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STRONG 2-CALIBRATIONS ON R2n

Şahin Koçak and Yunus Özdemir

Abstract

Most of the classical calibrations possess a property which does not seem to be

recognized. Making this property explicit, we define what we call the strong calibra-

tions and prove that a strong 2-calibration field on R2n is a constant field.

1. Introduction

The notion of calibration was defined by Harvey and Lawson in their 1982
paper ‘‘Calibrated Geometries’’ [2]. This notion has been attracting continued
interest because it provides a powerful way of identifying area minimizing
surfaces.

Let’s first define the notion of (point-wise) calibration on Rm equipped with
the standard inner product (in the following, fe1; e2; . . . ; emg will denote the
standard basis and fdx1; dx2; . . . ; dxmg will denote the corresponding dual basis of
Rm). Let LpðRmÞ� denote the space of all p-forms on the vector space Rm.

Definition 1.1. A p-form j A LpðRmÞ� is called a (point-wise) p-calibration
on Rm if it satisfies the following conditions:

1. jjðu1; u2; . . . ; upÞja 1 for any orthonormal set fu1; u2; . . . ; upg of vectors
uk A Rm, k ¼ 1; 2; . . . ; p.

2. There is at least one orthonormal set fu1; u2; . . . ; upg such that
jjðu1; u2; . . . ; upÞj ¼ 1.

Example 1.2. The 2-form j ¼ dx15dx2 þ dx35dx4 is a 2-calibration on R4.

Example 1.3. The 3-form

j ¼ dx123 � dx167 þ dx257 � dx356 þ dx145 þ dx246 þ dx347

where dxijk is a shorthand for dxi5dxj5dxk, is a 3-calibration on R7. (It is
known as the fundamental 3-form or the associative calibration on R7, s. [2].)

In this article, we will focus on the case p ¼ 2 in even dimensions. A
2-form j on R2n can be represented by a 2n� 2n dimensional skew-symmetric
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real matrix A ¼ ðaijÞ with aij ¼ jðei; ejÞ, which has pure imaginary eigenvalues
that are of the form Gil1;Gil2; . . . ;Giln: There is an orthonormal basis
f f1; f2; . . . ; f2ng of R2n such that the corresponding skew-symmetric matrix
B ¼ ðjð fi; fjÞÞ ¼ PtAP ¼ P�1AP (P being the base-change matrix) is of the form

B ¼

0 l1 0 0 � � � 0 0

�l1 0 0 0 � � � 0 0

0 0 0 l2 � � � 0 0

0 0 �l2 0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � 0 ln

0 0 0 0 � � � �ln 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
2n�2n

:

The 2-form j can then be written as

j ¼ l1 dy15dy2 þ l2 dy35dy4 þ � � � þ ln dy2n�15dy2n;

where fdy1; dy2; . . . ; dy2ng is the corresponding dual basis of R2n. It can easily

be seen that j A L2ðR2nÞ� is a calibration if and only if

maxfjl1j; jl2j; . . . ; jlnjg ¼ 1:

Example 1.4. The forms given by

j1 ¼ dx15dx2 þ
1

2
dx35dx4

j2 ¼ dx15dx2 þ
1

5
dx35dx4 þ dx55dx6

are 2-calibrations on R4 and R6 respectively.

Now we define the notion of a calibration field on Rm, where Rm is
understood as a Riemannian manifold with the usual metric. (In the literature
these calibration fields on Riemannian manifolds are called ‘‘calibrations’’. We
distinguish between point-wise calibrations on vector spaces and calibration fields
on Riemannian manifolds.)

Let WpðRmÞ denote the space of all smooth p-form fields on Rm. Given
F A WpðRmÞ, we use the notation Fx for the p-form at x determined by F. We
can give the definition of the notion of a calibration field on Rm as follows.

Definition 1.5. A closed p-form field F A WpðRmÞ is called a p-calibration
field on Rm if it satisfies the following conditions:

1. At each point x A Rm, jFxðu1; u2; . . . ; upÞja 1 for any orthonormal set of
vectors fu1; u2; . . . ; upg of TxR

m.
2. For some x0, there exists an orthonormal set fu1; u2; . . . ; upg of Tx0R

m

such that jFx0ðu1; u2; . . . ; upÞj ¼ 1.
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For the well-known examples of calibration fields we refer the reader to [2].
Most of the important calibrations used in the literature possess an impor-

tant property, which does not seem to attract any attention. The second
condition of Definition 1.1 asks for a single orthonormal set fu1; u2; . . . ; upg
satisfying the property jjðu1; u2; . . . ; upÞj ¼ 1, but in all classical examples more
is satisfied: For any orthonormal set of vectors fu1; u2; . . . ; up�1g of Rm there
is at least one vector up A Rm, such that fu1; u2; . . . ; up�1; upg is orthonormal and
jjðu1; u2; . . . ; upÞj ¼ 1: Demanding this as a condition, we define what we call a
strong (point-wise) calibration:

Definition 1.6. A p-form j A LpðRmÞ� (with p > 1) is called a strong
(point-wise) p-calibration if it satisfies the following conditions:

1. jjðu1; u2; . . . ; upÞja 1 for any orthonormal set of vectors fu1; u2; . . . ; upg
of Rm.

2. For any orthonormal set of vectors fu1; u2; . . . ; up�1g of Rm there is at
least one vector up A Rm, such that fu1; u2; . . . ; up�1; upg is orthonormal
and jjðu1; u2; . . . ; upÞj ¼ 1:

We furthermore want to remark that in the usual definition 1.5 of calibration
fields, it is only required that Fx is a calibration (in the sense of Definition 1.1)
for some x0: Again, in important classical examples all Fx are calibrations.
Taking this into account and the above definition of strong calibrations, we give
the following definition of strong calibration fields:

Definition 1.7. A closed p-form field F A WpðRmÞ (with p > 1) is called a
strong p-calibration field on (the Riemannian manifold) Rm if the p-form Fx A
LpðTxR

mÞ� is a strong p-calibration for all x A Rm.

With these modified definitions, the following property holds, which is the
main result of our article:

Theorem 1.8. Let F A W2ðR2nÞ be a strong 2-calibration field on R2n. Then
F is a constant field.

A corresponding property holds for 1-calibration fields on Rm: For p ¼ 1,
the second condition of Def.1.6 does not impose anything more on a 1-calibration,
so we excluded this case from the definition of strong calibrations. A (point-
wise) 1-calibration on Rm (according to Def.1.1) can be seen to be a 1-form

j ¼ a1 dx1 þ a2 dx2 þ � � � þ am dxm A L1ðRmÞ� ¼ ðRmÞ� with ða1Þ2 þ ða2Þ2 þ � � � þ
ðamÞ2 ¼ 1: A 1-calibration field on Rm is a closed field F ¼ a1 dx1 þ a2 dx2
þ � � � þ am dxm with ai smooth functions on Rm satisfying ða1Þ2 þ ða2Þ2 þ � � � þ
ðamÞ2 ¼ 1: The closed 1-form field F on Rm is exact, F ¼ df : The function f
has constant gradient norm, hence it is an a‰ne function [5]. Consequently, F is
a constant field:
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Remark 1.9. A 1-calibration field F A W1ðRmÞ is constant.

We were unable to prove this property for higher strong p-calibration fields
( pb 3). The geometrically very reach associative 3-calibration field on R7 and
the Cayley 4-calibration field on R8 (s. [2]) are defined as constant calibration
fields and they are strong calibration fields in our sense. So, a generalization of
this property to higher strong calibration fields seems probable and of interest.

In the next section we will discuss some technicalities of strong calibrations
and in the third section we will give a proof of Theorem 1.8.

2. Some properties of strong calibrations

A strong 2-calibration on R4 is almost the same object as a self/antiself-dual
2-form (in the Hodge sense) on R4 as the following Lemma shows. This gives
another support for the meaningfulness of the notion of strong calibrations.

Lemma 2.1. Let j A L2ðR4Þ� be a 2-form on R4 given by

j ¼ a12 dx15dx2 þ a13 dx15dx3 þ a14 dx15dx4

þ a23 dx25dx3 þ a24 dx25dx4 þ a34 dx35dx4

where a12; a13; a14; a23; a24; a34 A R. Then, j is a strong 2-calibration i¤

ða12Þ2 þ ða13Þ2 þ ða14Þ2 ¼ 1 and a12 ¼ a34; a14 ¼ a23; a13 ¼ �a24

or

ða12Þ2 þ ða13Þ2 þ ða14Þ2 ¼ 1 and a12 ¼ �a34; a14 ¼ �a23; a13 ¼ a24:

We omit the easy proof.
We know that if the matrix of a 2-form j on R2n with respect to an

orthonormal basis has the eigenvaluesGil1;Gil2; . . . ;Giln, then j is a calibration
if and only if

maxfjl1j; jl2j; . . . ; jlnjg ¼ 1:

Using (1.0.1) and the stronger condition imposed upon a calibration by Definition
1.6, we can obtain the following characterizations of strong 2-calibrations:

Lemma 2.2. Let j A L2ðR2nÞ� and Gilk, k ¼ 1; 2; . . . ; n be the eigenvalues of
the corresponding skew-symmetric matrix with respect to some orthonormal basis.
Then, j is a strong 2-calibration if and only if

jl1j ¼ jl2j ¼ � � � ¼ jlnj ¼ 1:

Lemma 2.3. Let j A L2ðR2nÞ� and A be the corresponding skew-symmetric
matrix with respect to some orthonormal basis. Then, j is a strong 2-calibration if
and only if A is an orthogonal matrix.
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We want to remark that, in contrast to calibrations, there may not be a
strong p-calibration in every dimension mb p: For example, there is no strong
2-calibration on an odd-dimensional Rm because of the degeneracy of a 2-form in
odd dimensions. In this regard, the following property holds:

Proposition 2.4. Let j A LpðRmÞ� ðp > 1Þ be a strong p-calibration. Then
m� p is an even integer.

Proof. The form c defined as

cðx; yÞ :¼ jðe1; e2; . . . ; ep�2; x; yÞ

is a strong 2-calibration on Rmþ2�p where x ¼ ðx1; . . . ; xmþ2�pÞ, y ¼ ðy1; . . . ;
ymþ2�pÞ A Rmþ2�p and x ¼ ð0; . . . ; 0; x1; . . . ; xmþ2�pÞ, y ¼ ð0; . . . ; 0; y1; . . . ; ymþ2�pÞ
A Rm. By the above remark, m� p must be even. 9

3. Strong 2-calibration fields

In this section we will give a proof of Theorem 1.8. First we want to
recall the notion of the Pfa‰an of a skew-symmetric matrix and discuss some
properties of it. Let A ¼ ðaijÞ be a 2n� 2n skew-symmetric real matrix. The
determinant of A can be written as the square of a polynomial in the entries of
A [4]: detðAÞ ¼ Pf ðAÞ2. This polynomial (denoted by Pf ðAÞ) is called the
Pfa‰an of A. Let K ¼ f1; 2; 3; . . . ; 2ng, SK the set of permutations of K and
let

P :¼ fði1 j1 i2 j2 � � � in jnÞ A SK j i1 < � � � < in and ip < jp for all pg:

Then the Pfa‰an polynomial of A can be written as

Pf ðAÞ ¼
X
a AP

Aa

where Aa ¼ sgnðaÞai1 j1ai2 j2 � � � ain jn .

Lemma 3.1. Let A ¼ ðaijÞ be a 2n� 2n skew-symmetric and orthogonal real
matrix. Then

aij ¼ ð�1Þ iþj�1
Pf ðMij; ijÞPf ðAÞð3:0:1Þ

for all 1a i < ja 2n where Mij; ij is the matrix formed by removing from A the
rows i and j, as well as the columns i and j.

Proof. If A ¼ ðaijÞ is skew-symmetric and orthogonal then �A ¼ A�1.
Thus we have

�aij ¼ ð�1Þ iþj detðMjiÞð3:0:2Þ
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where Mji is the matrix formed by removing from A its jth row and ith
column. Moreover, it is proven in [3] that

ð�1Þ iþj detðMjiÞ ¼ ð�1Þ iþj
Pf ðMij; ijÞPf ðAÞð3:0:3Þ

for i < j. Combining (3.0.2) and (3.0.3) verifies the assertion of the lemma.
9

Let F A W2ðR2nÞ be a strong 2-calibration field on R2n. At each point
x ¼ ðx1; x2; . . . ; x2nÞ A R2n, Fx can be written as

Fx ¼
X

1ai< ja2n

aijðx1; x2; . . . ; x2nÞ dxi5dxj;

where aij A CyðR2nÞ are the smooth coe‰cient functions of F. For notational
simplicity, we denote by aij also its value aijðx1; x2; . . . ; x2nÞ at a point if it is
understood from the context. For a given x, the corresponding skew-symmetric
matrix of Fx is of the form

A ¼

0 a12 a13 � � � a1 2n

�a12 0 a23 � � � a2 2n

�a13 �a23 0 ..
.

..

. ..
. . .

.
a2n�1 2n

�a1 2n �a2 2n � � � �a2n�1 2n 0

0
BBBBBBB@

1
CCCCCCCA
:

For each x A R2n, the skew-symmetric matrix A is orthogonal by Lemma 2.3,
hence Pf ðAÞ ¼G1: By connectivity of R2n, either Pf ðAÞ1 1 or Pf ðAÞ1�1.
There is no loss of generality in assuming that Pf ðAÞ ¼ 1. Combining this with
(3.0.1) yields

aij ¼ ð�1Þ iþj�1
Pf ðMij; ijÞð3:0:4Þ

for 1a i < ja 2n. From now on, we focus on the coe‰cient a12. Is the
Laplacian of the function a12 zero?

For simplicity of notation, we write a
ij
k for the kth partial derivative

q

qk
aij .

Let K 1k ¼ f1; 2; . . . ; 2n� 1; 2ngnf1; kg and

P1k ¼ fði1 j1 � � � in�1 jn�1Þ A SK 1k j i1 < � � � < in�1 and

ip < jp for p ¼ 1; . . . ; n� 1g

where k is a fixed integer with 2a ka 2n. Then the Pfa‰an polynomial of
M1k;1k can be written as

Pf ðM1k;1kÞ ¼
X

a1k AP1k

Aa1kð3:0:5Þ

where Aa1k ¼ sgnða1kÞai1 j1ai2 j2 � � � ain�1 jn�1 .
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Similarly, Let K 1kij ¼ f1; 2; . . . ; 2n� 1; 2ngnf1; k; i; jg and

P1kij ¼ fði1 j1 � � � in�2 jn�2Þ A SK 1kij j i1 < � � � < in�2 and

ip < jp for p ¼ 1; . . . ; n� 2g

where the fixed integers k, i, j with 2a k; i; ja 2n di¤er from each other. Then
the Pfa‰an polynomial of M1kij;1kij can be written as

Pf ðM1kij;1kijÞ ¼
X

a1kij AP1kij

Aa1kijð3:0:6Þ

where Aa1kij ¼ sgnða1kijÞai1 j1ai2 j2 � � � ain�2 jn�2 .
The following property can be easily checked:

Lemma 3.2. Let a1k AP1k be the element given by

a1k ¼ ði1 j1 � � � ip�1 jp�1 ip jp ipþ1 jpþ1 � � � in�1 jn�1Þ:

Then

sgnða1kÞ ¼ ð�1Þ ipþjp�1
sgn½ðip � kÞð jp � kÞ� sgnða1kip jpÞ

where

a1kip jp ¼ ði1 j1 � � � ip�1 jp�1 ipþ1 jpþ1 � � � in�1 jn�1Þ A P1kip jp :

We need also the following technical lemma:

Lemma 3.3. Let k be an integer such that 2a ka 2n. Then

q

qk
Pf ðM1k;1kÞ ¼

X
2ai< ja2n

ð�1Þ iþj�1
sgn½ði � kÞð j � kÞ�aij

k Pf ðM1kij;1kijÞ:ð3:0:7Þ

Proof. Using the equality (3.0.5) we can write

q

qk
Pf ðM1k;1kÞ ¼

q

qk

X
a1k AP1k

Aa1k ¼
X

a1k AP1k

q

qk
Aa1k :

Let r and s be integers with r < s, which are di¤erent from 1 and k. Let T rs

denote the sum of the terms in which
q

qk
ars appears as a factor. For a given

a1k ¼ ði1 j1 � � � ip ¼ r jp ¼ s � � � in�1 jn�1Þ A P1k
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consider the term Aa1k ¼ sgnða1kÞai1 j1 � � � ars � � � ain�1 jn�1 . Using the Lemma 3.2,
the contribution of the kth partial derivative of Aa1k to T rs is

ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� sgnða1krsÞ q

qk
ars

Y
q A f1;2;3;...;n�1g�fpg

aiq jq :ð3:0:8Þ

Let P1k
rs denote the set of all permutations a1k ¼ ði1 j1 � � � ip ¼ r jp ¼ s � � �

in�1 jn�1Þ A P1k in which ip ¼ r and jp ¼ s for some p A f1; 2; 3; . . . ; n� 1g, write
pa. Taking the sum of the terms (3.0.8) over P1k

rs , we thus get

T rs ¼
X

a1krs AP1k
rs

ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� sgnða1krsÞ q

qk
ars

Y
q A f1;2;3;...;n�1g�fpag

aiq jq

0
@

1
A

¼ ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� q

qk
ars

X
a1k
rs AP1k

rs

sgnða1krsÞ
Y

q A f1;2;3;...;n�1g�fpag
aiq jq

0
@

1
A:

There is a one to one relation between the terms of P1k
rs and the terms of

P1krs. Moreover, for a given a1krs AP1k
rs

Y
q A f1;2;3;...;n�1g�fpag

aiq jq

does not contain the term ars as a factor. So we have

X
a1krs AP1k

rs

sgnða1krsÞ
Y

q A f1;2;3;...;n�1g�fpag
aiq jq

0
@

1
A¼

X
a1krs AP1krs

sgnða1krsÞ
Y

q A f1;2;3;...;n�2g
aiq jq

0
@

1
A

which yields

T rs ¼ ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� q

qk
ars

X
a1krs AP1k

rs

sgnða1krsÞ
Y

q A f1;2;3;...;n�1g�fpag
aiq jq

0
@

1
A

¼ ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� q

qk
ars

X
a1krs AP1krs

sgnða1krsÞ
Y

q A f1;2;3;...;n�2g
aiq jq

0
@

1
A

¼ ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� q

qk
ars

X
a1krs AP1krs

Aa1krs

 !

¼ ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ� q

qk
arsPf ðM1krs;1krsÞ:
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We can get
q

qk
Pf ðM1k;1kÞ by taking the sum of T rs over all possible pair

ðr; sÞ where 2a r < sa 2n. Then we get

q

qk
Pf ðM1k;1kÞ ¼

X
a1k AP1k

sgnða1kÞ q

qk
ðai1 j1ai2 j2 � � � ain�1 jn�1Þ

¼
X

2ar<sa2n

T rs

¼
X

2ar<sa2n

ð�1Þrþs�1
sgn½ðr� kÞðs� kÞ�ars

k Pf ðM1krs;1krsÞ

which is the desired conclusion. 9

Now we will prove Theorem 1.8 with the help of the above Lemma.

Proof. The proof will be based on the fact that a bounded harmonic
function on Rm is constant [1]. Since the coe‰cient functions are bounded (by
calibration condition), it will be enough to see that they are harmonic on R2n.

Since the 2-form field F is closed, we get

a
ij
k � aik

j þ a
jk
i ¼ 0ð3:0:9Þ

for all 1a i < j < ka 2n. Substituting i ¼ 1 and j ¼ 2 into (3.0.9) we obtain

a12k � a1k2 þ a2k1 ¼ 0 ) a12k ¼ a1k2 � a2k1

for all 3a ka 2n. Applying
q

qk
to a12k yields

a12kk ¼ a1kk2 � a2kk1

for all 3a ka 2n. Thus we can write the Laplacian of a12 as

Da12 ¼ a1211 þ a1222 þ a1233 þ a1244 þ � � � þ a122n 2n

¼ a1211 þ a1222 þ ða1332 � a2331Þ þ ða1442 � a2441Þ þ � � � þ ða1 2n
2n 2 � a2 2n

2n 1Þ

¼ ða1211 � a2331 � a2441 � � � � � a2 2n
2n 1Þ þ ða1222 þ a1332 þ a1442 þ � � � þ a1 2n

2n 2Þ

¼ q

q2
ða122 þ a133 þ a144 þ � � � þ a1 2n

2n Þ � q

q1
ð�a121 þ a233 þ a244 þ � � � þ a2 2n

2n Þ:

Let T ¼ ða122 þ a133 þ a144 þ � � � þ a1 2n
2n Þ. Combining (3.0.4) and Lemma

(3.3), we get
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T ¼
X2n
k¼2

a1kk

¼
X2n
k¼2

q

qk
½ð�1Þ1þk�1

Pf ðM1k;1kÞ�

¼
X2n
k¼2

ð�1Þk
X

1ai< ja2n

ð�1Þ iþj�1
sgn½ði � kÞð j � kÞ�aij

k Pf ðM1kij;1kijÞ
" #

¼
X2n
k¼2

X
2ai< ja2n

ð�1Þkð�1Þ iþj�1
sgn½ði � kÞð j � kÞ�aij

k Pf ðM1kij;1kijÞ
" #

:

From the fact

Pf ðM1kij;1kijÞ ¼ Pf ðM1ijk;1ijkÞ ¼ Pf ðM1jik;1jikÞ

and by the definiton of sign function we obtain

T ¼
X

2ak<i< ja2n

ð�1Þkþiþj�1
a
ij
k Pf ðM1kij;1kijÞ þ

X
2ai<k< ja2n

ð�1Þkþiþj
a
ij
k Pf ðM1kij;1kijÞ

þ
X

2ai< j<ka2n

ð�1Þkþiþj�1
a
ij
k Pf ðM1kij;1kijÞ

¼
X

2ai< j<ka2n

ð�1Þkþiþj�1
a
jk
i Pf ðM1ijk;1ijkÞ þ

X
2ai< j<ka2n

ð�1Þkþiþj
aik
j Pf ðM1jik;1jikÞ

þ
X

2ai< j<ka2n

ð�1Þkþiþj�1
a
ij
k Pf ðM1kij;1kijÞ

¼
X

2ai< j<ka2n

ð�1Þkþiþj�1ðaij
k � aik

j þ a
jk
i ÞPf ðM1ijk;1ijkÞ

Thus, from (3.0.9) we have T ¼ 0. Similarly, ða211 þ a233 þ a244 þ � � � þ a2 2n
2n Þ

is seen to be 0. Thus we get Da12 ¼ 0 which means a12 is harmonic.
By a change of basis, ars can be brought to the position of a12 for all

1a r < sa 2n. Repeating the same argument in this orthonormal basis, we
obtain Dars ¼ 0 which means that ars is harmonic. This completes the proof.

9
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