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A DISCRIMINANT CRITERION OF IRREDUCIBILITY

Evelia R. García Barroso and Janusz Gwoździewicz

Abstract

In this paper we give a criterion of irreducibility for a complex power series in

two variables, using the notion of jacobian Newton diagrams, defined with respect to

any direction. Then we apply our method to study the branches of plane algebraic

curves. For an a‰ne plane curve with one point at infinity, we also obtain a criterion

for an analytical irreducibility in terms of the Newton diagram of a discriminant,

without using coordinates centered at the point at infinity.

1. Introduction

In [12] we give criteria of irreducibility for a complex power series in two
variables, using the notion of jacobian Newton diagrams, defined with respect to
a generic direction. In this paper we generalize these criteria to any direction
and we use this new general criterion to study the branches of plane algebraic
curves. The paper is organized as follows:

In 1.1 we recall the notion of the Newton diagram. Then in 1.2 we explain
what is the discriminant curve of an analytic mapping F : ðC2; 0Þ ! ðC2; 0Þ. If
Dðu; vÞ ¼ 0 is the discriminant curve then the Newton diagram of D will be called
jacobian Newton diagram of F and denoted NJðFÞ. At the end of the section we
present formulas for computing equations of discriminants.

In Section 2 we consider NJðl; f Þ where l is a regular function and f is a
singular irreducible series. We shall call such diagrams Merle type diagrams.
We recall Merle’s result that equisingularity class of f and the intersection
multiplicity ð f ; lÞ0 determine and are determined by NJðl; f Þ. In Theorem 2.3
we give necessary and su‰cient conditions of arithmetical nature for a Newton
diagram to be a Merle type diagram.

The main technical result of the paper is Theorem 3.1. It states that f is an
irreducible power series if and only if NJðl; f Þ is a Merle type diagram. We
apply our irreducibility criterion to power series taken from Kuo’s paper [17].
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Then in Theorem 3.7 we give a criterion for local irreducibility of plane algebraic
curves which requires only computing a usual discriminant of a polynomial in
one variable.

Finally we study the singularity at infinity of a plane a‰ne curve with one
point at infinity for which the global counterpart of our main result holds. We
obtain a criterion for an analytical irreducibility of a curve at the point at infinity
in terms of the Newton diagram of a discriminant, without using coordinates
centered at the point at infinity. To get this result we need Theorem 3.1 in its
full generality (non-transverse case). Theorem 5.1 is important in the context of
the Jacobian conjecture. Recall that Abhyankar proved in [1] that this con-
jecture is settled a‰rmatively in the case where there is only one branch at
infinity.

1.1. Newton diagrams of plane analytic curves
In this section we recall the definition of a Newton diagram and introduce

the needed notation. Write Rþ ¼ fx A R : xb 0g.
Let f A Cfx; yg, f ðx; yÞ ¼

P
ai; jx

iy j be a non-zero convergent power series.
Put supp f :¼ fði; jÞ : ai; j 0 0g. Then by definition the Newton diagram Df of f
is

Df ¼ Convex Hull ðsupp f þ R2
þÞ:

The basic property of Newton diagrams is that the Newton diagram of a
product is the Minkowski sum of Newton diagrams. That is Dfg ¼ Df þ Dg

where Df þ Dg ¼ faþ b : a A Df ; b A Dgg. In particular if f and g di¤er by an
invertible factor u A Cfx; yg, uð0; 0Þ0 0 then Df ¼ Dg. A plane analytic curve
f ¼ 0 is, for us, a principal ideal generated by f in the ring of convergent power
series of two variables. Thus the Newton diagram of a plane analytic curve is
well defined because two arbitrary chosen generators of the principal ideal di¤er
by an invertible factor.

Following Teissier [24] we introduce elementary Newton diagrams. For

m; n > 0 we put
n

m

� �
¼ Dxnþym . We put also

n

y

� �
¼ Dxn and

y

m

� �
¼ Dym .

One can check that every Newton diagram DWR2
þ has a unique repre-

sentation D ¼
Pr

i¼1

Li

Mi

( )
, where inclinations of successive elementary diagrams

form an increasing sequence (by definition the inclination of
L

M

� �
is L=M with

the conventions that L=y ¼ 0 and y=M ¼ þy). We shall call this represen-
tation the canonical form of D.

Finally a Newton diagram is convenient if it intersects both coordinate axes.

1.2. Discriminant curve
Let F ¼ ðp; qÞ : ðC2; 0Þ ! ðC2; 0Þ be an analytic mapping given by ðu; vÞ ¼

ðpðx; yÞ; qðx; yÞÞ such that F�1ð0; 0Þ ¼ fð0; 0Þg. Let jacðp; qÞ ¼ 0 be the equation
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of the critical locus of F , where jacðp; qÞ ¼ qp

qx

qq

qy
� qp

qy

qq

qx
is the usual jacobian

determinant. The direct image of jacðp; qÞ ¼ 0 by F is called the discriminant
curve of F (see Appendix).

Assume that Dðu; vÞ ¼ 0 is the discriminant curve. Then DD is called the
jacobian Newton diagram of F (see [25]). We will write NJðp; qÞ for the jacobian
Newton diagram.

Below we give some formulas for jacobian Newton diagrams and discrim-
inant curves.

Formula 1.1 (Teissier’s formula [23]). Assume that jacðp; qÞ ¼ h1 � � � hr,
where hi are irreducible series, not necessarily distinct, for 1a ia r. Then

NJðp; qÞ ¼
Xr

i¼1

ðq; hiÞ0
ðp; hiÞ0

( )
;

where ð f ; gÞ0 denotes the intersection multiplicity of f and g.

From now on we will only consider mappings

ðl; f Þ : ðC2; 0Þ ! ðC2; 0Þ;ð1Þ
where l is a regular function (i.e. l ¼ axþ byþ higher order terms, axþ by2 0)
and f is a singular series. Recall that a power series is called singular if its order
is bigger than one. Under these assumptions jacðl; f Þ ¼ 0 is called the polar
curve of f with respect to l. The inclinations of the elementary diagrams of the
jacobian Newton diagram NJðl; f Þ are called polar quotients. These notions
were studied by many authors (see for example [10, 20] for irreducible case, and
[5, 7, 8, 9, 11, 15, 18, 19, 27] among others for the reduced case). See also the
survey [13] for recent results. If the curves l ¼ 0 and f ¼ 0 are transverse, that
is they do not share any tangent, then NJðl; f Þ depends only on the equisingu-
larity class of f ¼ 0 (see [23]). Otherwise the jacobian Newton diagram may
depend on relative position of curves l ¼ 0 and f ¼ 0 as the following example
shows.

Example 1.2. Let f ¼ y2 � x5 and let l1 ¼ x, l2 ¼ y, l3 ¼ y� x2. Then
jacðl1; f Þ ¼ 2y, jacðl2; f Þ ¼ 5x4 and jacðl3; f Þ ¼ xð5x3 � 4yÞ. By Teissier’s for-
mula

NJðl1; f Þ ¼
ð f ; yÞ0
ðl1; yÞ0

( )
¼ 5

1

� �

NJðl2; f Þ ¼ 4
ð f ; xÞ0
ðl2; xÞ0

( )
¼ 4

2

1

� �
¼ 8

4

� �

NJðl3; f Þ ¼
ð f ; xÞ0
ðl3; xÞ0

( )
þ ð f ; 5x3 � 4yÞ0

ðl3; 5x3 � 4yÞ0

( )
¼ 2

1

� �
þ 5

2

� �
:
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For any local analytic di¤eomorphism F : ðC2; 0Þ ! ðC2; 0Þ the substitution
ðl1; f1Þ ¼ ðl �F; f �FÞ does not a¤ect the equation of the discriminant curve.
Hence without loss of generality we may assume that l ¼ x (take such a F that
l �F ¼ x).

Formula 1.3. If f ðx; yÞ ¼ yn þ a1ðxÞyn�1 þ � � � þ anðxÞ A Cfxg½y� is a
Weierstrass polynomial, i.e. aið0Þ ¼ 0 for every i A f1; . . . ; ng, then the discriminant

of the mapping ðx; f Þ : ðC2; 0Þ ! ðC2; 0Þ has an equation Dðu; vÞ ¼ 0, where

Dðu; vÞ ¼ Discryð f ðu; yÞ � vÞð2Þ
is the classical discriminant of a polynomial in one variable.

Proof. The discriminant Discryð f ðu; yÞ � vÞ is, up to an integer constant,

equal to the resultant of polynomials f ðu; yÞ � v and
qf

qy
ðu; yÞ. By the classical

formula (see Theorem 10.10, Chapter I, [26]) the resultant of polynomials
P;Q A K ½Y �, Q ¼

Q s
i¼1ðY � biÞ, where K is a field is, up to a sign, a productQs

i¼1 PðbiÞ. We get Discryð f ðu; yÞ � vÞ ¼ c
Qn�1

j¼1 ½ f ðu; gjðuÞÞ � v�, where c is a
nonzero constant, gj are Newton-Puiseux roots of the y-partial derivative and by
Appendix Formula 1.3 follows. 9

Formula 1.4. Let f ðx; yÞ ¼ yN þ a1ðxÞyN�1 þ � � � þ aNðxÞ A Cfxg½y�. As-
sume that all nonzero roots of the polynomial f ð0; yÞ are simple. Then the dis-
criminant of the mapping ðx; f Þ : ðC2; 0Þ ! ðC2; 0Þ is given by formula (2).

Proof. Let
qf

qy
ðx; yÞ ¼ N

QN�1
i¼1 ðy� giðxÞÞ be the Puiseux factorization of

y-partial derivative. Take gkðxÞ such that gkð0Þ0 0. Since gkð0Þ is a root of
qf

qy
ð0; yÞ and all nonzero roots of f ð0; yÞ are simple one has f ð0; gkð0ÞÞ0 0.
We get

Discryð f ðu; yÞ � vÞ ¼ const
YN�1

i¼1

½v� f ðu; giðuÞÞ� ¼ unit
Y

gið0Þ¼0

½v� f ðu; giðuÞÞ�

which is, up to a unit, equation (4) of Lemma 5.4. 9

2. Jacobian Newton diagrams of irreducible series

In this section we consider mappings ðl; f Þ : ðC2; 0Þ ! ðC2; 0Þ under addi-
tional assumption that f is an irreducible singular power series. Then the curve
f ¼ 0 is often called a plane singular branch.

Consider

Sð f Þ ¼ fð f ; gÞ0 : g A Cfx; yg and f does not divide gg:
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Clearly 0 A Sð f Þ (take g ¼ 1) and if a; b A Sð f Þ then aþ b A Sð f Þ since the
intersection multiplicity is additive, so Sð f Þ is a semigroup, called the semigroup
of the branch f ¼ 0.

For any regular curve l ¼ 0 the semigroup Sð f Þ has the ð f ; lÞ0-minimal
system of generators b0; b1; . . . ; bh defined by conditions

(i) b0 ¼ ð f ; lÞ0,
(ii) bk ¼ minðSð f ÞnðNb0 þ � � � þNbk�1ÞÞ,
(iii) Sð f Þ ¼ Nb0 þ � � � þNbh.

The sequence of generators can be characterized in purely arithmetical terms.
Let us recall the next result (see [4, 28] for the generic case (b0 ¼ ord f ) and [14]
for the case when the curves f ¼ 0, l ¼ 0 are tangent).

Theorem 2.1. Let b0; b1; . . . ; bh be a sequence of positive integers. Set nk ¼
gcdðb0; . . . ; bk�1Þ=gcdðb0; . . . ; bkÞ for k A f1; . . . ; hg. Then the following conditions
are equivalent:

(i) there is a singular branch f ¼ 0 and a regular curve l ¼ 0 such that
b0; b1; . . . ; bh is the ð f ; lÞ0-minimal system of generators of the semigroup
Sð f Þ,

(ii) the sequence b0; b1; . . . ; bh satisfies the conditions:
(Z1) nk > 1 for k A f1; . . . ; hg and n1 � � � nh ¼ b0,
(Z2) nkbk < bkþ1 for k A f1; . . . ; h� 1g.

Now we can state the result proved in [22], [20], and [10] (we put by convention
n0 ¼ 1).

Theorem 2.2 (Smith–Merle–Ephraim). Suppose that f ¼ 0 is a singular

branch and l ¼ 0 is a regular curve. Let b0; . . . ; bh be the ð f ; lÞ0-minimal sys-
tem of generators of the semigroup Sð f Þ. Then with the notation introduced
above

NJðl; f Þ ¼
Xh

k¼1

ðnk � 1Þbk
ðnk � 1Þn0 � � � nk�1

( )
:ð3Þ

If b0; . . . ; bh is the sequence satisfying the conditions (Z1) and (Z2) of Theorem 2.1
then we will write Mðb0; . . . ; bhÞ for the Newton diagram (3) and we call it,
following [13], the Merle type diagram. Note that the Newton diagram in for-
mula (3) is written in the canonical form. Indeed, the quotients bkþ1=ðnkbkÞ of
the inclinations of successive elementary Newton diagrams are greater than 1 by
Theorem 2.1.

Let us look at Example 1.2 in the light of Theorem 2.2. The curve
f ¼ 0 has the semigroup Sð f Þ ¼ N2þN5. One gets ð f ; l1Þ0 ¼ 2, ð f ; l2Þ0 ¼ 5,
ð f ; l3Þ0 ¼ 4 and is easy to verify that NJðl1; f Þ ¼ Mð2; 5Þ, NJðl2; f Þ ¼ Mð5; 2Þ
and NJðl3; f Þ ¼ Mð4; 2; 5Þ.
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Theorem 2.3. Let D ¼
Ph

i¼1

Li

Mi

� �
be a convenient Newton diagram written

in its canonical form. Put H0 ¼ 1, Hi ¼ 1þM1 þ � � � þMi for i A f1; . . . ; hg and
C0 ¼ Hh, Ci ¼ Hi�1Li=Mi for i A f1; . . . ; hg. Then D is a Merle type diagram if
and only if the arithmetic conditions (i)–(iii) are satisfied

(i) the quotients Hi=Hi�1 are integers for i A f2; . . . ; hg,
(ii) the quotients Ci are integers for i A f1; . . . ; hg,
(iii) gcdðC0; . . . ;CiÞ ¼ C0=Hi for i A f1; . . . ; hg.

Moreover in such a case D ¼ MðC0; . . . ;ChÞ.

Proof. Assume that D is a Merle type diagram Mðb0; . . . ; bhÞ. Then Li ¼
ðni � 1Þbi and Mi ¼ ðni � 1Þn0 � � � ni�1 for i A f1; . . . ; hg. We have the equality
Hi ¼ n1 � � � ni. Indeed H1 ¼ 1þM1 ¼ 1þ ðn1 � 1Þ ¼ n1 and Hiþ1 ¼ Hi þMiþ1 ¼
n1 � � � ni þ ðniþ1 � 1Þn1 � � � ni ¼ n1 � � � niþ1 by the inductive hypothesis. It follows
that Hi=Hi�1 ¼ ni hence condition (i) is satisfied.

It also follows that Ci ¼
Hi�1Li

Mi

¼ n1 � � � ni�1ðni � 1Þbi
ðni � 1Þn1 � � � ni�1

¼ bi. Hence condition
(ii) is also satisfied.

It follows directly from the definition of the sequence ni that gcdðb0; . . . ; biÞ ¼
b0=ðn1 � � � niÞ for 1a ia h. Moreover by condition (Z1) of Theorem 2.1 one
has n1 � � � nh ¼ b0 which gives C0 ¼ Hh ¼ b0. Thus gcdðC0; . . . ;CiÞ ¼ C0=Hi for
i A f1; . . . ; hg.

Now assume that conditions (i)–(iii) hold true for the Newton diagram D.
We will show that the sequence C0; . . . ;Ch satisfies arithmetical conditions of

Theorem 2.1. It follows from (iii) that ni :¼
gcdðC0; . . . ;Ci�1Þ
gcdðC0; . . . ;CiÞ

¼ Hi=Hi�1 for

i A f1; . . . ; hg. Thus ni > 1 for i A f1; . . . ; hg and n1 � � � nh ¼ C0.
Since D is written in canonical form one has Li=Mi < Liþ1=Miþ1 for i A

f1; . . . ; h� 1g. Multiplying these inequalities by niHi�1 ¼Hi we get niHi�1Li=Mi

< HiLiþ1=Miþ1 which is equivalent with niCi < Ciþ1 for i A f1; . . . ; h� 1g.
Hence, the sequence C0; . . . ;Ch satisfies conditions (Z1) and (Z2) of Theorem

2.1. Moreover looking at the first part of the proof it is easy to see that D ¼
MðC0; . . . ;ChÞ. 9

3. Discriminant criterion of irreducibility

Theorem 3.1. Let f ¼ 0 be a plane singular curve and let l ¼ 0 be a regular
curve. Then f is irreducible if and only if NJðl; f Þ is a Merle type diagram.
Moreover, if NJðl; f Þ ¼ Mðb0; . . . ; bhÞ then f ¼ 0 has the semigroup Sð f Þ ¼
Nb0 þ � � � þNbh.

Example 3.2. Let l ¼ x and f ¼ yn � xm. Then by (2), Dðu; vÞ ¼

ðvþ umÞn�1, hence NJðx; f Þ ¼
ðn� 1Þm
n� 1

� �
. Under notation of Theorem 2.3 one

408 evelia r. garcía barroso and janusz gwoździewicz



gets C0 ¼ H1 ¼ n, C1 ¼ m and conditions (i) and (ii) of Theorem 2.3 are clearly
satisfied. Condition (iii) reduces to gcdðm; nÞ ¼ 1 and it is well-known that the
curve yn � xm ¼ 0 is irreducible if and only if m and n are co-prime.

The following two examples are taken from [17] (see also [2]).

Example 3.3. Let f ¼ ðy2 � x3Þ2 � x7. Then jacðx; f Þ ¼ 4yðy2 � x3Þ ¼
4yðy� x3=2Þðyþ x3=2Þ. By Lemma 5.4 we get Dðu; vÞ ¼ ðv� u6 þ u7Þðvþ u7Þ2.
Hence NJðx; f Þ ¼

�6
1

�
þ
�14

2

�
. Under notation of Theorem 2.3 one has H1 ¼

1þ 1 ¼ 2, C0 ¼ H2 ¼ 1þ 1þ 2 ¼ 4, C1 ¼ 6=1 ¼ 6, C2 ¼ H1 � 14=2 ¼ 14 and since
gcdðC0;C1;C2Þ ¼ 20 1, it follows that NJðx; f Þ is not a Merle type diagram.
Therefore f is not irreducible.

Example 3.4. Let f ðx; yÞ ¼ ðy2 � x3Þ2 � x5y. By Formula 1.3, Dðu; vÞ ¼
�256v3 þ 256u6v2 þ 288u13v� 256u19 � 27u20 (we computed the discriminant us-

ing Sage) and the Newton diagram of the discriminant is NJðx; f Þ ¼
�6
1

�
þ
�13

2

�
.

It is easy to check that NJðx; f Þ is a Merle type diagram Mð4; 6; 13Þ. Therefore
f is irreducible with semigroup Sð f Þ ¼ N4þN6þN13.

Example 3.5. Let f ðx; yÞ ¼ x8 þ ðx2 þ y3Þ3. The jacobian Newton dia-

gram of ðx; f Þ is NJðx; f Þ ¼
�12

2

�
þ
�48

6

�
which is not a Merle type diagram.

Note that in this example x ¼ 0 is not transverse to f ðx; yÞ ¼ 0.

Corollary 3.6. Let f ðx; yÞ ¼ yN þ a1ðxÞyN�1 þ � � � þ aNðxÞ A C½x; y�.
Assume that the curve f ðx; yÞ ¼ 0 intersects x ¼ 0 only at the point ð0; y0Þ. Then
the curve f ðx; yÞ ¼ 0 is analytically irreducible at ð0; y0Þ if and only if the Newton
diagram of Discryð f ðu; yÞ � vÞ is a Merle type diagram.

Proof. Put ~ff ðx; yÞ ¼ f ðx; yþ y0Þ. Then f ðx; yÞ ¼ 0 is analytically irre-
ducible at ð0; y0Þ if and only if ~ff ðx; yÞ ¼ 0 is analytically irreducible at ð0; 0Þ.
Since Discryð f ðu; yÞ � vÞ ¼ Discryð ~ff ðu; yÞ � vÞ the result follows from Formula
1.4. 9

In the theorem below a Newton diagram of a formal power series in two
variables appears, which is an obvious generalization of the usual Newton
diagram.

Theorem 3.7. Let f ðx; yÞ A C½x; y�, f ð0; 0Þ ¼ 0 be a square free polynomial.
Let T be a variable and consider Hðu; vÞ ¼ Discryð f ðuþ Ty; yÞ � vÞ considered as
an element of the formal power series ring C½T �½½u; v��. Then the curve f ðx; yÞ ¼ 0
is analytically irreducible at the origin if and only if the Newton diagram DH of H
is a Merle type diagram.

Proof. A generic line passing through the origin intersects the curve
f ðx; yÞ ¼ 0 transversally outside the origin. Hence for a generic constant t A C
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the polynomial ~ff ðx; yÞ ¼ f ðxþ ty; yÞ multiplied by some nonzero constant satis-
fies the assumption of Formula 1.4. It follows from Theorem 3.1 that the curve
f ðx; yÞ ¼ 0 has one branch at the origin if and only if the Newton diagram of
Dtðu; vÞ ¼ Discryð f ðuþ ty; yÞ � vÞ A Cfu; vg is a Merle type diagram. Observe
also that for su‰ciently generic t the Newton diagram DDt

is equal to DH which
ends the proof. 9

Using above theorem one can check the analytic irreducibility of an algebraic
curve at any point. It is enough to choose a system of coordinates so that this
point becomes the origin.

4. Proof of Theorem 3.1

The proof is based on Theorem 1 of [12] and the lemma following it:

Theorem 4.1. Let f ; g A Cfx; yg be such that NJðx; f Þ ¼ NJðx; gÞ. Assume
that x ¼ 0 is transverse to the curves f ¼ 0 and g ¼ 0. If f is irreducible then g is
also irreducible.

Lemma 4.2. Let f be a convergent power series, and let N be a posi-
tive integer. Write f ð0; yÞ ¼ yn þ higher order terms. Put ~ff ðx; yÞ ¼ f ðxN ; yÞ.
Then

(i) if N and n are coprime integers then f is irreducible if and only if ~ff is
irreducible,

(ii) if N > n then ~ff ¼ 0 is transverse to x ¼ 0,
(iii) NJðx; ~ff Þ ¼ LðNJðx; f ÞÞ, where L : R2 ! R2 is a linear automorphism

given by Lði; jÞ ¼ ðNi; jÞ.

Proof. Proof of (i). Assume that f ¼ f1 f2. Then ~ff ðx; yÞ ¼ f1ðxN ; yÞ �
f2ðxN ; yÞ. It follows that if ~ff is irreducible then f is irreducible.

Conversely, assume that f is irreducible. Recall (see Theorem 2.1, Chapter
IV, [26]) that the curve f ¼ 0, with ord f ð0; yÞ ¼ n, is a branch if and only
if there exists a convergent power series fðtÞ such that f ðtn; fðtÞÞ ¼ 0 and the
greatest common divisor of the set fngU supp f equals 1.

Let fðtÞ be such a series and let ~ffðtÞ ¼ fðtNÞ. Then ~ff ðtn; ~ffðtÞÞ ¼
f ðtnN ; fðtNÞÞ ¼ 0 and since n and N are co-prime the greatest common divisor
of the set fngU supp ~ff ¼ fngUN � supp f equals 1. Consequently ~ff ¼ 0 is a
branch.

Proof of (ii). By the assumption N > n the homogeneous initial part of the
series f ðxN ; yÞ is yn. This gives (ii).

Proof of (iii). Let
qf

qy
ðx; yÞ ¼ unit

Qn�1
j¼1 ½y� gjðxÞ� be the Newton-Puiseux

factorization of
qf

qy
. By Lemma 5.4 the discriminant of the mapping ðx; f Þ

has an equation Dðu; vÞ ¼
Qn�1

j¼1 ½v� f ðu; gjðuÞÞ�. Since
q~ff

qy
ðx; yÞ ¼ qf

qy
ðxN ; yÞ
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one has
q~ff

qy
ðx; yÞ ¼ unit

Qn�1
j¼1 ½y� gjðxNÞ� and consequently the discriminant

of the mapping ðx; ~ff Þ has an equation ~DDðu; vÞ ¼
Qn�1

j¼1 ½v� ~ff ðu; gjðuNÞÞ� ¼Qn�1
j¼1 ½v� f ðuN ; gjðuNÞÞ� ¼ DðuN ; vÞ. Comparing DD with D ~DD we get (iii). 9

Now let us prove Theorem 3.1. Suppose that NJðl; f Þ ¼ NJðl; gÞ, where g
is an irreducible power series. Applying an analytic change of coordinates we
may assume that l ¼ x. Take an integer N > 0 such that conclusions of (i) and
(ii) of Lemma 4.2 are satisfied for ~ff ðx; yÞ ¼ f ðxN ; yÞ and ~ggðx; yÞ ¼ gðxN ; yÞ. It

follows from (iii) of Lemma 4.2 that NJðx; ~ff Þ ¼ NJðx; ~ggÞ. Since ~ff and ~gg satisfy
assumptions of Theorem 4.1, ~ff is an irreducible power series. Hence by (i) of
Lemma 4.2 f is also irreducible.

5. Discriminant criterion of irreducibility at infinity

Let pðx; yÞ be a complex polynomial of degree n > 0. Let CHP2ðCÞ be
the projective closure of the curve pðx; yÞ ¼ 0. Assume that C intersects the line
at infinity at only one point Q. The purpose of this section is to give a criterion
for local analytical irreducibility of the curve C at Q without passing to local
coordinates centered at Q. For this we need some terminology.

Let gðx; yÞ be a polynomial of positive degree such that gðx; 0Þ2 0 and
gð0; yÞ2 0 (in other words its Newton diagram is convenient). Let P0ðgÞ be
the boundary in R2

þ of Dg and PyðgÞ be the boundary in R2
þ of DyðgÞ ¼

Convex Hull ðsupp gU fð0; 0ÞgÞ. We call these sets the Newton polygon of g at
zero and the Newton polygon of g at infinity respectively.

Theorem 5.1. Let pðx; yÞ be a complex polynomial of degree n > 0 without
multiple factors and let C be the projective closure of pðx; yÞ ¼ 0. Assume that C
intersects the line at infinity at only one point Q0 ð0 : 1 : 0Þ. Put Dyðx; tÞ :¼
Discryðpðx; yÞ � tÞ and let L : Z2 ! Z2 be the a‰ne transformation defined by
Lði; kÞ ¼ ðnðn� 1Þ � i � nk; kÞ. Then the curve C is analytically irreducible at Q
if and only if LðPyðDyÞÞ is the Newton polygon at zero of a Merle type diagram.

Proof. Let Pðx; y; zÞ ¼ znp
x

z
;
y

z

� �
be a homogeneous equation of the curve

C. Assume that C intersects the line at infinity only at Q ¼ ð1 : y0 : 0Þ. Then
pðx; yÞ ¼ Pðx; y; 1Þ and f ðy; zÞ :¼ Pð1; y; zÞ ¼ 0 is the a‰ne equation of C in
coordinates y, z. In these coordinates the point Q becomes ðy0; 0Þ. Since the
curve C intersects the line z ¼ 0 only at Q the polynomial f ðy; zÞ satisfies the
assumptions of Corollary 3.6.

Put Dðx; z; tÞ ¼ DiscyðPðx; y; zÞ � tÞ. We have that Dy ¼ Dðx; 1; tÞ and
D0 :¼ Discyð f ðy; zÞ � tÞ ¼ Dð1; z; tÞ. Since Pðx; y; zÞ is a homogeneous polyno-
mial of degree n, giving to the variable t the weight n, and the other variables the
weight 1, the polynomial Dðx; z; tÞ is quasi-homogeneous of degree nðn� 1Þ (see
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Theorem 10.9, Chapter I, [26]). In particular any term cijkx
iz jtk of Dðx; z; tÞ

corresponds to the point ði; j; kÞ of the hyperplane P1 i þ j þ nk ¼ nðn� 1Þ.
Moreover such point determines the term cijkx

itk of Dy and the term cijkz
jtk of

D0. Put L : Z2 ! Z2 defined by Lði; kÞ ¼ ðnðn� 1Þ � i � nk; kÞ. Then supp D0

¼ Lðsupp DyÞ. The last relation gives P0ðD0Þ ¼ LðPyðDyÞÞ. By Corollary
3.6 the curve C is analytically irreducible at Q if and only if the Newton diagram
DD0

is a Merle type diagram. 9

Remark 5.2. Let pðx; yÞ be a polynomial of degree n which has one point at
infinity di¤erent from ð0 : 1 : 0Þ. Let us denote by q the maximal inclination of
P0ðD0Þ. By [21], the Abhyankar-Moh inequality (see [3]) is equivalent to q < n.
Note also that the Abhyankar-Moh inequality is equivalent to equisingularity at
infinity of the family pðx; yÞ � t ¼ 0. By [16] this is also equivalent to the state-
ment that all segments of PyðDyÞ have positive slopes.

Example 5.3. Let pðx; yÞ ¼ xþ ðxþ y3Þ3 be a polynomial in C½x; y� which
corresponds to the projective curve C defined by Pðx; y; zÞ ¼ xz8 þ ðxz2 þ y3Þ3
¼ 0. The only point at infinity of C is Q ¼ ð1 : 0 : 0Þ. Moreover Dy ¼
ðxþ x3 � tÞ2ðx� tÞ6 and PyðDyÞ has only two segments joining the point
ð0; 8Þ to ð6; 6Þ and this one to ð12; 0Þ. The transformation of PyðDyÞ by
Lði; kÞ ¼ ð72� i � 9k; kÞ is a polygon of two segments joining the point ð0; 8Þ to
ð12; 6Þ and this one to ð60; 0Þ. This polygon is the Newton polygon of D ¼�12

2

�
þ
�48

6

�
. Since D is not a Merle type diagram, by Theorem 5.1 the curve C

is not analytically irreducible at Q. Observe that the local equation Pð1; y; zÞ
¼ 0 of the curve C was studied in Example 3.5.

Appendix

The purpose of this section is to describe the direct image of a curve
hðx; yÞ ¼ 0 by an analytic mapping F : ðC2; 0Þ ! ðC2; 0Þ, F�1ð0; 0Þ ¼ f0; 0g. We
restrict the discussion to the case F ¼ ðx; f Þ and hð0; yÞ2 0.

We will use the following properties of the direct image (see Preliminaries
in [6]):

(A) Let hðx; yÞ ¼ 0 be the irreducible curve with analytic parametrization
t ! ðtm; fðtÞÞ. The direct image F�ðh ¼ 0Þ is the curve gðu; vÞ ¼ 0 char-
acterized by two conditions:
(i) there exist an irreducible curve ~ggðu; vÞ ¼ 0 and an integer d > 0 such

that ~ggðtm; f ðfðtÞÞÞ ¼ 0 and g ¼ ~ggd ,
(ii) the projection formula ðg; uÞ0 ¼ ðh; xÞ0 holds.

(B) If gi ¼ 0 are direct images of curves hi ¼ 0 for i ¼ 1; 2 then g1g2 ¼ 0 is
the direct image of the curve h1h2 ¼ 0.

Lemma 5.4. Let F ¼ ðx; f Þ : ðC2; 0Þ ! ðC2; 0Þ, F�1ð0; 0Þ ¼ fð0; 0Þg be an
analytic mapping and let hðx; yÞ ¼

Qn
j¼1½y� gjðxÞ� be the Newton-Puiseux facto-
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rization of the convergent power series hðx; yÞ. Then the direct image F�ðh ¼ 0Þ
has the equation

Yn
j¼1

½v� f ðu; gjðuÞÞ� ¼ 0:ð4Þ

Proof. By (B) it is enough to prove Lemma for irreducible convergent
power series hðx; yÞ.

By Puiseux theorem there exists an integer n > 0 and a convergent power series
fðtÞ A Cftg, fð0Þ ¼ 0 such that hðtn; fðtÞÞ ¼ 0 and hðx; yÞ ¼

Qn
i¼1½y� fðe inx1=nÞ�,

where en is the n-th primitive root of unity. We want to show that gðu; vÞ ¼Qn
i¼1½v� f ðfðe inu1=nÞÞ� satisfies (A)(i) and (A)(ii).

Put cðtÞ ¼ f ðfðtÞÞ. Let d be the greatest common divisor of fngU supp c.
Then there exists a convergent power series c0 such that cðtÞ ¼ c0ðtdÞ. Let
m ¼ n=d and let em ¼ edn be the m-th primitive root of unity. We get gðu; vÞ
¼

Qn
i¼1½v� cðe inu1=nÞ� ¼

Qn
i¼1½v� c0ðe imu1=mÞ� ¼

Qm
i¼1½v� c0ðe imu1=mÞ�

� �d
. By Pui-

seux theorem ~ggðu; vÞ ¼
Qm

i¼1½v� c0ðe imu1=mÞ� is an irreducible convergent power
series. One easily checks that ~ggðtn;cðtÞÞ1 0. Moreover ðg; uÞ0 ¼ ðh; xÞ0 ¼ n
which ends the proof. 9
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38271 La Laguna, Tenerife

Spain

E-mail: ergarcia@ull.es

Janusz Gwoździewicz
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