do,1 +2i[So,1|* = 0,
(100) 2i(Dg.0Do.1 — Do 0Dy 1) + |Da;:1,o|2 +oee ‘Daf":l,0|2 =0

The first relation comes from the constant terms of (84). Substitute (93),
(94) and (95) into (73) and the constant terms of the resulting equation is

(101) Dy oNo.o — Do.oNo.o :2i|So,o|2.

Together this with (97) and (98) implies the second relation.
In case of Dy =0, by the suitable change of the argument, we get the
coefficients relations,

(102) So1 =0, Dug—10=0, 1—DyoNoi=0,
Do,oNaz=1,0 = 20> S} 4Shi_y 4 =0.
})EI\

As a summary, the CR mapping under consideration has expansion (93),
(94) and (95) with coefficients relations (86) and (97), (98), (99) and (100) or with
relation (102).

4. Comparison of expansion and integers m; and n;

In this section, we compare our result with [MM10], and modification of the
decomposition of holomorphic tangent bundle.
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4.1. Specify the coefficients. If we put D, », S, » and N, ; and matrices
(Cl,),. and (4,), ; to be special forms, our expansions become the ones in

[MM10]. In case of J =1, we put

(103) Doy =1/r, Doo=(+ila)’)/r, Sg,=b2/r, Dgy—r0=—2a’/ir,
(4] ), =By, (Cl),, =By ImNoi=|bJ*/r.

In case J being an identity, we put

(104) Dyo=1/Noy=1/r, D, =0 for other a; and b,
(ijzl‘o)%,/f = B,

So.1 =0, So0=Bsas+bs/r, Nu_10="2irdas + 2iB! - by,

NOA,O = bn+l/V+ rdyt1 +2iBsas ' bs-

Here B! is a transpose of a matrix By.

4.2. Modification of the decomposition. Next we make a remark about m;
and n;. The analogous argument here works for some m; = 1. If there exists j
with m; =1, the z; components of  and ¢, should be changed as Bjz,; to
Bjzs(j) +-bj and z; to z; + ;.

If there exists j with n; = 1, then the subbundle #; is empty for such j, and
if all n; =1, our hypersurface M is a boundary of pseudoellipsoid. Therefore
the mixed case, some n; =1 and the others n; > 1, is considered here. If

ny=---=mnj—1 =1 and the rests are bigger than 1, then the decomposition
(13) will be
(105) TYM=W,® W1 ®W; ®E

and after small modification of our argument shows that the z; component in v
should be changed as Bjz; to eiz;.

Part 2. Infinitesimal CR automorphism method
5. CR automorphism group and infinitesimal CR automorphism

For any pe M, we let Aut(M,p) denote the set of germs H of biholo-
morphisms near p, with H(M) = M and H(p) = p. A smooth real vector field
X defined in a neighborhood of pe M is called an infinitesimal CR auto-
morphism if the one-parameter group of transformation exp X is a CR
difftomorphism. We denote by hol(M, p) the Lie algebra generated by the
infinitesimal CR automorphisms. Then M. S. Baouendi, P. Ebenfelt, L. P.
Rothschild proved the correspondence between Aut(M, p) and hol(M, p). In the
next theorem, for definition of holomorphically nondegeneracy and minimality
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and their properties, refer to the book [BER99]. Note that the boundary of
a generalized ellipsoid M under consideration satisfies the condition of their
theorem.

THEOREM 5.1 ([BERO9S8]). Let M be a real analytic, holomorphically non-
degenerate, generic submanifold of CY which is minimal at some point. For all
p € M, there exist a unique topology on the group Aut(M, p) with respect to which
it is a Lie group whose Lie algebra is hol(M, p).

In what follows, we omit the reference point. This theorem implies that, in
order to classify CR automorphisms, we need to classify hol(M) and compute
the one-parameter group of transformations of them. To obtain the explicit
form of X € hol(M), we need the following characterization, whose proof appears
in [BER99].

THEOREM 5.2. Let M = CY be a smooth generic submanifold, and let X be a
smooth real vector field on M defined in an open subset U = M. Then X is an
infinitesimal CR automorphism of M if and only if

N
0 0
Y = RN N
(106) ) <a] 52 + a; 82‘;)’
J=1 - k
where the a;, j=1,...,N are CR functions in U.

Using this characterization, we can determine the coefficients of X.

LemMMmA 5.1. Let

0
(107) X =2Re ZZQJ Z,Zni1) +gn+1(2 Z"H)(')z—]
Jj=1 ael; n+

be an infinitesimal CR automorphism of the boundary of a generalized ellipsoid.
Then coefficients have the following expansions:

1
(108) 97 (2, Zng1) = p” — (azus1 + b)z] +ﬂZa/,j
el
a#p
(109) 9 (Z Zn+1) ="+ (aZiH-l + b + Zas /)’Zsa
pel;
a#p
(110) Gni1(2,2n01) = a(zp1)’ + (b + D)z +d +2i Y Pzl

Bel;

whereaﬂJra =0for j=1,...,s, a,fel;, adeR, and c?,b e C.
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Proof. Write

(111) H(zzne) = D 9la(z) (D) J=1,.s,
la| =0

(112) gn+1 z Zn+1 Z In+l,a Zn+1 ) .
la| >0

Here g7 > (zny1) and gpi1 4(zp41) are holomorphlc functions of z,;; and a=
(ar,...,a5) € (Z=0)", aj = (a},...,a;") € (Z30)" are multi-indices.

Applylng the defining equation —Im z,; + p(z,Z) =0 to X and restrict it
to M, we have

s—1
(113) ST gt ipymlz Pz > g2z + ip) 2

j=1 ael; aels
1 - .
5 291 (2, t +ip) ZZ mj|Z| >ZjOC
+Z% (z,t—ip)z iJ,H_l( —ip) =0.
aels 2

Setting Z =0 in (113) gives

1 1
(114) 2 gn+1(z t)+2 gn-H O [ +ng 0 t =0.

oels

Setting z =0 gives

(115) Int1,0(2) = Fny1,0(0)-

Substitute this into the equation (114) to obtain

(116) 1 (2,0) = guero(1) + 20> G20(1)z
aely

Substituting (115) and (116) into (113),

s—1

(117) 22Dl g et )2 4 g ot = )27}
j=1 ael;
el el
1
2 gn+10(l‘+lp -I-ZIngoH‘lp)
oel

1
+2—i{gn+1otlp ZZngotflp } 0.

el
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For simplicity, we write 0/0z = d.. Apply 0..0. = and 6 20,7 (7 s to (117) and
evaluate the resulting equations at z=2z=0. These glve

(118)  0fgnar,o'(1) = gl oy () + 37, (1),

(119) g ooy (1) = 2i80g7 (1) = 2id0/g2y/ (1) = i) ' (1) + LG} (1)),

(120) gfal:a/,zl(t) =0 jk+#s.

Similarly, applying 62;11 82]_«22 "'azj“n” 62.5 (n>3) to (117), we obtain the relation
(121) gl (=0

for |a| > 3. Substitute these relations obtained above into (117), it becomes

s—1

(122) YN mlsP" g i+ ip)F + 57z — ip)Z) )

=1 el

1 . .
+ 2 (gi1+170<t - lp) - gn+1.,0(Z +ip))
z {gyo (t+1ip) — g/ o(t —ip)
el

+ 2i(z] )zgs“o' +nga (t+ip zf}
/gel

+ ZZ?{Q?‘,O(I —ip) — g o(t+ip)

o€l

— 2i(z )zgj‘o'H—zp +qu }:O.

pels

Expand g7, and g, in the above equation in a Taylor series about u, and pick
up the terms with homogeneous degree 3, 4, 6 in z; and Z;. Then we obtain

(123) gy = ¢ = constant,
(124) 0%y ()= (1) for 2 #p,
(125) gl (1) is a real valued function,
o — S0 1
(126) > 23740 armt (D22 + sznga‘y:l”(Z)zS —gg,1+1,0”'(z)|zs|2 —0.
pel,  ael; pel; el )

Combining these with (118), (119) and (120), we conclude that g* and g, have
the following forms,
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(127) 022 2n) = ¢ + (azu +B)z2+ a2l
pel;
ai/f
(128) Gni1(2,2ns1) = a(zp1)* + (b + D)z +d +2i Y ezl
Bel;

where a}; +a’, =0 and a,d € R, b,cf € C. These are the conclusion of g7 and

In+1-
Substitute these into (113) and the resulting equation becomes

s—1
(129) SO mlP g+ ip) + 2] — ip))
j=1 ael;
+ (2at + b+ b)(|z5]* — p) = 0.
Evaluating z = (0,...,0,z,0,...,0), 2= (0,...,0,Z;,0,...,0), then we have
(130)  m; > {2797 (i, t + ilz|™) + 22g7 (5, 1 — i|z™™)} = at + b+ b)|z]*.

oel;

Evaluating z; =0 and Z; = (0,...,0,27,0,...,0) we get g/,(r) =0. Applying

0-20- to (130) and evaluating z; = Z; Lo 0, we get
J “j
(131) 91 ()45 (1) =0, for a2,
” 1
(132) Garm1 (D) +§] 0oy (1) = — (2at + b+ b).

m;

The terms in (130) with Zz? zﬁlzﬂz---zf” (n>2) appear only from

Z]?‘gj?(zj,z+i|zj\2’"f ) and they must be zero. It means that
(133) gia(t) =0
for |a| = 2. Now gj‘?(z, Zy+1) has an expansion
(134) (z,2n11) Zg o= (Zns1)
pel; '

Substitute this into (130) and the terms with zjﬂ z‘]‘-z|zj‘?‘|2mf in the resulting equation
satisfy
(135) INOR OB}

Combining this with the derivative of (131) if « # 5, and with (132) and its
derivative if o = f, we obtain

(136) g/’a _,(t) = aj; = constant if o 3 f,

1
(137) g;‘}:a?:l(l) :—(a[—kb))
/4 mj
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where aﬁﬁ—k&f »=0. Now we have obtained the expansion of g7(z,zu+1) as
1 ‘ 5
(138) 0 (zr2nn) = (@ + D)+ 3 ay].
7 el
f#a
This completes the proof. O

6. One-parameter group of transformations of hol(M)

In this section, we construct one-parameter group of transformations gener-
ated by infinitesimal CR automorphisms, which generate all CR automorphisms
of the boundary of a generalized ellipsoid.

By Lemma 5.1, we know the generators of hol(M). If we take the para-
meters in (108), (109) and (110) to be real, the generators of hol(M) become the
following forms:

! 21 0 Z'Zp 0
139 Y, = L
(139) P2 61_( m; 62/‘?‘+ m; 0z}
P J N ‘ N

0 0 ;> 0 2
o _ S0 = _ - = -
+ > (ZS Zn+1 e + Zg Zpy1 62_3‘) + (Zn41) Ozne1 + (Zpg1) 50—,

j=1 ael; J ael;
+2(z d + d
i 0Zns1 : 0Zny1)’
0 0 0 0
_ B =P = -

(141) ij‘ﬁle azj“Jij 527 zj?‘ajjﬂ—zj?‘a—_jﬂ for j=1,....5,0,fel;, a <p,

0 0 0
142 Yi=— 2iz? — 2iz% f I
(142) S = + = + 2iz? o " ME g~ foraclk

0 0

(143) Y3 +

0zpp1  0Zpp

As explained, classification of infinitesimal CR automorphisms leads to that
of CR automorphisms. Therefore we construct one parameter group of trans-
formations generated by above vectors.

THEOREM 6.1. Omne parameter group of transformations generated by the
vectors in hol(M) can be classified into the following five types.
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(144) exp(eY1)(z, zut1)
Zs Zg ZI1+1
(1 —ezpe)/™ (L= ez) /" L — ez L —ez0n )
(145)  exp(eY2)(z,zue1) = ()21, .., (€9 251 €2y, (€9) 2nin),
(146) exp(eY3)(z,zuy1) = (215 -y Zs—1, Zsy Zut1 + €),

(147) exp(e1 Y] + - 46, Y/)(2, 20s1)

= (Zla ceeyZs—1yZs & Zntl T+ 2izy e+ i|8|2)7

(148) exp Z Z s jﬂ (z,2p11) = (Blzh...,Bs_lzx,l,B‘yzS,an).

j=1 o,fel;
o>f
Here we denote, in (147), ¢ = (e1,...,&,,) and zs - € is an inner product of z; and e.

The B’’s are unitary matrices depending on &'

Proof-  Since we have
;& 1\ /1 1
= ) =41)- =471
o o =T G ) )
o i 0 S0 (= / J
X {zj (Zns1) 2t (Zut1) &z‘.“}

; 0 _ 0
—I—le{ zn+1 pE +ZS%(Z"H)15_—S¢}

ael

s—1 o Z%
I ii ii « 0 2 0
(150) (Yz) — / Z{ml aza+m1 az_a}+z{zs aZ?""ZA\‘ az—gc

(151) (¥3)* =0,
(152) <Y:>2=2i(i— ° ) (v =0,

(153) (7" =DM ()™ = ()

the result follows. O
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7. Comparison Theorem 1.1 with Theorem 6.1 and integers n; and m;

In this section, we compare parameters in Theorem 1.1 with ones in
Theorem 6.1 and modification of the coefficients of Lemma 5.1 when integers
m; and n; change.

7.1. Comparison of parameters. In [MM10], we do not know how to find
each component I, J,, ¥ and ¢,. But the following lemma shows that all
components are obtained from infinitesimal CR automorphisms and those
mappings are enough to construct all CR automorphisms by virtue of Theorem
5.1

LemMA 7.1. Putting t' =1 =r= —1/e, a; = b, =0, B; = id in the mappings
in Theorem 1.1, we have

(154) I=0"o0y ' o(expeYi)og,".

Putting r = e* in the mappings in Theorem 1.1, we have

(155) or = exp(eYa).

Putting a; = (e1,...,&,) and t°=0 in the mappings in Theorem 1.1, we
have
(156) ¢, =expler Y] + -+, Y™).

Putting a; =0, a,.1 = ¢ in the mappings in Theorem 1.1, we have

(157) ¢, = exp(eY3).

Putting b,.1 =0 in the mappings in Theorem 1.1, we have

(158) v=exp| D D oYy
j=1 o,fel;
a>f

The proof is straightforward. This lemma shows that all mappings in
Theorem 1.1 can be obtained from one-parameter group of transformations.

7.2. Integers n; and m;. By modifying our arguments a little, our argument
also works in the case that some n; and m; are equal to one. In these cases,
coefficients of infinitesimal CR automorphisms change.

THEOREM 7.1.  Assume that mj, = --- =mg = 1. Then the coefficients g/ and
gnr1 of an infinitesimal CR automorphism in Lemma 5.1 can be expanded as the
following:



CR DIFFEOMORPHISMS OF GENERALIZED ELLIPSOIDS 559

1 . .
(159)  gj(zzn1) = - (azuer + b)z" + SNoatl for j=1,...50—1,

J el
oa#f
(160) 9/ (z,2n1) = ¢ + (azp1 + b)z} + Zaﬁﬂzjﬂ for j=jo,...,s,
pel;
o:;é/])’

(161)  gui1(2,2n01) = a(zns1)> + (b+b)zui1 + d

+2i Z@%?i*"'*ZEﬁZ?

o 51_/0 oael

Here a} +df“ =0 and a,d eR, cj“,b e C
7B ) . B
If nj =1, we need to remove the summation terms Zﬂi ?; algzi from gr.
o
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