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Abstract

We study the problem of uniqueness of complete hypersurfaces immersed in a semi-

Riemannian warped product whose warping function has convex logarithm. By

applying a maximum principle at the infinity due to S. T. Yau and supposing a

natural comparison inequality between the mean curvature of the hypersurface and that

of the slices of the region where the hypersurface is contained, we obtain rigidity

theorems in such ambient spaces. Applications to the hyperbolic and the steady state

spaces are given.

1. Introduction

The aim of this paper is to study the uniqueness of complete hypersurfaces
immersed in a semi-Riemannian warped product of the type eI �f M

n, where Mn

is a connected, n-dimensional oriented Riemannian manifold, I JR is an open
interval, f : I ! R a positive smooth function and e ¼G1 (for the details, see
Section 3).

In the last years, many authors have approached problems in this branch.
For example, we may cite the works of L. J. Alı́as et al [2, 3, 4, 5, 6], S. Montiel
[19, 20] and A. Romero et al [9, 10, 22, 23].

More recently, the second author jointly with F. Camargo and A. Caminha
obtained in [11] Bernstein-type results in two particular semi-Riemannian warped
products: the hyperbolic-type and the steady state-type spaces (see Section 4).

Here, by supposing an appropriate inequality involving the mean curvature
of the hypersurface and that of the slices, we are able to extend the results of [11]
to the case when the ambient space is a semi-Riemannian warped product whose
warping function has convex logarithm.
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In our approach, following the ideas of [11], the main analytical tool is a
maximum principle at the infinity due to S. T. Yau [26], which can be seen as a
sort of extension to complete (noncompact) Riemannian manifolds of the classical
Hopf ’s maximum principle. In this setting, we explore the geometry of the
vertical height function h of Riemannian immersions c : Sn ! eI �f M

n (that is,
the height function with respect to the unit coordinate vector field qt) to establish
our rigidity results. In this setting, we will assume that the hypersurface is
bounded away from the infinity of the ambient space; that is, it is contained in a
slab bounded by slices ft1g �Mn and ft2g �Mn, for some t1; t2 A I .

We consider initially the case of the mean curvature to prove, in the
Lorentzian setting, the following (cf. Theorem 4.2; see also Theorem 4.6 for the
Riemannian case):

Let Mnþ1 ¼ �I �f M
n be a Lorentzian warped product such that log f is

convex. Let c : Sn ! Mnþ1 be a complete, connected spacelike hypersurface
bounded away from the infinity of Mnþ1. Suppose that the mean curvature H
of Sn satisfies

f 0ðhÞHb
f 02

f
ðhÞ > 0:ð1:1Þ

If ‘h has integrable norm on Sn, then Sn is a slice.

We want to point out that the di¤erential inequality (1.1) means that, at each
point ðt; xÞ of the spacelike hypersurface Sn, the absolute value of the mean
curvature H can be any value greater than or equal to the absolute value of the
mean curvature of the slice ftg �Mn. Consequently, we only suppose here a
natural comparison inequality between two mean curvature quantities, but we do
not require H constant. In this sense, (1.1) is a mild hypothesis.

Furthermore, we use an extension of Yau’s result due to F. Camargo, A.
Caminha and P. Sousa [14] to treat the case of the higher order mean curvatures.
More precisely, in the Lorentzian setting, we get the following (cf. Theorem 5.4;
see also Theorem 5.8 for the Riemannian case):

Let Mnþ1 ¼ �I �f M
n be a Lorentzian warped product with constant sec-

tional curvature and such that log f is convex. Let c : Sn ! Mnþ1 be a complete,
connected spacelike hypersurface bounded away from the infinity of Mnþ1. Sup-
pose that the mean curvature H is bounded and that, for some 1a ra n� 1, Hr

and Hrþ1 are positive and such that

Hrþ1

Hr

b
f 0

f
ðhÞ > 0:ð1:2Þ

If h has a local minimum and ‘h has integrable norm on Sn, then Sn is a slice.

We note that, since H0 ¼ 1, the di¤erential inequality (1.2) is a natural
extension of (1.1) in the context of the higher order mean curvatures Hr defined

269some rigidity theorems in semi-riemannian warped products



in terms of the symmetric functions of the eigenvalues of the second fundamental
form of the hypersurface (see Section 2). On the other hand, in the case r ¼ 1,
we observe that it is not necessary to suppose that the height function of the Sn

has a local minimum on it (cf. Remark 5.5).
Moreover, by observing that the family of spaces eI �e t M

n include the
ðnþ 1Þ-dimensional steady state space Hnþ1 as well as the ðnþ 1Þ-dimensional
hyperbolic space Hnþ1, we give applications in each of these ambient spaces (cf.
Sections 4 and 5).

2. Preliminaries

Let Mnþ1 be a connected semi-Riemannian manifold with metric g ¼ h ; i of
index na 1, and semi-Riemannian connection ‘. For a vector field X A XðMÞ,
let eX ¼ hX ;Xi; X is a unit vector field if eX ¼G1, and timelike if eX ¼ �1.

In all that follows, we consider Riemannian immersions c : Sn ! Mnþ1,
namely, immersions from a connected, n-dimensional orientable di¤erentiable
manifold Sn into M, such that the induced metric g ¼ c�ðgÞ turns S into a
Riemannian manifold (in the Lorentz case n ¼ 1 and we refer to ðSn; gÞ as a
spacelike hypersurface of M ), with Levi-Civita connection ‘. We orient Sn by
the choice of a unit normal vector field N on it.

In this setting, if we let A denote the corresponding shape operator, then, at
each p A Sn, A restricts to a self-adjoint linear map Ap : TpS ! TpS.

For 0a ra n, let SrðpÞ denote the r-th elementary symmetric function of the
eigenvalues of Ap; in this way one gets n smooth functions Sr : S

n ! R, such that

detðtI � AÞ ¼
Xn

k¼0

ð�1ÞkSkt
n�k;

where S0 ¼ 1 by definition. If p A Sn and fekg is a basis of TpS formed by
eigenvectors of Ap, with corresponding eigenvalues flkg, one immediately sees
that

Sr ¼ srðl1; . . . ; lnÞ;
where sr A R½X1; . . . ;Xn� is the r-th elementary symmetric polynomial on the
indeterminates X1; . . . ;Xn.

Also, we define the r-th mean curvature Hr of c, 0a ra n, by

n

r

� �
Hr ¼ erNSr ¼ srðeNl1; . . . ; eNlnÞ:

We observe that H0 ¼ 1 and H1 is the usual mean curvature H of Sn. More-
over, when the ambient space has constant sectional curvature k, it follows from
the Gauss equation that

R ¼ eNðk�H2Þ;ð2:1Þ
where R is the normalized scalar curvature of Sn.
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We also observe that the Hilbert-Schmidt norm of the shape operator A of
Sn is given by

jAj2 ¼ n2H 2 � nðn� 1ÞH2:ð2:2Þ

For 0a ra n, one defines the r-th Newton transformation Pr on Sn by
setting P0 ¼ I (the identity operator) and, for 1a ra n, via the recurrence
relation

Pr ¼ erNSrI � eNAPr�1:ð2:3Þ

A trivial induction shows that

Pr ¼ erNðSrI � Sr�1Aþ Sr�2A
2 � � � � þ ð�1ÞrArÞ;

so that Cayley-Hamilton theorem gives Pn ¼ 0. Moreover, since Pr is a poly-
nomial in A for every r, it is also self-adjoint and commutes with A. Therefore,
a basis of TpS diagonalizing A at p A Sn also diagonalizes all of the Pr at p. Let
fekg be such a basis. Denoting by Ai the restriction of A to heii

? HTpS, it is
easy to see that

detðtI � AiÞ ¼
Xn�1

k¼0

ð�1ÞkSkðAiÞtn�1�k;

where

SkðAiÞ ¼
X

1aj1<���<jkan
j1;...; jk0i

lj1 � � � ljk :

It is also immediate to check that Prei ¼ erNSrðAiÞei, so that an easy
computation (cf. Lemma 2:1 of [7]) gives the following

Lemma 2.1. With the above notations, the following formulas hold:
(a) SrðAiÞ ¼ Sr � liSr�1ðAiÞ;
(b) trðPrÞ ¼ erN

Pn
i¼1 SrðAiÞ ¼ erNðn� rÞSr ¼ brHr;

(c) trðAPrÞ ¼ erN
Pn

i¼1 liSrðAiÞ ¼ erNðrþ 1ÞSrþ1 ¼ eNbrHrþ1,

where br ¼ ðn� rÞ n

r

� �
.

Associated to each Newton transformation Pr one has the second order
linear di¤erential operator Lr : DðSÞ ! DðSÞ, given by

Lrð f Þ ¼ trðPr Hess f Þ:

For a smooth j : R ! R and h A DðSÞ, it follows from the properties of the
Hessian of functions that

Lrðj � hÞ ¼ j 0ðhÞLrðhÞ þ j 00ðhÞhPr‘h;‘hi:ð2:4Þ
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Furthermore, we observe that

Lrð f Þ ¼ trðPr Hess f Þ ¼
Xn

i¼1

hPrð‘ei‘f Þ; eii

¼
Xn

i¼1

h‘ei‘f ;PrðeiÞi ¼
Xn

i¼1

h‘PrðeiÞ‘f Þ; eii ¼ trðHess f � PrÞ;

where fe1; . . . ; eng is a local orthonormal frame on Sn. Moreover, according
[24], when the space ambient has constant sectional curvature we also have

divðPrð‘f ÞÞ ¼
Xn

i¼1

hð‘eiPrÞð‘f Þ; eiiþ
Xn

i¼1

hPrð‘ei‘f Þ; eii

¼ hdiv Pr;‘f iþ Lrð f Þ ¼ Lrð f Þ:
Consequently, we conclude that the operator Lr is elliptic if and only if Pr is
positive definite. We observe that L0 ¼ D is always elliptic. The next lemma
gives a geometric condition which guarantees the ellipticity of L1.

Lemma 2.2 (Lemma 3:2 of [3]). Let c : Sn ! Mnþ1 be a Riemannian
immersion in a semi-Riemannian manifold Mnþ1. If H2 > 0 on Sn, then L1 is
elliptic or, equivalently, P1 is positive definite ( for a appropriate choice of the
Gauss map N).

When rb 2, the following lemma establishes su‰cient conditions to guar-
antee the ellipticity of Lr (for the proof see [7], Proposition 3:2).

Lemma 2.3 (Lemma 3:3 of [3]). Let c : Sn ! Mnþ1 be a Riemannian
immersion in a semi-Riemannian manifold Mnþ1. If there exists an elliptic point
of Sn, with respect to an appropriate choice of the Gauss map N, and Hrþ1 > 0
on Sn, for 2a ra n� 1, then for all 1a ka r the operator Lk is elliptic or,
equivalently, Pk is positive definite ( for a appropriate choice of the Gauss map N, if
k is odd ).

Here, by an elliptic point in a Riemannian immersion c : Sn ! Mnþ1 into a
semi-Riemannian manifold Mnþ1, we mean a point p0 A Sn where all principal
curvatures kiðp0Þ have the same sign.

3. Semi-Riemannian warped products

In order to study semi-Riemannian warped products, we define conformal
vector fields. A vector field V on Mnþ1 is said to be conformal if

LVh ; i ¼ 2fh ; ið3:1Þ
for some function f A CyðMÞ, where L stands for the Lie derivative of the
metric of M. The function f is called the conformal factor of V .
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Since LV ðX Þ ¼ ½V ;X � for all X A XðMÞ, it follows from the tensorial
character of LV that V A XðMÞ is conformal if and only if

h‘XV ;Yiþ hX ;‘YVi ¼ 2fhX ;Yi;ð3:2Þ

for all X ;Y A XðMÞ. In particular, V is a Killing vector field relatively to g if
f1 0.

Let Mn be a connected, n-dimensional oriented Riemannian manifold, I JR
an interval and f : I ! R a positive smooth function. In the product di¤er-
entiable manifold Mnþ1 ¼ I �Mn, let pI and pM denote the projections onto the
I and M factors, respectively. A particular class of semi-Riemannian manifolds
having conformal fields is the one obtained by furnishing M with the metric

hv;wip ¼ ehðpI Þ�v; ðpI Þ�wiþ f ðpÞ2hðpMÞ�v; ðpMÞ�wi;

for all p A M and all v;w A TpM, where e ¼ eqt and qt is the standard unit vector
field tangent to I . Moreover (cf. [19] and [20]), the vector field

V ¼ ð f � pI Þqt
is conformal and closed (in the sense that its dual 1-form is closed), with
conformal factor f ¼ f 0 � pI , where the prime denotes di¤erentiation with respect
to t A I . Such a space is a particular instance of a semi-Riemannian warped
product, and, from now on, we shall write Mnþ1 ¼ eI �f M

n to denote it.
If c : Sn ! eI �f M

n is a Riemannian immersion, with Sn oriented by the
unit vector field N, one obviously has e ¼ eqt ¼ eN .

Remark 3.1. For t0 A R, we orient the slice Sn
t0
¼ ft0g �Mn by using the

unit normal vector field qt. According to [6], St0 has constant r-th mean

curvature Hr ¼ �e
f 0ðt0Þ
f ðt0Þ

� �r

with respect to qt (see also [19] and [20]).

Now, let h denote the (vertical) height function naturally attached to Sn,
namely, h ¼ ðpI ÞjS. Let ‘ and ‘ denote gradients with respect to the metrics of
eI �f M

n and Sn, respectively. A simple computation shows that the gradient of
pI on eI �f M

n is given by

‘pI ¼ eh‘pI ; qti ¼ eqt;ð3:3Þ

so that the gradient of h on Sn is

‘h ¼ ð‘pI Þ> ¼ eq>t ¼ eqt � hN; qtiN:ð3:4Þ
In particular, we get

j‘hj2 ¼ eð1� hN; qti
2Þ;ð3:5Þ

where j j denotes the norm of a vector field on Sn.
In the Lorentzian setting, the following result is a particular case of one

obtained by the first author jointly with L. J. Alı́as (cf. [3], Lemma 4:1).
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Lemma 3.2. Let c : Sn ! eI �f M
n be a Riemannian immersion. If h ¼

ðpI ÞjS : Sn ! I is the height function of Sn, then

LrðhÞ ¼ ðlog f Þ0ðe tr Pr � hPr‘h;‘hiÞ þ hN; qti trðAPrÞ:ð3:6Þ

Remark 3.3. In [11], the second author jointly with F. Camargo and A.
Caminha have presented an alternative proof of the previous lemma.

4. Rigidity theorems in semi-Riemannian warped products

In this section, we will apply the results that we have discussed in the
previous sections to study the rigidity of Riemannian immersions into semi-
Riemannian warped products eI �f M

n, where Mn is a complete Riemannian
manifold. Initially, we will consider the Lorentzian setting.

In order to prove our rigidity results, we will use the following result due to
S. T. Yau. In what follows, L1ðSÞ denotes the space of Lebesgue integrable
functions on Sn.

Lemma 4.1 (Corollary on page 660 of [26]). Let Sn be an n-dimensional
complete Riemannian manifold. If g : Sn ! R is a smooth subharmonic function
such that j‘gj A L1ðSÞ, then g must be actually harmonic.

According [1], we say that a spacelike hypersurface c : Sn ! �I �f M
n is

bounded away from the future infinity of �I �f M
n if there exists t A I such that

cðSÞH fðt; xÞ A �I �f M
n; ta tg:

Analogously, we say that Sn is bounded away from the past infinity of �I �f M
n

if there exists t A I such that

cðSÞH fðt; xÞ A �I �f M
n; tb tg:

Finally, Sn is said to be bounded away from the infinity of �I �f M
n if it is both

bounded away from the past and future infinity of �I �f M
n. In other words,

Sn is bounded away from the infinity if there exist t < t such that cðSÞ is
contained in the slab bounded by the slices ftg �Mn and ftg �Mn.

Now, we can state and prove our results. As before, h is the height function
of Sn.

Theorem 4.2. Let Mnþ1 ¼ �I �f M
n be a Lorentzian warped product such

that log f is convex. Let c : Sn ! Mnþ1 be a complete, connected spacelike
hypersurface bounded away from the infinity of Mnþ1. Suppose that the mean
curvature H of Sn satisfies

f 0ðhÞHb
f 02

f
ðhÞ > 0:ð4:1Þ

If j‘hj A L1ðSÞ, then Sn is a slice.
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Proof. If N is the Gauss map such that hN; qti < 0, then, by applying the
reverse Cauchy’s inequality, we have

hN; qtia�1:ð4:2Þ

From (2.4), Df ðhÞ ¼ f 00ðhÞj‘hj2 þ f 0ðhÞDh. Thus, with the aid of Lemmas
2.1 and 3.2, we obtain

Df ðhÞ ¼ f 00f � f 02

f
ðhÞ

� �
j‘hj2 � n

f 02

f
ðhÞ þ f 0ðhÞHhN; qti

� �
:ð4:3Þ

Thus, since log f is convex, from the hypothesis (4.1) and inequality (4.2) we get

Df ðhÞb 0:

On the other hand, since j‘hj is integrable and Sn is bounded away from the
infinity of �I �f M

n, we get j‘f ðhÞj ¼ j f 0ðhÞj j‘hj also integrable on Sn.
Consequently, f ðhÞ is a subharmonic function on Sn whose gradient has

integrable norm. Since Sn is complete, it follows from Lemma 4.1 that f ðhÞ is
actually harmonic.

Now, suppose by contradiction, that exists p A Sn such that j‘hjðpÞ > 0.
Back to formula (4.3), we get

f 00f � f 02 ¼ 0

on an open subset of I and, hence, f ðtÞ ¼ aebt for some nonzero constants a and
b. Thus, back again to formula (4.3) and taking into account once more the
hypothesis (4.1), we have

�b ¼ HhN; qtia�Ha�b;

so that hN; qti1�1 and H1 b. So, it follows from (3.5) and the connected-
ness of Sn that it is a slice of �I �ae bt M

n, and we arrive at a contradiction.
Therefore, j‘hj1 0, i.e., Sn is a slice of �I �f M

n. r

Remark 4.3. An interesting special case of Theorem 4.2 is that of the
ðnþ 1Þ-dimensional steady state space, i.e., the warped product

Hnþ1 ¼ �R�e t R
n;

which is isometric to an open subset of the de Sitter space Snþ1
1 . In this case, the

slice St0 is isometric to Rn and is called a hyperplane of Hnþ1 (cf. [1]).
The importance of considering Hnþ1 comes from the fact that, in Cosmol-

ogy, H4 is the steady state model of the universe proposed by H. Bondi and T.
Gold [8], and F. Hoyle [18], when looking for a model of the universe which
looks the same not only at all points and in all directions (that is, spatially
isotropic and homogeneous), but also at all times (cf. [25], Section 14:8, and [17],
Section 5:2).

From Theorem 4.2, we get the following
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Corollary 4.4 (Theorem 1:1 of [11]). Let c : Sn ! Hnþ1 be a complete,
connected spacelike hypersurface bounded away from the infinity of Hnþ1, with
mean curvature Hb 1. If j‘hj A L1ðSÞ, then Sn is a hyperplane of Hnþ1.

Remark 4.5. Following the ideas of A. L. Albujer and L. J. Alı́as [1], we
can consider a natural extension of the steady state space Hnþ1, the so-called
steady state-type spacetimes �R�e t M

n, where Mn is a connected n-dimensional
Riemannian manifold. For instance, when Mn is the flat n-torus we get the de
Sitter cusp as defined in [16]. We observe that, from Lemma 7 of [1], if a steady
state type spacetime admits a complete spacelike hypersurface which is bounded
away from the future infinity, then its Riemannian fiber Mn is necessarily
complete. In this setting, we observe that Corollary 4.4 admits an extension for
such ambient spaces (cf. [11], Theorem 3:1).

Now, we turn our attention to Riemannian warped products I �f M
n, where

Mn is a complete, connected Riemannian manifold. In this setting, similarly to
the Lorentzian case, we say that a complete hypersurface c : Sn ! I �f M

n is
bounded away from the infinity of I �f M

n if there exist t < t such that cðSÞ is
contained in the slab bounded by the slices St and St.

In the Riemannian setting, the analogue of Theorem 4.2 is given by

Theorem 4.6. Let Mnþ1 ¼ I �f M
n de a Riemannian warped product such

that log f is convex. Let c : Sn ! Mnþ1 be a complete, connected hypersurface
bounded away from the infinity of Mnþ1. Suppose that the mean curvature H of
Sn satisfies

f 02

f
ðhÞb f 0ðhÞH > 0:ð4:4Þ

If j‘hj A L1ðSÞ, then Sn is a slice.

Proof. If we choose the Gauss map N of S in such a way that hN; qti < 0,
then Cauchy-Schwarz inequality gives

hN; qtib�1:ð4:5Þ

Since we are supposing that the mean curvature H of Sn satisfies (4.4),

inequality (5.5) gives
f 02

f
ðhÞ þ f 0ðhÞHhN; qtib 0. Consequently, since log f is

convex, from Lemma 3.2 and equation (2.4) we obtain that

Df ðhÞ ¼ f 00f � f 02

f
ðhÞ

� �
j‘hj2 þ n

f 02

f
ðhÞ þ f 0ðhÞHhN; qti

� �
b 0:

At this point, if we follow essentially the same arguments employed in the
last part of the proof of Theorem 4.2, we conclude that Sn is a slice of I �f M

n.
r
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We observe that the ðnþ 1Þ-dimensional hyperbolic space Hnþ1 is isometric
to R�e t R

n, an explicit isometry being found in [4]. It can be easily seen from
such isometry that the slices St0 ¼ ft0g � Rn of the warped product model of the
hyperbolic space are precisely the horospheres.

As a consequence of Theorem 4.6, we obtain the following

Corollary 4.7 (Theorem 1:2 of [11]). Let c : Sn ! Hnþ1 be a complete,
connected hypersurface bounded away from the infinity of Hnþ1, with mean
curvature 0 < Ha 1. If j‘hj A L1ðSÞ, then Sn is a horosphere of Hnþ1.

Remark 4.8. As in Remark 4.5, we observe that Corollary 4.7 can be
extended to the context of the so-called hyperbolic-type spaces R�e t M

n, where
Mn is a complete, connected n-dimensional Riemannian manifold (cf. [11],
Theorem 3:4).

Remark 4.9. Related with Theorems 4.2 and 4.6 we note that, when the
Riemannian immersion c : Sn ! Mnþ1 is closed, cðSÞ is naturally bounded away
from the infinity of Mnþ1 and the hypothesis that j‘hj A L1ðSÞ is immediately
satisfied. In this case the proofs of such theorems follow, in fact, from the
Hopf ’s maximum principle.

5. Extensions to the r-th mean curvatures

In order to obtain extensions of the theorems of the previous section to the
case of the r-th mean curvatures, we will use the following extension of Lemma
4.1 to the context of the Lr operators due to F. Camargo, A. Caminha and P.
Sousa.

Lemma 5.1 (Corollary 1 of [14]). Let Mnþ1 have constant sectional curvau-
ture, and c : Sn ! Mnþ1 be a complete Riemannian immersion with bounded
second fundamental form. Let also g : Sn ! R be a smooth function such that
j‘gj A L1ðSÞ. If Lrg does not change sign on Sn, then Lrg ¼ 0 on Sn.

Remark 5.2. From Proposition 7:42 of [21], the condition of that a semi-
Riemannian warped product eI �f M

n to have constant sectional curvature
implies that the sectional curvatures of its fibre Mn must be nonnegative.

We will also need a su‰cient condition to guarantee the existence of an
elliptic point in our Riemannian immersions. In what follows, we quote the
semi-Riemannian version of Lemma 5:4 of [2] due to the first author jointly with
L. J. Alı́as and A. Brasil Jr.

Lemma 5.3. Let Mnþ1 ¼ eI �f M
n be a semi-Riemannian warped product,

and c : Sn ! Mnþ1 a Riemannian immersion. If �ef ðhÞ attains a local minimum
at some p A Sn, such that f 0ðhðpÞÞ0 0, then p is an elliptic point for Sn.
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Now, we are in condition to state and proof our next results.

Theorem 5.4. Let Mnþ1 ¼ �I �f M
n be a Lorentzian warped product with

constant sectional curvature and such that log f is convex. Let c : Sn ! Mnþ1

be a complete, connected spacelike hypersurface bounded away from the infinity
of Mnþ1. Suppose that the mean curvature H is bounded and that, for some
1a ra n� 1, Hr and Hrþ1 are positive and such that

Hrþ1

Hr

b
f 0

f
ðhÞ > 0:ð5:1Þ

If h has a local minimum on Sn and j‘hj A L1ðSÞ, then Sn is a slice.

Proof. As in the proof of Theorem 4.2, if N is the Gauss map such that
hN; qti < 0, then, by applying the reverse Cauchy’s inequality, we have

hN; qtia�1:ð5:2Þ

From (2.4), Lrf ðhÞ ¼ f 00ðhÞj‘hj2 þ f 0ðhÞLrh. Thus, with the aid of Lemmas
2.1 and 3.2, we obtain

Lrf ðhÞ ¼
f 00f � f 02

f
ðhÞ

� �
hPr‘h;‘hi� brf

0ðhÞHr

f 0

f
ðhÞ þHrþ1

Hr

hN; qti

� �
;ð5:3Þ

where br ¼ ðn� rÞ n

r

� �
.

On the other hand, by using Lemmas 5.3 and 2.3, we guarantee that Pr is
positive definite. Thus, since log f is convex, from hypothesis (5.1) and in-
equality (5.2), we get

Lrf ðhÞb 0:

On the other hand, since j‘hj is integrable and Sn is bounded away from the
infinity of �I �f M

n, we get j‘f ðhÞj ¼ j f 0ðhÞj j‘hj also integrable on Sn. More-
over, since Lemma 2.3 also guarantees that H2 > 0, from equation (2.2) we see
that the boundedness of H implies that Sn has bounded second fundamental
form. Consequently, from Lemma 5.1, we have that Lr f ðhÞ ¼ 0 on Sn.

Now, if we follow the same steps of last part of the proof of Theorem 4.2,
we conclude that Sn is a slice of �I �f M

n. r

Remark 5.5. Taking into account Lemma 2.2, from the proof of Theorem
5.4 we easily see that in the case r ¼ 1 it is not necessary to suppose that the
height function of the Riemannian immersion has a local minimum on it.

From the proof of Theorem 5.4, we obtain the following results:

Corollary 5.6 (Theorem 3:6 of [11]). Let Mn be a Riemmanian space form
of zero sectional curvature and c : Sn ! �R�e t M

n be a complete, connected
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spacelike hypersurface with bounded second fundamental form and bounded away
from the infinity of �R�e t M

n. If j‘hj A L1ðSÞ and 0 < Hr aHrþ1 on Sn, then
Sn is a slice of �R�e t M

n.

From Theorem 5.4 and equation (2.1), we obtain a sort of extension of the
Theorem 1:1 of [12] and of Theorem 3:1 of [13]. In what follows, the height
function of the hypersurface is defined with respect to the unit vector field which
is normal to the foliation of Hnþ1 by hyperplanes.

Corollary 5.7. Let Sn be a complete, connected spacelike hypersurface,
which lies lies between two hyperplanes of Hnþ1. Suppose that the mean curva-
ture H is positive and bounded and that the scalar curvature R satisfies RþHa 1.
If the gradient of the height function has integrable norm on Sn, then Sn is a
hyperplane of Hnþ1.

The Riemannian version of Theorem 5.4 is given below.

Theorem 5.8. Let Mnþ1 ¼ I �f M
n de a Riemannian warped product with

constant sectional curvature and such that log f is convex. Let c : Sn ! Mnþ1

be a complete, connected hypersurface bounded away from the infinity of Mnþ1.
Suppose that the mean curvature H is bounded and that, for some 1a ra n� 1,
Hr and Hrþ1 are positive and such that

f 0

f
ðhÞb Hrþ1

Hr

> 0:ð5:4Þ

If h has a local maximum on Sn and j‘hj A L1ðSÞ, then Sn is a slice.

Proof. As in the proof of Theorem 4.6, we choose the Gauss map N of S in
such a way that hN; qti < 0, then Cauchy-Schwarz inequality gives

hN; qtib�1:ð5:5Þ

From hypothesis (5.4) and inequality (5.5), we have that

f 0

f
ðhÞ þHrþ1

Hr

hN; qtib 0:

On the other hand, by using Lemmas 5.3 and 2.3, we guarantee that Pr

is positive definite. Consequently, since log f is convex, from Lemma 3.2 and
equation (2.4) we obtain that

Lr f ðhÞ ¼
f 00f � f 02

f
ðhÞ

� �
hPr‘h;‘hiþ br f

0ðhÞHr

f 0

f
ðhÞ þHrþ1

Hr

hN; qti

� �
b 0;

where br ¼ ðn� rÞ n

r

� �
.
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Therefore, by following the same arguments employed in the last part of the
proof of Theorem 5.4, we conclude that Sn is a slice of I �f M

n. r

Remark 5.9. As we have observed in Remark 5.5, taking into account once
more Lemma 2.2, from the proof of Theorem 5.8 we see that in the case r ¼ 1 it
is not necessary to suppose that the height function of the Riemannian immersion
has a local maximum on it.

As in the Lorentzian setting, from the proof of Theorem 5.8 we obtain the
following

Corollary 5.10 (Theorem 3:7 of [11]). Let Mn be a Riemmanian space
form of zero sectional curvature and c : Sn ! R�e t M

n be a complete, connected
hypersurface with bounded second fundamental form and bounded away from the
infinity of R�e t M

n. If j‘hj A L1ðSÞ and Hr bHrþ1 > 0 on Sn, then Sn is a slice
of R�e t M

n.

From Theorem 5.8 and taking into account once more equation (2.1), we
also get the following extension of the classical theorem due to S. Y. Cheng and
S. T. Yau in [15]. Here, analogously to Corollary 5.7, the height function of the
hypersurface is defined with respect to the unit vector field which is normal to the
foliation of Hnþ1 by horospheres.

Corollary 5.11. Let Sn be a complete, connected hypersurface, which lies
lies between two horospheres of Hnþ1. Suppose that the mean curvature H is
positive and bounded and that the scalar curvature R satisfies 0 < Rþ 1aH. If
the gradient of the height function has integrable norm on Sn, then Sn is a
horosphere of Hnþ1.

Remark 5.12. In the setting of Theorems 5.4 and 5.8, if the Riemannian
immersion c : Sn ! Mnþ1 is closed, since from Lemma 2.3 Lr is an elliptic
operator, the result follows in fact from the Hopf ’s maximum principle.
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Universidade Federal do Ceará
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