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STRONG 2-CALIBRATIONS ON R?"
SAHIN KOGAK AND YUNUS OZDEMIR

Abstract

Most of the classical calibrations possess a property which does not seem to be
recognized. Making this property explicit, we define what we call the strong calibra-
tions and prove that a strong 2-calibration field on R? is a constant field.

1. Introduction

The notion of calibration was defined by Harvey and Lawson in their 1982
paper “Calibrated Geometries” [2]. This notion has been attracting continued
interest because it provides a powerful way of identifying area minimizing
surfaces.

Let’s first define the notion of (point-wise) calibration on R™ equipped with
the standard inner product (in the following, {ej,es,...,e,} will denote the
standard basis and {dx;, dx,,...,dx,} will denote the corresponding dual basis of
R™). Let A’(R™)" denote the space of all p-forms on the vector space R™.

DEFINITION 1.1. A p-form ¢ € A?(R™)" is called a (point-wise) p-calibration
on R™ if it satisfies the following conditions:

1. |p(ui,us,...,uy)| <1 for any orthonormal set {ui,u>,...,u,} of vectors
ug eR™ k=1,2,....p.

2. There is at least one orthonormal set {u;,u,...,u,} such that
lp(ui,uz, ..., up)| = 1.

Example 1.2. The 2-form ¢ = dx; A dx; + dx3 A dx4 1s a 2-calibration on R*.

Example 1.3. The 3-form
¢ = dx123 — dx167 + dxz57 — dx3s56 + dX145 + dX246 + dX347
where dx; is a shorthand for dx; Adx; Adxy, is a 3-calibration on R’. (It is

known as the fundamental 3-form or the associative calibration on R’ s. [2].)

In this article, we will focus on the case p =2 in even dimensions. A
2-form ¢ on R?' can be represented by a 2n x 2n dimensional skew-symmetric
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real matrix 4 = (a”) with a’ = ¢p(e;,¢;), which has pure imaginary eigenvalues

that are of the form +ily,+ily,...,+il,. There is an orthonormal basis
{fi, oy, fau} of R* such that the corresponding skew-symmetric matrix
B = (p(f;,f;)) = P'AP = P"'AP (P being the base-change matrix) is of the form

o 4 0 0 -~ 0 O

-4 0 0 0 0 0

0 0 0 A 0 0

B=| 0 0 -4 0 0 0

0o 0o o0 0 -~ 0 4

0o 0 0 0 -+ =4 0),.,,

The 2-form ¢ can then be written as
o= dyi Adys + Ay dys Adys + -+ Ay dyou—1 Adyy,

where {dy|,dy,,...,dys,} is the corresponding dual basis of R*". It can easily
be seen that ¢ € A*(R?")" is a calibration if and only if

max{|Al, |22l ., [} = 1.
Example 1.4. The forms given by

1
0 = dxl /\dX2 +§ dX3 /\dX4

1
¥y = dx1 Adxy + 3 dxs A dxg + dxs A dxg
are 2-calibrations on R* and R respectively.

Now we define the notion of a calibration field on R™, where R™ is
understood as a Riemannian manifold with the usual metric. (In the literature
these calibration fields on Riemannian manifolds are called “calibrations”. We
distinguish between point-wise calibrations on vector spaces and calibration fields
on Riemannian manifolds.)

Let Q”(R™) denote the space of all smooth p-form fields on R™. Given
® e QF(R™), we use the notation @, for the p-form at x determined by ®. We
can give the definition of the notion of a calibration field on R™ as follows.

DeriNITION 1.5. A closed p-form field ® € QP(R™) is called a p-calibration
field on R™ if it satisfies the following conditions:

1. At each point x € R™, |®,(u1,us,...,u,)| <1 for any orthonormal set of
vectors {uy,un,...,u,} of T.R"™.
2. For some xp, there exists an orthonormal set {ui,us,...,u,} of Ty R"

such that |®y (u1,u,...,u,)| = 1.
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For the well-known examples of calibration fields we refer the reader to [2].

Most of the important calibrations used in the literature possess an impor-
tant property, which does not seem to attract any attention. The second
condition of Definition 1.1 asks for a single orthonormal set {u,us,...,u,}
satisfying the property |p(uy,us,...,u,)| =1, but in all classical examples more
is satisfied: For any orthonormal set of vectors {uj,us,...,u,_1} of R™ there
is at least one vector u, € R™, such that {u,ua,...,u,_1,u,} is orthonormal and
lp(ui,ua,...,up,)] = 1. Demanding this as a condition, we define what we call a
strong (point-wise) calibration:

DEeFINITION 1.6. A p-form ¢ e A’(R™)" (with p > 1) is called a strong
(point-wise) p-calibration if it satisfies the following conditions:

1. |p(ui,us,...,uy)| <1 for any orthonormal set of vectors {ui,us,...,u,}
of R™.

2. For any orthonormal set of vectors {uj,us,...,u,_1} of R™ there is at
least one vector u, € R”, such that {u,us,...,u,_1,u,} is orthonormal
and |p(ui,ua,...,uy)| = 1.

We furthermore want to remark that in the usual definition 1.5 of calibration
fields, it is only required that @, is a calibration (in the sense of Definition 1.1)
for some x;. Again, in important classical examples all @, are calibrations.
Taking this into account and the above definition of strong calibrations, we give
the following definition of strong calibration fields:

DEerINITION 1.7. A closed p-form field ® € Q7 (R™) (with p > 1) is called a
strong p-calibration field on (the Riemannian manifold) R™ if the p-form ®, e
AP(TR™)" is a strong p-calibration for all x e R™.

With these modified definitions, the following property holds, which is the
main result of our article:

TurOREM 1.8.  Let ® € Q*(R?") be a strong 2-calibration field on R*".  Then
® is a constant field.

A corresponding property holds for 1-calibration fields on R™. For p =1,
the second condition of Def.1.6 does not impose anything more on a 1-calibration,
so we excluded this case from the definition of strong calibrations. A (point-
wise) l-calibration on R™ (according to Def.1.1) can be seen to be a 1-form
p=a" dx,+a*dxy+ -+ a" dx, € A'R")" = (R™)* with (a")? + (a®)* + - +
(@™)?*=1. A l-alibration field on R"” is a closed field ® = a' dx; + a® dx,
+ -+« +a™ dx,, with a' smooth functions on R” satisfying (a')* + (a?)* + -+ +
(a™)* = 1. The closed 1-form field ® on R™ is exact, ® = df. The function f
has constant gradient norm, hence it is an affine function [5]. Consequently, ® is
a constant field:
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Remark 1.9. A 1-calibration field ® € Q'(R™) is constant.

We were unable to prove this property for higher strong p-calibration fields
(p =3). The geometrically very reach associative 3-calibration field on R’ and
the Cayley 4-calibration field on R® (s. [2]) are defined as constant calibration
fields and they are strong calibration fields in our sense. So, a generalization of
this property to higher strong calibration fields seems probable and of interest.

In the next section we will discuss some technicalities of strong calibrations
and in the third section we will give a proof of Theorem 1.8.

2. Some properties of strong calibrations

A strong 2-calibration on R* is almost the same object as a self/antiself-dual
2-form (in the Hodge sense) on R* as the following Lemma shows. This gives
another support for the meaningfulness of the notion of strong calibrations.

LemMa 2.1. Let p € A*(RY)* be a 2-form on R* given by
0= a'? dx; Andxy + a® dxy Adxs + a' dxy Adxy
+a® dxy Adxs + a®* dxy Adxg + @ dxy Adxy
where a'?.a'3 a'*,a®,a®*,a** e R, Then, ¢ is a strong 2-calibration iff
@22+ @2+ (@2 =1 and a”=a* a" =a®, a" = —a*
or
@22+ @2+ (@2 =1 and a?=—a® a" = —a®, a" = .
We omit the easy proof.
We know that if the matrix of a 2-form ¢ on R* with respect to an

orthonormal basis has the eigenvalues +il;, +ils, ..., +il,, then ¢ is a calibration
if and only if

Jal} = 1.

Using (1.0.1) and the stronger condition imposed upon a calibration by Definition
1.6, we can obtain the following characterizations of strong 2-calibrations:

max{|i|, |22, .-,

LemMma 2.2, Let p € A*(R*)* and +ily, k =1,2,...,n be the eigenvalues of
the corresponding skew-symmetric matrix with respect to some orthonormal basis.
Then, ¢ is a strong 2-calibration if and only if

[l = 1Al = =4 =1
Lemma 2.3. Let g e A*(R*™)" and A be the corresponding skew-symmetric

matrix with respect to some orthonormal basis. Then, ¢ is a strong 2-calibration if
and only if A is an orthogonal matrix.
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We want to remark that, in contrast to calibrations, there may not be a
strong p-calibration in every dimension m > p. For example, there is no strong
2-calibration on an odd-dimensional R"” because of the degeneracy of a 2-form in
odd dimensions. In this regard, the following property holds:

ProOPOSITION 2.4. Let ¢ € AP(R™)" (p > 1) be a strong p-calibration. Then
m— p is an even integer.

Proof. The form y defined as

l//()("7 y) = (p(613627 e 7€p,27)_c, )_))

is a strong 2-calibration on R">7” where x = X1y oy Xmg2—p)s ¥=(1,..-,
ym+27p) € Rm+2—p and x = (07 s ,0,)61, s axm+27p), y= (Oa ce 707.]}1» BN ym+27p)
e R™. By the above remark, m — p must be even. |

3. Strong 2-calibration fields

In this section we will give a proof of Theorem 1.8. First we want to
recall the notion of the Pfaffian of a skew-symmetric matrix and discuss some
properties of it. Let A4 = (a”) be a 2n x 2n skew-symmetric real matrix. The
determinant of 4 can be written as the square of a polynomial in the entries of
A [4]: det(4) = Pf(A)*. This polynomial (denoted by Pf(A4)) is called the
Pfaffian of 4. Let K =1{1,2,3,...,2n}, Sk the set of permutations of K and
let

M:={(i1 j1i & jo - in ju)€Sk|i1 <---<i, and i, < j, for all p}.
Then the Pfaffian polynomial of 4 can be written as
Pr(A) =Y 4,
oell
where A4, = sgn(a)a'ta2 ... qinin,

LemMmA 3.1. Let A= (a”) be a 2n x 2n skew-symmetric and orthogonal real
matrix. Then

(3.0.1) a’ = (=) Pf(My, ;) Pf (A)

Jor all 1 <i< j<2n where My ; is the matrix formed by removing from A the
rows i and j, as well as the columns i and j.

Proof. If A= (a”) is skew-symmetric and orthogonal then —A = A~!
Thus we have

(3.0.2) —a’ = (1) det(M;)
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where Mj; is the matrix formed by removing from A its jth row and ith
column. Moreover, it is proven in [3] that

(3.0.3) (=1)" det(M;;) = (=1)"Pf (My.5)Pf (4)
for i < j. Combining (3.0.2) and (3.0.3) verifies the assertion of the lemma.
|

Let ® € Q*(R*) be a strong 2-calibration field on R*. At each point
x=(x1,X2,...,X) e R?, @, can be written as

(Dx = E aU(Xl,X2,...,X2n) dx,'/\dx_/',

1<i<j<2n

where a’ € C*(R?") are the smooth coefficient functions of ®. For notational
simplicity, we denote by a? also its value a’(xi,xs,...,x2,) at a point if it is
understood from the context. For a given x, the corresponding skew-symmetric
matrix of ®, is of the form

0 a12 a13 L al 2n
—ql2 0 a3 . a2
A=| —a® -4 0
: : . a2n71 2n
_al 2n _a2 2n . _a2n71 2n 0

For each x € R*", the skew-symmetric matrix A is orthogonal by Lemma 2.3,
hence Pf(A4) =+1. By connectivity of R*", either Pf(4) =1 or Pf(4) = —1.
There is no loss of generality in assuming that Pf(4) = 1. Combining this with
(3.0.1) yields
(3.0.4) a’ = (1) Pf(My )

for 1 <i< j<2n From now on, we focus on the coefficient a'>. Is the
Laplacian of the function a'? zero? ) 0
For simplicity of notation, we write ¢ for the kth partial derivative —a".
Let K" ={1,2,...,2n —1,2n}\{1,k} and k
% ={(iy j1 -+ o1 juo1)€Sgul|iy <--- <i, 1 and
ip < jp for p=1,...,n—1}

where k is a fixed integer with 2 < k <2n. Then the Pfaffian polynomial of
M1 can be written as

(3.0.5) Pf(My) = > Ay

alkern'¥

where A, = sgn(a'F)at a2 ... gt
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Similarly, Let K" = {1,2,...,2n—1,2n}\{1,k,i,j} and
Hlkij = {(11 j] R jnfz) € SKlkij | i1 <--- <l and
iy <jp for p=1,...,n-2}

where the fixed integers k, i, j with 2 < k, i, j < 2n differ from each other. Then
the Pfaffian polynomial of M 14 can be written as
(3.0.6) Pf(Mugug) = Y Ay
o lkii e TT 1kij
where A, = sgn(a*)ala ... ql-2in-2,

The following property can be easily checked:

LEMMA 3.2. Let «'*eII'¥ be the element given by

o= (i i i Gyt By dp Bt Jprt e a1 )
Then
sgn(@'™) = (=) sqn[(i, — k) (jp — k)] sgn(a"7)
where
a0l = iy ji o et ot dprt et o dnet Juor) € IR

We need also the following technical lemma:

LEMMA 3.3. Let k be an integer such that 2 < k <2n. Then

(3.0.7) a%Pf(Mlk, ) = Z (=)™ sgn[(i — k)(j — k)]Cl;iij(Mlkij, 1kij)-

2<i<j<n

Proof. Using the equality (3.0.5) we can write

aak Pf (M 1z) Z Age =Y 2AW.

ak
x”‘ ' alkel'x

Let r and s be integers with r < s, which are different from 1 and k. Let T"™

. L0 .
denote the sum of the terms in which a—a” appears as a factor. For a given
k

1k .. . . . . 1k
ot =01 jiordp=r jp=5 - dn1 juo1) €11
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consider the term A,u = sgn(a'f)a’/t...a"™ ... a1, Using the Lemma 3.2,
the contribution of the kth partial derivative of A, to T is

(3.0.8) (=)™ sgn[(r — k)(s — k)] sgn(o&'k”)aﬁa” 11 a'da,
ko ge,2,3 . n-1—{p}

Let I1'* denote the set of all permutations a'¥ = (i jy -~ i, =71 j,=s5 ---

i1 Ju—1) e IT"* in which i, =r and j, = s for some pe{1,2,3,...,n— 1}, write

ps. Taking the sum of the terms (3.0.8) over IT'¥ we thus get
. 0 o
TY = lkz ) (=)™ sgn[(r — k) (s — k)] sgn(a*) a—ka” H a'la
alker! qe{1,2,3,...n=1}={p,}

o , -
= (=) sgn[(r — k)(s = k)] aa” lkz:wsgn(ot”‘”) 11 aleds
ke TI M qe{1,2,3,....,n—=1}—{p,}

There is a one to one relation between the terms of IT!* and the terms of

1'% Moreover, for a given o!feTT'¥

aiflj‘i
qe{1,2,3,...,n=1}—{p,}

does not contain the term @™ as a factor. So we have
§ : sgn(oclm) H ai"j‘/ — § : Sgl’l(O(lkm) H aiq-f‘f
ok e TIM qe{1,2,3,..n—1}—{p,} o ks g [ 147 qe{1,2,3,..,n=2}

which yields

) L o , o
T — (71))%\ 1 sgn[(r . k)(S* k)],\—a” Z sgn(oclk”) H a'ela
Ok sl eIk qe{1,2,3,..n—1}—{p,}
. 2 g
_ (_I)H—s—l sgn[(r _ k)(S _ k)]Ta"‘Y Z sgn(oclk”) H a'ta
Ok ks 111l qe{1,2,3,..,n-2}

= (=) sgnl(r — k) (s — k)]

S

a” E A o lkrs
o lkrs e TT Lkrs
0

= (_1>F+S—1 sgn[(r - k)(s - k)] 6_kamPf<M1krs,lkrs)-
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0 . . . .
We can get Tka (M 1x) by taking the sum of 7" over all possible pair
0
(r,s) where 2 <r<s<2n Then we get

0 o .. .. o
— Pf (M. — 1k W/ T Sy A
e B (M) >~ sgn(o )5-(a"'a a )

k
alk eI

_ Z T’

2<r<s<2n

= Z (_1)7‘+S*1 Sgl’l[(l’ - k) (S - k)]a]?Pf(Mlkrs, lkm)

2<r<s<2n

which is the desired conclusion. |
Now we will prove Theorem 1.8 with the help of the above Lemma.

Proof. The proof will be based on the fact that a bounded harmonic
function on R” is constant [1]. Since the coefficient functions are bounded (by
calibration condition), it will be enough to see that they are harmonic on R?".

Since the 2-form field @ is closed, we get

(3.0.9) al —a +al" =0

for all 1 <i< j<k<2n Substituting i=1 and j =2 into (3.0.9) we obtain

@l —af +af =0=a =a)* —ai*

for all 3 <k <2n. Applying ai to a? yields
k

12 _ 1k 2k
Ui = Ay — g

for all 3 <k <2n. Thus we can write the Laplacian of a'? as

2_ 12, 12, 12, 12 12
Aa” =aij +ay +as+ag+-+ay,,

1,12 13 23 14 24 120 22
=aj) +ay +(ay —azy) + (ag —azy) + -+ (ay, 5 — a3,77)
12 23 24 2m 2, 13, 14 120
=(ayy —az) —agy — - —ay )+ (ay +ap +ay +- +ay)
0 0
_ 2, 13, 14 120 12, 23, 2 2m
*a_z(az tay tay + et a, )*(3_1(*“1 tay +ai 4+ @)

Let T=(a)>+al®+a}*+--+a)*). Combining (3.04) and Lemma
(3.3), we get



40 SAHIN KOGAK AND YUNUS OZDEMIR

I
7

1)kl > (=T Sgn[(ik)(jk)]agpf(Mlkij‘lkij)‘|
1<i<j<2n

l (=D (=) sgn[(i — k)(j — k))a Pf (My, 1ki/)] -
k=2 [2<i<j<2n

From the fact
Pf (M, 1ki7) = Pf (Mg 1) = Pf (M, vjik)

and by the definiton of sign function we obtain

T= > D" IPf(Mygug)+ D (=) a] PA (Mg )

2<k<i<j<2n 2<i<k<j<2n

+ Z (—1)k+i+jfla;gpf(M1kij,uq-;)

2<i<j<k<2n

= > D P (M) + Y (=D P (Myi i)

2<i<j<k<2n 2<i<j<k<2n

+ Z (71)k+i+j71alijpf(M1kij,lkij)

2<i<j<k<2n

= > DG = af + al )P (Mg )

2<i<j<k<2n

Thus, from (3.0.9) we have T =0. Similarly, (a}' +a2* +a* + -+ a3 )

is seen to be 0. Thus we get Aa'?> =0 which means «'? is harmonic.
By a change of basis, ¢’ can be brought to the position of «!> for all
1 <r<s<2n Repeating the same argument in this orthonormal basis, we
obtain Aa"™ =0 which means that a™ is harmonic. This completes the proof.
[ |
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