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INTERSECTION THEORY ON MIXED CURVES
Mutsuo Oka

Abstract

We consider two mixed curves C, C’ = C? which are defined by mixed functions of
two variables z = (z1,2z2). We have shown in [4], that they have canonical orienta-
tions. If C and C’ are smooth and intersect transversely at P, the intersection number
Lyp(C,C'"; P) is topologically defined. We will generalize this definition to the case
when the intersection is not necessarily transversal or either C or C’ may be singular at
P using the defining mixed polynomials.

1. Introduction

First we recall the complex analytic situation. Consider complex polyno-
mials f(z) and ¢(z) of two variables z = (z;,z;) and consider complex analytic
curves defined by C: f(z) =0 and C’:g(z) =0. Suppose that P is an isolated
intersection point of CNC’. Then the local algebraic intersection number
I(f,g; P) is defined by the dimension of the quotient module dim Op/(f,g)
where Op is the local ring of the holomorphic functions at P and (f,g) is the
ideal generated by f and g. Thus I(f,g; P) is a strictly positive integer and it is
equal to 1 if and only if C and C’ are non-singular at P and transversal to each
other. On the other hand, the complex curves C, C’ have canonical orientations
which come from their complex structures (see for example, [1]) and the local
algebraic intersection number is equal to the local topological intersection number
if the intersection is transverse. Moreover this is also true for a non-transverse
intersection in the sense that under a slight perturbation, an intersection P of
algebraic intersection number v splits into v transverse intersections. In partic-
ular, the topological local intersection number can be defined by the algebraic
local intersection number.

The purpose of this note is to define the local intersection multiplicity for
two mixed curves using the defining polynomials and study the analogous
properties. The problem in this case is that the local intersection number is
not necessarily positive. This makes the algebraic calculation more difficult.
Let C: f(z,Z) =0 and C’:¢g(z,Z) =0 be mixed curves which have at worst
an isolated mixed singularity at Pe CNC’. We will define the intersection
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multiplicity 7,,,(C, C’; P) using a certain mapping degree which is described by
the defining polynomials f, ¢g (Definition 5, §2 and Theorem 2). This definition
coincides with the usual one for complex analytic curves.

In §4, we consider the roots of a mixed polynomial A (u,#) of one variable u
as a special case. We introduce the notion of multiplicity with sign mg(h, o) for a
root o of h(u,it) = 0 and we give a formula for the description of mg(4, o) for an
admissible mixed polynomial /4(u, ) (Theorem 20).

2. Mixed curves

2.1. A mixed singular point. Let f(z,Z), z = (Z],ZQ)GCZ, be a mixed
polynomial. See [6, 5, 4] for further details about a mixed polynomial. Using
real coordinates (xi, y1, X2, y2) with z; = x; +iy;, j = 1,2, f can be understood as
a sum of two polynomials with real coefficients:

f(272) :fR(x17y17x2ay2)+iﬁ(xl7ylax27y2)'

where fr, f; are the real part and the imaginary part of f respectively. Recall
that f(z,zZ) is a polynomial of xj, y;, xz, y» by the substitution

:Zj+Zj Zj—Zj

;= i=1,2.
2 ) y_/ 2i ) J )

Xj
We say that C: f(z,z) = 0 is mixed non-singular at P € C if the Jacobian matrix
of (fr, f7) has rank two at P ([3, 5]). We recall that C* has a canonical orienta-
tion given from the complex structure. We identify C?> with R* by (z1,22) <

(x1, ¥1, X2, ¥2) and thus a positive frame of R* is given by (;;q’;;q’&i’&;aQ)
If P is a mixed non-singular point, C is locally a real two dimensional mani-
fold. The normal bundle N¢ p of C < C? at P has the canonical orientation
so that the orientation is compatible with the complex valued function f,
namely dfp : Nc p — ToC is an orientation preserving isomorphism. Thus the
orientation of C at P is defined as follows. A frame (v;,v,) = TpC, v =
(v11, V12,013, 014), V2 = (21,02, V23, U2g), is positive if and only if the frame

Vil V12 V13 Ui4

Vi U1 U2 V23 U4
o ||k R IR IR
grad fr || ox1 9y Oxa On

grad f; dr o o

Ox; 0yr 0xy 0Oy

is a positive frame of C> =R*. The gradient vector grad h(x1, y1,x2, y2) of a
real valued function / is defined by
oh oh Oh 6h)

grad h(x, y1, X2, y2) = (6—961’6_)/1’6—962’8—)/2
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2.2. Mixed homogenization and the closure in P>, Assume that f(z,7) =
>, Cw2'Z" is a mixed polynomial of two variables z = (z1,2). Put C=
771(0) =« C2. We assume that C is non-empty and that C has only a finite
number of mixed singular points. We consider the affine space C> with co-
ordinates z as the affine chart Z, # 0 of the projective space P> with homo-
geneous coordinates (Zy, Zj,Z,). The coordinates are related by z; = Z,/Z,,
7y =7Z3/Zy. Let d* and d~ be the degree of f(z,Z) in z and Z respectively.
That is,

d* =max{Py||cy # 0}, d~ =max{lul| ey, # 0}

where |v| =v; + v, for a multi-integer v = (v;,»). We associate with f a
strongly polar homogeneous mixed polynomial F(Z,Z) as follows, where Z =
7_ (5 5 5 gy dizd (L1 L2 L1 2y
(Z(),Zl,Zz) and Z = (Z(),ZI,ZQ) by F(Z,Z) = ZO ZO f(ZO,ZO,ZO ,ZO> and
we call F the mixed homogenization of f. Here a mixed polynomial ¢(Z,Z)
is called strictly polar homogeneous polynomial of radial degree d, and polar
degree d, 1f it is a linear combination of monomials Z'Z* with |v| + |,u|
[v| = || = d,. We define C = P? by the topological closure of C = C?cP? and
we define a mixed projective curve C := {((Zo Zi:2,)eP*|F(Z, Z) =0} It
is easy to see that the closure C of C in P? is a subset of C but in general,
C might be a proper subset of C. See Remark 3.3.1. F is a strongly polar
homogeneous polynomial of radial degree d, =d* +d~ and the polar degree
d, =d* —d~ respectively and F|, ., = f.

Remark 1. 1In [4], we have assumed that the polar degree is non-zero for the
definition of strongly polar homogeneous polynomials, but in this paper, we
consider also the case d* =d~. In this case, F(Z,Z): C*\F~'(0) — C* does
not give a global fibration but F~'(0) is C*-action stable where C*-action is the
usual one:

C* x C3 - C37 (p7 (ZOaZhZZ)) = (p207le7pZZ)'

In particular, the zero set F =0 is well-defined in P2.

3. Intersection numbers

3.1. Local intersection number I (Smooth and transversal intersection case).
In this section, we denote vectors in R* by column vectors for brevity’s sake.
Assume that C: f=0 and C':¢g =0 are two mixed curves and assume that
PeCNC’" and C, C’ are mixed non-singular at P and the intersection is trans-
verse at P. Let uj, up and vy, v, be positive frames of TpC and TpC’. Then
the local (topological) intersection number /,,,(C, C’; P) is defined by the sign of
the determinant det(u,us, vy, v2) (See for example [2]). Namely

I, det -0
Imp(C7 C/,P) { ) € (u17u27V1,V2) ,

—1, det(uj,uy,vy,vz) < 0.
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For any frames wy,...,ws; of R*, we define

1, if det(W17W2,W3,W4) >0

S. 9 1) 9 = .
ign(wi, W2, W, Wa) {—1, if det(wy, wy, w3, wq) < 0.
By the definition of the orientation of C and C’,

Sign(u;, uy, ‘grad fr(P), ‘grad f;(P)) =
Sign(vy, va, ‘grad gr(P), 'grad g;(P)) =

1,
1
Now our first result is the following.
THEOREM 2. The intersection number I,,,(C,C'; P) is given by
Sign(‘grad fr(P), ‘grad f;(P), ‘grad gr(P), ‘grad g;(P)).

Recall that the tangent space 7pC is generated by the vectors orthogonal
to the two dimensional subspace (‘grad fr(P), ‘grad f;(P)>g. Thus two dimen-
sional planes <uj,u;>g and (‘grad fr(P),’grad f;(P))>g are orthogonal. Here
{wy,wy g is the two dimensional plane spanned by wj, ws.

3.1.1.  Gram-Schmidt orthonormalization. First we consider a simple asser-
tion. Let a;, a, a3, as be column vectors in R* and let P, QO be 2x2
matrices. Then

ASSERTION 3.

det((a;,a;)P, (a3, a4) Q) = det(a;, ay, a3, a4) det(P) det(Q)

Proof. The assertion follows from the simple equality in 4 x 4 matrices:

(a1, a2) P, (a3,24)0) = (ala327a3’a4)(g g) -

Now we consider Gram-Schmidt orthonormalization of (uj,u;) and
(‘grad fR,‘grad f;). They are orthonormal frames (uj,u;) and (‘grad fr(P)’,
‘srad f7(P)’) such that they satisfy the equalities:

(uj,w) = (u,w)Q1, and
(‘grad fr(P)’, 'grad f;(P)") = (‘grad fr(P), ‘grad f;(P))Q>

where Q1, O, are upper triangular 2 x 2 matrices with positive entries in their
diagonals. Similarly we consider the orthonormalization

(v, v3) = (vi,v2) Ry

(‘grad gr(P)', 'grad g;(P)") = (‘grad gr(P), 'grad g;(P))Ry,
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where R;, R, are upper triangular matrices with positive entries in their
diagonals. Using Assertion 3, we get

Sign(ug, uj, vi,v5) = Sign((u;, u2) 0y, (vi,v2)Ry)
= Sign(u;, up, v, v2),
and
Sign(‘grad fr(P)’, ‘grad f;(P)’, ‘grad gr(P)’, ‘grad g;(P)")
= Sign((‘grad fr(P), ‘grad f;(P))0, (‘grad gr(P), ‘grad g;(P))Rz)
= Sign(‘grad fr(P), ‘grad f7(P), ‘grad gr(P), ‘grad g;(P)).

Thus the calculation of the intersection number can be done using these
orthonormal frames

(uf, w3, ‘grad fr(P)', ‘grad fi(P)"), (u},v;, ‘grad gr(P)’, ‘grad g;(P)").

Thus the proof of Theorem 2 is reduced to the following.

LemMA 4. Assume that (uj,up,us,ug) and (vi,v2,V3,V4) be positive ortho-
normal frames of R*.  Then

det(u;,up, vy, vo) = det(us, ug, v3, v4).
Proof. Assume that

(1) (ul,uz,U3,U4) = (V],Vz,V},V4)A,
with 4 € SO(4;R). Write 4 by 2 x 2 matrices as

Ay A

g (A A

B B

The equality (1) can be rewritten as

(2) (Vi,V2,V3,v4) = (uy,up, u3,u4) 4

where
y_ (4 B,
IAQ th
First we consider the equality from (1):
de'[(lll,llz,Vth) = det((vl,vz)Al + (V3,V4)Bl,V1,V2)
= det(V17V27 (V37V4)Bl)
= det B].
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On the other hand, we have also from (2):
(3) det(uy,up, vy, v2) = det(uy, uy, (u3,uy)'4,)
4) = det 4, = det 4,
Thus det 4, = det B;. Similarly we get

det(us,ug, v3,v4) = det((vy, v2) A4, v3,v4) = det 4,
= det(ll37ll4, (Vl,Vz)IBl) = det B;.

Thus the assertion follows from these equalities. O

3.2. Local intersection number II (General case). Assume that C: f(z,Z) =
0 and C':g(z,zZ) =0 are mixed curves as above and let P be an isolated
intersection point of CN C’. We assume also that both C and C’ have at worst
an isolated mixed singularity at P.

DerNITION 5. Let ¢ = (fr, f7,9Rr, 91) : R* — R*. We define the local inter-
section number /,,(C,C’; P) by the local mapping degree of the normalized

mapping Y of ¢:
v :=g/lgll : S;(P) — S°.

Here S3(P) := {x e R*||)x — P|| = ¢} and ¢ is a sufficiently small positive number
so that P is the only intersection of C and C’ in B,(P) where B,(P) is the disk of
radius ¢ centered at P.

Suppose that P is a transverse intersection of C and C’ and assume that C
and C’ are mixed smooth at P. Take a small positive number ¢ so that

lo @) =2llp — oM@, llz— Pl =¢

where ¢(!) is the linear term of ¢ at P. Then we consider the homotopy ¢, =
(1—=0p+tp), 0<t<1. Then the normalized mapping ¥ is homotopic to
that of ¢(!) on S}(P). The latter is nothing but the normalization of (‘grad fx,
‘srad f7, 'grad gg, ‘grad g;). Thus

PrROPOSITION 6. This definition coincides with the topological local intersec-
tion number if the intersection is transverse and two curves C, C' are mixed non-
singular at P.

3.2.1. Stability of the intersection number under a bifurcation. Consider
two mixed algebraic curves C: f =0 and C’: g =0 and assume that Pe CNC’
is an isolated point of CNC’ (but probably not a transversal intersection).
Let fi, g1, |t| <p be two continuous families of mixed polynomials such that
fo=/f, go=g. We take a fixed ¢>0 so that CNC'NB*P)={P} with
BYP)={zeC*||z—P|| <&} and put C,={zeC?|f(z,Z) =0} and C/ =
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{z e C?|gs(z,Z) = 0}. Take a sufficiently small y >0 so that

{zeS,|fu(2,7) = gp(2,2) =0} =0, |af,|f| <y <p.

Take J, 6" with |d],]6'| <y and assume that C;N Cj, N B}(P) ={Py,...,P,} and
at each point P;, two curves Cs and Cj, are smooth and they intersect trans-
versely. Then we claim:

THEOREM 7. Suppose that Pe CNC' is bifurcated into v transverse inter-
sections in the near fibers CsN\ Cj, as above. Let a and b the number of posi-

tive and negative intersection points among {Pi,...,P,} (a+b=v). Then
I[()p(c, C/,P) =a-—b.

Proof. The assertion follows from the following standard topological argu-
ment. First, we consider the map of the pair ¢, ; = (f;,g,) and its normalized
one:

lpt,s : SS - S37 ‘ﬁt,s(zai) = (D,AS(Z,i)/H(ﬂnS(Z,i)H.

The mapping degree of y, , is independent of ¢ and s for any |7 <y, |s| <.

Secondly, take a sufficiently small positive number 0 < r < ¢ so that the disks
B}(P;), j=1,...,v are mutually disjoint and do not intersect with S3(P). Then
Vs 5 1s extended to a mapping

v

Yo X = Bj(P)\ | Int B}(P)) — S°

j=1
where Int B}(P;) = B}(P;)\S?(P;). Thus the fundamental class [S.(P)] is equal

to the sum of fundamental classes >/ [S,(P;)] in H;3(X), the mapping degree of
W55 S;(P) — S? is the sum of the local mapping degrees of ;5 : S;(P;) — S°.

O

Remark 8. Note that a, b in the above theorem depends on the bifurcation
but @ — b is independent of the chosen bifurcation. Note also that a, b can be 0
which implies C;N Cj, N B}(P) = 0. See Example 10.

3.3. Global intersection number. We consider the global intersection
number. Let C: F(X,X) =0 and C': G(X,X) =0 be mixed projective curves
in P? defined by strongly polar homogeneous polynomials F and G of polar
degree d and d’ respectively. We assume also that the mixed singularities of C
and C' are at worst isolated singularities. Then by Theorem 11, [4], they have
respective fundamental cycles [C] and [C’]. Here X = (Xj, X1, X>) are homo-
geneous coordinates of P2, Assume that CNC'N{X, =0} =0. We consider
the affine space C? with coordinates z; = X; /Xo and z; = X5/ X) respectively and
put

f(Z,i) = F(17ZI722717Z_17Z_2)7 g(Z,i) = G(lazl;ZZa 152_152_2)
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respectively. Let CNC' = {Py,...,P,}. Then by Theorem 11, [4], the funda-
mental classes [C], [C'] of C, C’ exist and they satisfy, in H(P?)

[C]=d[P'], [C']=d'[P]

where [Pl} is the homology class corresponding to the fundamental class of the
complex line P! = P2, Thus we have the equality [C]-[C'] =dd'. Now we
have the equality:

THEOREM 9.
U
> Loy(C,C's Py) = dd'.
=1

Example 10. Consider the special case:
C:.:z1=0, C’:g(Z,i)=221—I—ZlZ_1+ZzZ_2=O.

Then C is the projective line z; =0 of degree 1 and C’ is the mixed curve
of polar degree 0 which is defined by G(Z,Z) =2ZyZ\+ Z\Z, + Z,Z, = 0.
Actually C’ is a 2 dimensional sphere

C:yi=0, (+1)2+x2+y2=1

and it has a mixed singular point (—1,0). We see that CNC' ={(1:0:0)}
and C-C’'=0. This implies 7(C,C’;(0,0)) =0. In fact, consider the bifurca-
tion C,={z; —t=0}. It is easy to see that C,;NC' =0 if 1>0. For 1<0
small, the intersection C,NC’ is a circle.

3.3.1. Remark. 1. Twisted line. The singular locus of a mixed curve can
be non-isolated, even if we assume that it does not have any real codimension 1
components.

Consider the curve f(z,Z) =z; —Z;. Then C is a smooth real two-plane
and C is defined by F = Z,Zy — ZyZ, =0. We call C (and C) a twisted line.
Let C < P? be the topological closure. The complex line at infinity L., is
defined by Zy =0. To see more details about the structure of these mixed
curves, we consider the coordinate chart U, = {Z; # 0} with complex coordinates
(uo,u1) = (Zo/Z2,Z1/Z>). Then CNU; is defined by

(5) fz(uo,ul) =iy —uy = 0.

We observe that

(a) C=L,UC and S := L, NC is a circle defined by L., N{|Z1/Z,| = 1}.
This follows from (5), as |ui| = 1.

(b) The singular locus of C is equal to S. Using the coordinates (ug,u;)
on U, S is defined by |uj|=1 on L, ={uy=0}. As a l-cycle, we orient
it counterclockwise. Inside the circle S (ie., |uj| < 1), the orientation is the
same with the disk A := {u; e C||u| < 1}. Outside {|u;| > 1} of S, the orien-
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tation is opposite to the complex structure with coordinates u;. The singular
locus can be computed by the Jacobian matrix of (far, f2;7) or by Proposition I,

3]

(c) Let Uy ={Zy #0}. In this coordinate, p: C — C, p(zj,z2) =z, is an
orientation preserving diffeomorphism. The circle Sg := {|z2| = R} converges to
—2S8 when R — o0.

Proof.  To see this, consider the large circle Sg parametrized by z; = Re 0,
7 =Re”, 0 <0 <2n. In the chart U,, this corresponds to

1 .
up(0) = ﬁe”(), u(0) = zy )z = e, O

In [4], we have observed that there exists a fundamental class [D] € H»(D)
for any mixed projective curve D with at most isolated mixed singularities. Our
curve C has non-isolated singularities along S. However we claim that

Cram 11. C has a fundamental class.

To see this, triangulate C so that S is a union of l-simplices. Then the sum
w of all two simplices with positive orientation in L, satisfies dw = 2S by the
observation (b). The sum o of 2 simplices in C satisfies do = —2S as we have
observed in (c). Thus w+ o is a cycle and it gives the fundamental class.

2. It is possible that a projective mixed curve D with at most isolated
singularities may have some 0-dimensional components. The fundamental class
[D] € Hy(D) is the sum of 2 simplices with positive orientation under a trian-
gulation where singular points are vertices.

ProOBLEM 12. Assume that a projective mixed curve C has at most 1
dimensional singular locus. Does C have always a fundamental class as above?

3.3.2. Remark on complex analytic cases. Assume that C and C’ are
complex analytic curves. Assume first that P = (o, ) € CNC’ is a transverse
intersection where C, C’ are non-singular. Let J be the complex Jacobian
matrix at P

of

——(2,f) (o, )
J = det @;gl 5;;
8_21( ,P) 6—22(0@ )

Then using the Cauchy-Riemann equality, we can easily show that

det o(fr, f1, 9, 91)

o, =|J|* > 0.
0(X1,y1,X2,yz)( P =1
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This implies that the local intersection number is 1 if the intersection is trans-
versal at a regular point P. For a generic case, we have

It(?p(Ca C/7P) = dlmC @P/(fa 5]) = I(C7 C/,P) eN

where I(C, C’; P) is the algebraic local intersection multiplicity and (f,g) is the
ideal generated by f, g¢.

4. Multiplicity with sign

In this section, we consider the special case that C: f (z,Z) =0 is a mixed
curve and C’ is a complex line in C*. So z = (z1,2;) € C* and we assume that
g:=1z and f] _, is a mixed polynomial of one complex variable, z;. Put
f= J;|37:0~ Suppose that o € C is an isolated mixed root of f(z1,Z;) =0, ie.,
f(o,&) =0 and f(z1,Z) # 0 for any sufficiently near z; # o. For a positive
number & > 0, we put

SN @) :={z1€C||z1 — | =&}

We define the multiplicity with sign of the root z; = o by the mapping degree of
the normalized function

I8 (2) = Stz f(z1,20)/1f (21, 21).

for a sufficiently small ¢ and we denote the multiplicity with sign by mg(f, «).
The mapping degree my(f,a) is also called the rotation number. We claim

LemMMA 13, Let f, f be as above. Let g(z,7) = zp. Let C = {f(z,7) = 0}
and C'={z;,=0}. Let aeC be a root of f and let &= (2,0). Then
aeV(f,g) and I,,,(C,C'";a) = my(f, o).

Proof. We use the notations:

Dy(a) :={z||z—a| <&}, S)(a)=0D,(a),

&

D, := D,(0), S!:=5!0).

Put fi(z,Z) = f(z1,21) + t(f(z,Z) — f(z1,21)). Note that fi = f, fo=f. Take
a positive number &; small enough so that 0 is the unique root of f(z1,Z;) =0
in D, («). Then take 0 < & « ¢ so that f; is non-zero on Sé.ll(ac) x D,,, that
is, fi(z,Z) #0 if |z —a| =&, |z22] <e. For the calculation of the mapping
degree of the normalization ¥ of (fg,f;,gr,9r), we can use the boundary of
d(Dy, () x D,,) instead of the sphere S2(&). We use the Mayer-Vietoris exact
sequence of (D, (x) x D,,) associated with the decomposition {D,, () x S.,
S} (x) x D;,). Then we have the following commutative diagram where the
horizontal arrows are isomorphisms.
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H3(0(D,, (%) x D)) —— H(S} (#) x S)

Jl//* l‘/’il

H3(0(Dy(2) x Dy,)) —— Ha(S} () x S)
The right vertical map ., is induced by f = f1 and f; is homotopic to fy = f.
Therefore ., coincides with (¢ f/|f]), x id. The homotopy is given by the
normalization of (fi(z,Z),g(z,z)). Here the normalization ¢, of fi(z,z) is
defined by ,(z,Z) = & + f,(z,Z)A where A is the unique positive number so
that the right hand side is in 0(D.(«) x D,,). Thus we get

Lp(C, C';a) = mapping degree of ,
= mapping degree of (¢1f/|f]), = ms(f, ). O

We define the total multiplicity with sign by the sum of mg(f,a) for all
aeV(f) where V(f)={aeC|f(a,a) =0} and denote it by ms(f)=
> weviMs(f o). Note that my(f,o) and myor(f) is not necessarily positive
and it can be any integer.

4.1. A criterion for the positivity. Let us study some details for a simple
root o€ V(f). First f(z1,Z;) can be written as a polynomial of wy, w; with
wy =z; —a by the substitution f,(wy, W)= f(w; +oa,w +8&). Put a:
of of
— (o, & d b:=—
0z (%) an 0z
linear term of f,(wi, w;). Put

(o, ). This implies that L(wi, w;) = aw; + bw; is the

a=a,+ai, b=>by+by, o=ua +oui, a,a,by,by,0,0 €R.

Then the expansions of the real polynomials fgr, f7 in two real variables
(Xo, Yu) := (x — a1, y — ap) are given as follows:
SR(Xz, y2) = Rf (w1 + o, W1 + @)
= (a1 + b1)xy + (—az2 + b2) y, + (higher terms)
J1(Xay y2) = Sf (w1 + o, Wy + )
= (az + b2)xy + (a1 — b1) yy + (higher terms).

Thus we observe that
o(fr, f1) ay+b —ay+ b
det| ——2~ =
¢ < a(x, y) (1, %2) a b a— b
= (af +a3) — (b} + b3) = |a|* — |b]*.
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DeriNITION 14, We say that o is a positive simple root if o is a mixed-
regular point for f and my(f,o) > 0 which is equivalent to

det (Lé{)‘: ﬁ) (ocl,ocz)> >0

Similarly o is a negative simple root if o is a mixed-regular point for f and
mg(f,o) < 0. This is equivalent to

det <60E{)I::yf;) (o1, a2)> < 0.

Thus we have the criterion:

PropPOSITION 15. (1) Assume that o is a mixed regular root of f. Then o is
a positive (resp. negative) simple root if and only if |a| > |b|. That is,

of , _ of  _
1’1”ls(f7 O() =1 ‘a—ZI(OC,OC)‘ > ‘a—zl(oc,oc)
of _ of , _
ms(fva) =—-l< ‘azl(aaa)‘ < ‘azl(%a)
2) If ‘jl(oc,&)‘ = ‘j—]_r(oc,&) , o is a mixed singularity of f.
1 1

4.2. Bifurcation. Suppose that 0 is an isolated root of a mixed poly-
nomial f(u,u). Consider a bifurcation family fi(u,#) =0 and let {P(?),...,
P,(t)} be the roots of f;(u,it) =0 which are bifurcating from u =0. Then we
have

ProposiTiON 16. Y., my(fy, Pi(t)) = my(f,0). In particular, if the roots
P(t) are simple, ms(f,0) is equal to the difference of the number of positive
roots and the negative roots.

The proof is similar with that of Theorem 4. Note that v depends on the
chosen bifurcation.

Example 17. 1. Let f(u,ii) =u’a. It is easy to see that u=0 is a
non-simple singularity and mg(f,0) = 1. (For a complex polynomial singular-
ity, my(f,0) =1 implies that 0 is a simple root.) Consider two bifurcation
families:

filu,t) = (u® — t)ia,  gs(u,it) = u(uit +s) for t,s > 0.

Note that f; =0 has two positive roots u = ++/¢ and a negative root u = 0.
gs = 0 has only one positive root u =0 for s > 0.
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ASSERTION 18. Let f(u,ii) =u"+u+u for any n>2. Then u=0 is a
mixed singular root of f and

1 n: even
ms(f,0) =¢ -1 n=3 mod4
1 n=1 mod4

For the proof see the Appendix (§4.4.4).

4.3. Admissible mixed polynomial and the main theorem. We consider a
mixed polynomial f(u,it) =}, ¢, u"d" of one variable u. The maximal degree
of f is defined by d = max{v+,u|cl ,Héo} We denote d = d(f). Similarly we
define the minimal degree of f at the origin by d :=min{v+ u|c, 20} and we
denote d =d(f). Note that the minimal degree is a local invariant but the
maximal degree is a global invariant. That is, d(f) is invariant under the
change of coordinate v = c¢(u —a), ae C, ce C* and d(f) is invariant under a
local change of coordinates u — u’ = cu, ce C".

For a positive integer 7/, we put

Then we can write

S i) = fo(u,a) + fo_y (uit) + - -+ far (u, @) + fa(u, @)
Sfi(u, ) + k(u, w),
Ja(u, i) + j(u, )
) >d

Note that we have a unique factorization of f; and

with d(k) < d and d(;j
Ja as follows.

S S
(6) fj(u,a):cupﬁqn(u+yjﬂ)v’, p+q+Zvj:c7, ceC”
j=1 j=1
(7) Salu, —cu“ubHu+5u a—i—b—l—z,uj:g’, c'eC*
J=1
where y,...,7, (respectively Ji,...,0y) are mutually distinct non-zero complex

numbers. We say that f is admissible at infinity (respectively admissible at the
origin) if [y, #1 for j=1,...,s (resp. |0;| #1, j=1,...,s'). For non-zero
complex number &, we put
Ioje <1
&) =0 |g=1
-1 ¢ >1
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and we consider the following integers:
B(f)==p— q+z ()i, p(f,0) fa—b+z

Remark 19. Assume that f is not admissible at infinity and assume |y,| =1
for example. Put y; = exp(if). Then f; vanishes at u = R exp(it) /2) for any
R > 0. Thus the behavior of f on the big circle |u| = R is not controlled by the
highest term f;. The same reason can be applied for fy for a small circle |u| = r
with r « 1, if there exists some j such that |;| = I.

Our main result is the following.

THEOREM 20. (1) Assume that f(u,u) is an admissible mixed polynomial at
infinity. Then mg () = p(f).

(2) Assume that f(u,ii) is an admissible mixed polynomial at the origin.
Then mg(f,0) = p(f,0).

Proof. Put d =d(f) and assume that f; is factored as in (6). In the case
s =0, the proof is the same with that of Theorem 11, [4]. In the general case,
we first assume that

Il < <yl <<yl < -0 <yl

Let R be a positive number. First we observe that for any u e S},

S

_Z
Sy )| = el ROTTIN +pa/ul” T lu/a+ 9,1
=1

J=+1

_/
> e RTT =1 TT Ul = 1)"

=1 j=t+1

for some positive constant M > 0. We can choose a sufficiently large R > 0 so
that

|f5(u, @)] > 2|k (u,@)],  Vu, |u| = R.

The rest of the argument is exactly the same as the proof of Theorem 11, [4].

Let V(f) = {a1,...,,} and take a small positive number ¢ so that D,(x;) NV (f)

= {oc,} where D,(a ) :={u|lu—a|l <e}. First, as f/|f]: Sk — S! is extended to
O\~ Di(o), we have

m

mapping degree (f/|f]: Sy — S :st f,a
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To compute the mapping degree f/|f|: Sk — S!, we consider the family of
polynomials f'(u,i,t) := f;(u,@t) + (1 — t)k(u,@t). This family is non-vanishing
on Si. Note that f(u,u,0)= f(u,it) and f(u,a,1) = f3(u,i). As f/|f]~
f3/1f31 on Sk, we have

st(f, %;) = mapping degree of f/|f|:Sx — S
=1

= mapping degree of f;/|f3l.

Now we will show that the mapping degree of f;/|f;| is equal to the integer
B(f). For this purpose, we write f; as

st = 1) T 5]

j=1 k=(+1

‘
where ﬁzp—kaj, g=q+ Z V.
Jj=1 Jj=(+1
Note that

2 s
BN =p—d=p—a+) v D v

j=1 j={+1

in the above notation. We observe that
]/_l .
Lty eDy(l), 1<j</ ueS
g"‘ykEDl(Vk)a {+1<k<s ueSh
where D,(y) ={{eC||{—#n| <e}. It is easy to observe that

0¢D, (1) (j=<7), 0¢Di(y) (k=/+1).

Consider the family of polynomials

K “\V S Vi
fi(ua,1) = uﬁa4H(1+Zy,g) 11 (ngry,) , 0<t<l1.
j=1 k=s+1

Note that fi(u,i,1) = f;(u,it) and f;(u,,0) =uPud. As fi(u,ia,t), 0<tr<1
give a homotopy on S}, the assertion follows from the fact that the mapping
degree of u?u? is B(f). This proves the first assertion (1).

The second assertion (2) is proved by the same argument:

— Take a sufficiently small » > 0 so that

[fa(u,i)] = 2|j(u, @)|,  Yu, [u] <r
where f = f4+ j.
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— Observe that the homotopy f'(u,#,t) = fa(u, i) + tj(u, @), 0 <t < 1 is non-

vanishing on the circle S!.
— The normalization f;/|fy| of fy(u,i,0) is homotopic to that of u?\/:9.
]

4.4. Compactification

4.4.1. Generic line at infinity and a generic affine chart. Let F(z) be a
strongly polar homogeneous polynomial of two variables z = (zo,z;) of radial
and polar degree d and ¢q. We can write 2r = d — ¢ for some integer r > 0.
Then F is a linear combination of monomials z'z* such that |v| + |u| =d and
[v| — |u| = q. Assume that zp = 0 is generic so that this line does not contain any

.. . d
root of F =0. This implies that F has a monomial zf‘if where cx:%,
d— . . . .
b= Tq Then in the affine coordinate zy # 0 with the coordinate u = z;/z,

the mixed polynomial f(u,u) = F(l,u,1,i) can be written as

fu,a) :cu“ﬁﬁ+2c'a7bu“ﬁb7 c#0,0<a<a,0<b<p.
a,b

Note also that F(z,z) = zgzgf(zl/zo,zl/z'o) and
Sa(u,it) = cu™a",  f = fy+ (lower terms), u = z;/zo.

In this case, we have that mg ot(f) = q in Theorem 11, [4]. Thus Theorem 11 [4]
is a special case of Theorem 20.

4.4.2. Polar homogeneous compactification. We consider now the oppo-
site situation. Suppose that we are given a mixed polynomial f(u, i) =
D Cr ", Let d =deg /* and put

dy =max{v|c,, #0}, d- =max{yu|c,, #0}.
Define
F(20721,Zo,21) = Zg+26l’f(21/20,21/20).

F(zy,z1,20,21) is the mixed homogenization defined in §1. Put d, =d, +d_ and
qn=d, —d_. By the definition, we have the following assertion.

PROPOSITION 21.  Assume that f;(u,i) be factorized as (2) and let F(zy,z1,
Z0,Z1) be as above. F is a strongly polar homogeneous polynomial of radial degree
dy and polar degree q; and we have the inequality d, > d = deg f.

(1) The equality d, =d holds if and only if

p:d+7 q:d—7 s=0.
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(2) Assume that d, >d. Then (0:1)e V(F). Namely each monomial in
F(zo,z1,20,21) contains either zy or Z.
4.4.3. Example. Consider the polynomial:
f(u, ) = vw?a(u —2a) + 1.
V (k) consists of 4 points

u=4++/1/3i, +1.

The multiplicities with sign of the first two roots {++/1/3i} are 1 and the latter
two roots {+1} are —1. This implies that mg ot(f) = 0 as Theorem 20 asserts.
The mixed homogenization f(z,z) is given by
F(Z, i) = 21221 (Zlfo — 22120) + 2823.

We see that f(z,z) is a strongly polar homogeneous polynomial of radial and
polar degrees 5 and 1 respectively. We observe that (0: 1) is on V'(f) and it has
multiplicity with sign 1. Now take the generic affine coordinate chart Uj :=
{z1 # 0} with the coordinate v = zo/z;. Then the affine equation of V' (f)N U, is
given as

f'(v) =5 —2v+ 035>

and V(f)NU; consists of 5 points. Note that mg(f’,0) = 1.

4.4.4. Appendix: Proof of Assertion 18. Recall f(u,u)=u"+u+a.
The proof follows the following observations.

1. mg o(f) =n by Theorem 20.

2. For any ae V(f)\{0}, « is a simple mixed root with my(f,a) = 1.
3. The number, say f5, of non-zero mixed roots of f is given as follows:

n—1 n even
f=<n+1 n=3 mod4
n—1 n=1 mod4

Let us show the observation 2. So assume that o € V(f) and o # 0. Take the
coordinate v:=u —a. Then

fw4+o)=o"+o+a+na""'vo+ v+ 0+ (higher terms in v)
= (ne" ' 4+ 1)v + 7 + (higher terms in v)

= (—(n -1)- n%)v—i— 7+ (higher terms in v)
Now we conclude the assertion by Proposition 9 as

(n—l)—ng

>n—n-1)=1
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and by the equality takes place if and only if & = —o«, that is « is purely
imaginary. This does not happen by the following calculation.

Now we show the observation 3. As the calculation is easy, we only show
the result. Assume f(u) =0 with u #0. Put u=rexp(ia), 0 <a < 2n in the
polar coordinates. Then we have

r" sin(na) =0, r" cos(na) + 2r cos(a) = 0.
Thus the first equality says that
na=jr, j=0,...,2n—1
The second equality has a positive solution for r if and only if cos(na) cos(a) < 0.

This implies that o is not a pure imaginary complex number. Assume n = 4k for
example. Then the solution exists for the following.

={1,3,...,2k— 1,2k + 2,2k +4,...,6k—2,6k+1,...,8k— 1}

= 3

=4k -1, my(f,0)=4k—p=1
For the case n =4k + 2,

={1,3,...,2%k— 1,2k + 2,2k +4,...,6k+2,6k +5,...,8k+3}

a

T

p=4k+1, m(f,0)=4k+2-p=1
For the case n =4k — 1, we have

f_{l 3,2k — 1,2k, 2k +2,... 6k —2,6k—1,... 8k —3}

p =4k, myf 0)=4k—-1-p=-1
For n =4k + 1, we have

={1,3,...,2k — 1,2k + 2,2k +4,...,6k,6k+3,...,8k+1}

= QI

=4k, my(f,0)=4k+1-f=1

4.5. Figure. Let us consider the case n =2, f(u) = u+u. Note that
f(u) has two mixed singular points, O and P = (— 2,0

The following figures shows the trace of f(u(0),u(0)), u(0) =rexp(ib),
0<0<2n for r=3/2,2,3 respectively.
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Case r=3/2. The next figure (Figure 1) shows that m(f,0) = 1.

FIGURE 1. n=2, r=3/2

Case r=2. This figure (Figure 2) corresponds to the critical case that |u| =2
passes through the mixed singular point (—2,0).

4

44

r=2

FIGURE 2. n=2

>
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r=3. The disk |u| <3 contains a mixed singular point (—2,0) and

mS’ tot (f) - 2

FIGURE 3. n=2,r=3
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