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Abstract

We obtain some basic results on helical geodesic immersions in semi-Riemannian
geometry. For example, it is shown that, for an indefinite semi-Riemannian sub-
manifold, if any space-like geodesics of the submanifold are helices of order d,
curvatures Zj,...,4s—; and signatures ¢&,...,& in the ambient space, then any time-
like %eodesics of Ehe submanifold have the same order and curvatures, and signatures
(=1)er,...,(=1)%,.

1. Introduction

In Riemannian geometry, an isometric immersion is called a helical geodesic
immersion of order d if the immersion maps every unit speed geodesic of the
submanifold to a helix of order d in the ambient space whose curvatures are
independent of the chosen geodesic. Several authors studied helical geodesic
immersions, see [2], [6], [9] and [11], for example. We wish to investigate a semi-
Riemannian version of helical geodesic immersions. First we consider non-null
curves which satisfy Frenet formula (see [10]) and have constant curvatures as
helices in a semi-Riemannian manifold. In contrast to the Riemannian case, we
must be careful with causal characters, i.e., signatures, of Frenet frame fields of
a curve. In fact, helices in a semi-Riemannian manifold of constant sectional
curvature are locally determined by not only the curvatures but also the signatures
up to isometries.

Let M and M be semi-Riemannian manifolds. In this paper, we consider
an isometric immersion f : M — M which maps every unit speed space-like
geodesic y of M to a helix of order d in M whose curvatures and signatures
are independent of y. We call such an immersion a helical space-like geodesic
immersion. Hereafter we assume M is indefinite. Thus there also exist time-like
and null geodesics on M. Under this situation, we investigate shapes of time-like

geodesics of M in M and get the following result.
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THEOREM A. Let f: M — M be a helical space-like geodesic immersion of

order d, curvatures Ay,. .., q-1 and signatures &, ...,&q. If M is indefinite, then
f maps any time-like geodesics of M to helices of order d in M which have
curvatures 11, ..., q_1 and signatures (—1)'er, (=1)%e, ..., (=1)%,.

In this case, the order of a helical space-like geodesic immersion is estimated by
the dimension and the index of the ambient space as follows.

THEOREM B. Let M be indefinite. If f: M — M is a helical space-like
geodesic immersion of order d, then

N
d < min{m —%,41},

where m = dim M and | = min{ind M, m — ind M}.

Thus, for example, the order of a helical space-like geodesic immersion between
Lorentzian manifolds is less than or equal to 4.

When the ambient space is of constant sectional curvature, the order of a
helical space-like geodesic immersion is estimated by the dimension and the index
of the normal spaces as follows.

Tueorem C.  Let M be indefinite and M of constant sectional curvature. If
f:M — M is a helical space-like geodesic immersion of order d, then

N
d Smin{p+%,4l’+2},

where p is the codimension of f and I’ = min{ind T,M*, p —ind T,M"*} (q€ M).
Moreover we obtain the following result on a null geodesic of M.

THEOREM D. Let f: M — M be a helical space-like geodesic immersion of
order d. If M is indefinite and M has constant sectional curvature, then [ maps
each null geodesic of M to a curve in an isotropic totally geodesic submanifold of
M. Moreover the proper order in M is less than or equal to min{l’ + 1,d}, where
I"=min{ind T,M*, p —ind T,M*} (qe M).

In this theorem, we call a submanifold of a semi-Riemannian manifold whose
induced metric is vanishing an isotropic submanifold.

We note that the key in the argument of this paper is the fact that a multi-
linear map of a vector space V to a vector space vanishes if it takes 0 on an open
set in ¥V (Lemma 2.2).

In Section 2, we give the fundamental formulas in the theory of subman-
ifolds. We also prepare several algebraic lemmas for later use. In Section 3,
we recall the definition of Frenet curves in a semi-Riemannian manifold. Basic
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results of the curves are also stated. We give the precise definition and some
examples of a helical space-like (resp. time-like) geodesic immersion. Theorem A
and Theorem B are proved in this section. In Section 4, we study helical space-
like geodesic immersions into a semi-Riemannian manifold of constant sectional
curvature. To obtain Theorem C, we prove Theorem 4.2, which is a general-
ization of results on helical geodesic immersions in [9] and [6]. It is also shown
that helical space-like geodesic immersions have geodesic normal sections, which
is a semi-Riemannian version of a result in [4]. Applying this fact, we prove
Theorem D.

2. Preliminaries

We let M and M be semi-Riemannian manifolds and f: M — M be an
isometric immersion. For all local formulas and computations we may assume
f as an imbedding and thus we shall often identify ¢ € M with f(q) € M. The
tangent space T,M is identified with a subspace f,(T,M) of T,M. Letters X,
Y, and Z (resp. ¢ and #) will be vector fields tangent (resp. normal) to M. Let
V (resp. V) be the Levi-Civita connection of M (resp. M). Then Gauss formula
is given by

VxY =VyY+B(X,Y),
where B denotes the second fundamental form. Weingarten formula is given by
va = 7A§X + Vﬁ;f,

where A: denotes the shape tensor corresponding to ¢ and V' the normal
connection. Clearly A4; is related to B as {4:X,Y) =<B(X,Y),&>, {,) being
the induced metric on M from the semi-Riemannian metric of M. Let R (resp.
R*) be the curvature tensor of V (resp. V) and D the covariant differentiation
with respect to the induced connection in the direct sum of the tangent bundle
TM and the normal bundle TM*. Let us assume that M is a space of constant
sectional curvature ¢. Then the structure equations of Gauss, Codazzi, and Ricci
are written as

(1) RX,Y)Z=¢(KY,Z)X — (X, Z)Y) + Apy, )X — Apx,2)Y,

2) (DxB)(Y,Z) = (DyB)(X, Z),

(3) R (X,Y)é=B(X,4:Y) — B(4:X, Y).

The following identity is well known

(4) REX, Y)E > = {[Ae, 4,)X, Y ).

The mean curvature vector H of f at ¢ is defined by H = > | {e;, ¢;»B(e;, e;)/n,
where eq,...,e, is an orthonormal basis of T,M and n = dim M.

We define the covariant differentiation for any TM*-valued tensor field T of
type (0,k) as follows. For vector fields X, X7,..., X tangent to M, we define
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k
(DXT)(Xla"'an) :VAJX;(T(XUan))_ZT(X177VXK "-7Xk)a
i=1

and DT is defined by (DT)(X, X1,...,Xx) = (DxT)(X1,..., Xx), which is a TM*-
valued tensor field of type (0,k +1). We denote by D*T the covariant deriv-
ative of DT. Furthermore, we can inductively define the covariant derivative
D'T. An isometric immersion f is said to be parallel if DB =0. For conve-
nience’ sake, a value T'(v,...,v) is written as 7'(v*) for a tensor field T of type
(0,k) and any ve TM. We have Ricci identity for T(X,..., Xk)

(D*T)(X,Y,X1,...,X;) — (D*°T)(Y, X, X1,..., Xx)

k
=R (X, V)T(X1,....X) = > _T(Xi,...,R(X, YV)X,..., Xp).
i=1

The following algebraic Lemmas are often used in this paper. Let V' and
W be finite-dimensional real vector spaces. It is easy that we prove the following
lemma.

Lemma 2.1. Let Ty, T, be r-linear mappings on V to W. Suppose
Ti(v") = TL(v") for all ve V, then for v,...,v, €V,

Z T1(Vs(1), - - - Vo(r)) = Z T2 (Vs(1)s - -+ > Ua(r))

geS, ge S,

where S, is the symmetric group on r letters.

Let V' be a scalar product space, that is, a real vector space furnished with a
scalar product <, which is a non-degenerate symmetric bilinear form on V. A
vector v of V is said to be space-like (resp. time-like or null) if {v,v) >0 orv=0
(resp. if <v,v) <0 or <{v,v) =0 and v # 0). Particularly null vectors are also
said to be light-like. We may simply call a unit space-like vector (resp. time-like)
(+1)-vector (resp. (—1)-). We say that e e {—1,+1} is an admissible signature to
a scalar product space V, if —ind V <e<dim V —ind V. It is easy to prove
the following lemma ([1]).

LemMMA 2.2. For any r-linear mapping T on V to W and an admissible
signature ¢ to 'V, the following conditions are equivalent:

() T(x,...,x) =0 for any unit g -vector x of V,

(i) T(v,...,v) =0 for any vector v of V.

LemMMA 2.3.  For any 2r-linear mapping T on V to W and an admissible
signature ¢ to V', the following conditions are equivalent:

(i) there exists an element w of W such that T(x,...,x)=w for any unit
e1-vector x of V,
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(ii) there exists an element w of W such that T(v,...,v) = (&<v,v))"'w for
any vector v of 'V,

(iii) there exists an element w of W such that T(u,...,u) = (g&1)'w for any
unit g-vector u of V, where ¢ € {—1,+1} is admissible to V.

Proof.  Suppose that (i) holds. Because of ¢ {x,x) =1 for any unit ¢-
vector x, we have T(x,...,x)— (g<x,x))'w=0. Taking Lemma 2.2 into
account, we obtain (ii). The other are rather clear. O

3. Helical space-like geodesic immersions

Let N be a semi-Riemannian manifold. A curve ¢ in N is space-like if all
of its velocity vectors ¢’(s) are space-like; similarly for time-like and null. An
arbitrary curve need not have one of these causal characters, but a geodesic y
always dose since y’ is parallel, and parallel translation preserves causal character
of vectors. A non-null curve ¢ is said to have unit speed if {¢’,c'> = +1 or —1
along ¢. We naturally generalize the notation of causal character of vectors
to geodesics. Namely, we may denote a unit speed space-like (resp. time-like)
geodesic by (41)- (resp. (—1)-)geodesic.

We recall the definition of a Frenet curve of order d in a semi-Riemannian
manifold. Let ¢ be a unit speed curve in N. The curve c is said to be a Frenet
curve of order d in N, if it has the orthonormal frame field ¢,...,c; and the
following Frenet formulas along ¢ are satisfied for all 1 <i < d(< dim N)

c =c,
{ciy i) = &,
Veei = —gi_18idic1¢io1 + Aiciyt,

where V denotes the Levi-Civita connection of N, 1o =A; =¢ =0, co = cqy1 = 0,
A (1 <i<d-1)is a positive function along ¢ and ¢ e {—1,+1} (1 <i <d).
Then A; (resp. o; and ¢) is called the i-th curvature (resp. i-th Frenet vector
field and i-th signature) of ¢. We may call such a curve a Frenet curve of
(d;21,...,Ad-1;€1,-..,84) shortly. Furthermore, if the all curvatures are con-
stant along ¢, then we call the curve a helix of order d in N. For example, a
space-like (resp. time-like) geodesic is a helix of order 1 with ¢ = +1 (resp.
&1 = —1), and a circle (resp. hyperbola) is a helix of order 2 with && = +1 (resp.
€16 = —1)

The proofs of the following propositions are essentially the same as that in
Riemannian geometry.

ProrosiTION 3.1.  Given a point q € N, positive functions Ai,...,Aq_1 on an
interval 1 (0 € I) and an orthonormal frame uy,...,uq of TyN, then there locally
exists a unique Frenet curve ¢ of order d in N with ¢(0)=gq and ¢'(0) = u
such that its Frenet frame ci,...,cq satisfies (c1(0),...,¢q(0)) = (u1,...,uq), the
signatures ¢ = {uj,u;y (1 <i<d), and Ay,..., 41 are the curvatures of c.
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PROPOSITION 3.2. Suppose N is of constant sectional curvature. Let c(s)
(resp. ¢(s)) (sel) be a Frenet curve of (djri,...,Ad-1;€1,...,84) (resp.
‘/11 id 1581,-.-,84)).  Then there exists an isometry g of N such that

(goc)(s) if and only if d=d, =4 (1<i<d-1) and ¢ =24

For o e {1, —I—I}k (k € N), we define n(a) (resp. p(a)) by the potency of the
negative (resp. positive) members of «. We say that o e {—1, +1}k is admissible
to a semi-Riemannian manifold N if n(o) <ind N and p(«) <dim N —ind N. It
is easy to see that there exists a Frenet curve of signatures ¢j,...,&; in N if and
only if (e,...,&7) is admissible to N.

If ¢ is a Frenet curve on the ordinary n-sphere S”(K) of constant sectional
curvature K in R"™!', then 1oc¢ is always a Frenet curve in R"™', where
1:8"(K) — R"™! is the inclusion. However this fact need not hold for Frenet
curves on hyperquadrics of semi-Euclidean spaces. Let Qf(eK) ={pe R”+1|
{p,p> =¢eK'}, where K >0, ee{—1,+1}, and the index =1 if &= +1 ‘and
f=t+1if e=—1. We note that Q, (eK) is a totally umbilical hypersurface
with constant curvature ¢K 1n R’*'. For a Frenet curve ¢ of (d; 21,y Aaer;
ely... 6q), put Ay =eK + 327 and Ay y = ey 203, +endd | (3<2i— 1<d).
We define the following polynomials of }vf“..,/ljfl by

Pr=A, L=AA— wg,
Lot = Aai 1 Lris — 13 305 2 PLrics,

where 5<2i—1<d. Leti1:Q/(K)— R;-’“ be the inclusion. By a straight-
forward calculation, we have the following proposition.

ProrosiTiON 3.3.  Under the above situation, if %1 #0 for all 1<

21 — 1 < d, then the curve 10 c in Rt”+1 is a Frenet curve of order d* in R”H, where

=d if d is even and d* =d + 1 if d is odd. The curvatures I, id «_1 and
signatures &l,...,&4+ of 10c satisfy

EQZIZ =eK + 82/1%,
Bai-alyy g+ Eaiday = E2i-2Ay; g + E2idgy 1,
Iaic\dai = aict i, Eaisl = &1,

where & =g =0 and 2 <i<[(d+1)/2]

Let f: M — M be an isometric immersion between semi-Riemannian mani-
folds. Suppose that (+1) is an admissible signature to M, let y be any unit
speed space-like geodesic of M. If the curve foy in M is a helix of (d;1i,...,
Ad-1;€1,...,e4) which are independent of the choice of y, then f is called a helical

space-like geodesic immersion of order d, curvatures li,...,Aq_1 and signatures
&l,...,&4. For convenience’ sake, we may call such an immersion a helical (+1)-
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geodesic immersion of (d;4;,...,44-1;&1,...,€4), or a helical (+1)-geodesic im-
mersion unless we need to specify the order, the curvatures and the signatures.
We also define that f is a helical time-like geodesic immersion in a similar way.

We shall give examples of helical space-like (resp. time-like) geodesic immer-
sions of order 2, 3 and 4.

Example 3.4. The pseudosphere in R/

SI(K) = Q(+K) = {g e R/ [<q.q> = K}

and the pseudohyperbolic space in Rfjll

H/'(K) = 0/ (-K) = {q e R} [<q,¢> = —K'}.

It is well-known that, just as for the ordinary sphere S”(K), the geodesics of
S7(K) (resp. H "( )) are the curves shced from S}(K) (resp. H]'(K)) by 2-planes
through the origin of R/ (resp. R/ ). For instance, when ¢ # n, the space-like
geodesics on S”(K) (resp H[’(K)) are the circles (resp. hyperbolas) with the
curvature VK in R/™! (resp. R;/!). Thus the inclusion : S/'(K) — R/ (resp.

10 H'K) — R is a helical space-like geodesic of (2;v/K;+1,+1) (resp.
( 2;VK;+1,—1)). We note that all null geodesics of S"(K) (resp. H(K)) are
stralght lines in R/™ when ¢ # 0,n. For details, see [8].

To simplify notation, from now on, we may denote S)'(1) (resp. H/'(1)) by
S7 (resp. H]'). The next example is well-known as the Veronese immersion of
S?. See [3], for example.

Example 3.5. We consider the following homogeneous polynomials of
degree 2:

up = xy, U = ZX, usy = yz,

\/?g( (y2_22)’

which satisfy Au; =0 (1 <i<5) where A= —(—8+ 0 4 0?) is the Laplacian
on R3 Then the restriction f; of u; to S? is a solutlon of the equation
Ag:h = 6h, where h is a smooth function on Slz, and Ag is the Laplacian on
S2. We define a map S? — RS by ¢ — (fi(q),..., f5(q)) for any g e S2. It is
easﬂy seen that —f2 — f2 + f2+ f+ f2 =31 on S?, hence we get f:S? —
S3(3). A direct computation shows that f is a helical space-like geodesic im-
mersion of (2;1;+1,4+1). By virtue of a semi-Riemannian version of Takaha-
shi’s theorem ([7]), the mean curvature vector of f vanishes identically in S5(3).
Moreover let 1:S5(3) < R be the inclusion. In view of Proposition 3.3 the
composition 7o f is a helical space-like geodesic immersion of (2;2;+1,41).

NS

usg = 2+ Y +2%), us=

The following examples are concerned with helical space-like geodesic immer-
sions of order 3 and 4.
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Example 3.6. We consider the following homogeneous polynomials of
degree 3:

V15 V10
up = —-x(x* =y +42%), w=-"x(x*+3y?), w3 =-——xyz,
4 12 2
1 V15 V10
Uy :Zy(x27y2+422), s :?y(3x2+y2), g :TZ(XZJFJ/Z),

Uy = gz(bc — 3y 4227,
which satisfy Au; =0 (1 <i < 7). Then the restriction f of u; to S? is a solution
of the equation Aszh = 12h. We define a map S7 — R] by g — (fi(q),-- -, f7(q))
for any ge S} Since —f7— f7— f3+f4+f5+f6+f2—61 on Slz, we
obtain f: S} — S3 (6) According to a direct computation, f is a helical space-
like geodesw immersion of (3;1;,4;+1,+1,+1), where its curvatures are

-

/ has the vanishing mean curvature vector in S¢(3). By Proposmon 3.3, the
composition 10 f : S? — R] is also a helical space-like geodesic immersion of
(4; 1,22, A3;+1, 41, +1,+1), where its curvatures are

/17 15 = /2
A ﬁa )L3 =3 ﬁa
where 1: S9(6) < R] is the inclusion.

Fix an admissible signature & € {—1,+1} to M. Let f: M — M be a
helical &-geodesic immersion of order d. Let x be an ¢ -tangent vector of M
and y an g;-geodesic of M such that y’(0) =x. Puto= foy. Ifd=1, then we
have Vo) = B(x,x) = 0 for any ¢-vector x. Lemma 2.2 implies that f is totally
geodesic. Thus we may assume that d > 2. So the first curvature 4; for o
is a positive constant. Let & = {02,02)». Then we obtain <{B(x,x),B(x,x)) =
V01, V01> = 82112 for any ¢-tangent vector x. From Lemma 2.3, we see f
is constant isotropic, i.e., {B(u,u),B(u,u)) is constant for every unit vector u
tangent to M.

Proof of Theorem A. Let f: M — M be a helical ¢-geodesic immersion

of (d;A1,...,4i-1;¢1,...,¢4). It suffices to show that, for each signature
ee{—1,41}, f maps any e-geodesic of M to a helix in M of (d;A1,..., A4_1;
(ee1)'e1, ..., (e21)%4). Let ue TM be an e-vector, and 7, e-geodesic of M such

that y/(0) =u. Puto,= foy,and U=g,. Since f is an isometric immersion,
we define the first Frenet vector a,,; (resp. signature) of o, by o’ (resp. (e&1)'e)).
We have Vyo, 1 = B(U?). If we put > = B, then it is a TM-valued (0,2)-
tensor field on M and VUJ,“ =F(U 2). When u is an ¢j-vector x, by assump-
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tion, Vyoy | = 410y, where X = o’. Hence we obtain (Fs(x?), Fo(x?)) = e/
for any &-vector xe TM. Using Lemma 2.3, we find for any ve TM

(5) (B0, B = el {v,v)%.

From (5), we define the second Frenet vector field g, » (resp. first curvature and
second signature) of @, by A 'Fy(U?) (resp. 4; and & = (¢61)%¢). Next, from
e =<U,U), we obtain

Vuour + ((ee1) ' e1)((e81) 1) how = A7 (DuF)(U?) + 62U, UDU,

where D denotes the covariant differentiation with respect to V and V. Let F| be
a TM-valued (0, 1)-tensor field on M such that Fy(v) =v (ve TM). If we put
F; = il’l(DFz) + &, Fy, then it is a T M-valued (0,3)-tensor field on M and
Vuoua + ((ee1)'e1)((e61)e2) M0, = F3(U?). When u is an -vector x, by as-
sumption, Vxﬂx,2+8182/110x,1 = Ayay3. Therefore we have, for any g -vector
xe TM, {F3(x*),F3(x*)> = &34;. Using Lemma 2.3, we get for any ve TM
(6) (F3(0), F3(v)) = e18345 (v, v’

From (6), we define the third Frenet vector field o, 3 (resp. second curvature and
third signature) of g, by 4, 'F3(U?) (resp. / and (eg;)’es).
Let m be a fixed natural number satisfying 3 <m <d — 1. We assume that
the followings hold for 2 < k < m:
Vuou k-1 = —((881)k728k72)((881)k718k71)ik720u,k72 + Ak—10u i,
Ouk = l];lle(Uk)v
where Fy is a TM-valued (0,k)-tensor field on M. Then we have

Vuoum+ ((361)m_lsm_l)((631)'"3,,1),1”,_16“7”4_]
= i;il(bUFm)(Um) + 818,71,18"71”[71}'71 <U7 U>Fm,1(Um_1>.

m—2

If we put Fy,. :)vrjl{l(me)—|—813m_1smim_1)v;n172<,>Fm_|, then it is a TM-
valued (0,m + 1)-tensor field on M and we get

vUo-u,m + ((881)n1716i1171)((ggl)mem)/lmflgu,mfl = E11+1<Um+1)~

When u is an g-vector x, by assumption, VXax_ym + e 1EmAm—10x,m—1 = AmOx, m+1-
Therefore we have for any g-vector x € TM

<En+l(xm+1)a Fm+1(xm+1)> = 8m+1/1,2,,~
Using Lemma 2.3, we have for any ve TM
(7) <Fm+l (UWHI)’ Fm+1 (Um+1)> = 8;”+18m+1;»,2n<l], U>m+1 .

From (7), we define the (m + 1)-st Frenet vector field g, 41 (resp. m-th curvature
and (m+ 1)-st signature) of @, by A,'F, 1 (U™1) (resp. A, and (ee;)" " epy1).
We complete the induction.
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We must prove

(8) Vuoua = —((ee0) " ea1)((ee1) "ea) 2a-10ua-1-

Because of a,4=/;"Fi(U?), we have Vyo,q=2;"(DyF;)(U?). Since
VxOya = —€i-16474-10x a-1 for any g -vector x e TM, we find i;ll(Dde)(xd) +
Ea-18ald-17g s Fa-1(x?71) = 0. Using &<x,x) = 1,

(9) i;ll(bde)(xd) + 818d718did71i;712<x, X>Fd71(xd_l) =0.

Using Lemma 2.2, we see that Equation (9) holds if x is replaced by any
ve TM. From this, we can get (8). Theorem A was proved. O

Theorem A implies

COROLLARY 3.7. [ is a helical space-like geodesic immersion if and only if [
is a helical time-like geodesic immersion.

Thus, we may simply call the immersions helical geodesic immersions.

From Theorem A, if f: M — M is a helical geodesic immersion of
(dy Ay Aa—1;€1,-..,8q4), then (e1,...,&7) and ((—1)181,...,(—1)d8d) are admis-
sible to M. To show Theorem B, we prepare the following paragraphs.

For convenience’ sake, if d is odd, put d’ and d” be d and (d—1)
respectively, and if d is even, put d’ and d” be (d — 1) and d respectively. For
any o = (&,...,&4) € {—1,+1}d, we put o, = (&1,83,...,807), % = (€2,84y...,8q7)
and o = ((—1)'e1,(=1)%,,...,(—=1)%,). By definition, we have n(x) = n(ax)+
n(o,), n(d,) =n(x) and n(a,) = [(d +1)/2] —n(x,). Thus n(a) = [(d+1)/2] —
n(oy,) + n(a).

LemMa 3.8. For a0 € {—1,+1}d, we have
d+3

min  max{n(x),n(@)} = min max{p(a), p(&)} = [ }
ne{—1,+1}¢ we{-1,+1}¢ 4

Proof. Because of 0 <n(a,) < [(d+1)/2],

min  max{n(a),n(®@)}
ae{—1,+1}¢
= min  max{n(«),n(a)}

ae{-1,+1}¢,
n(o,)=0

= min max{n(%), [d;l} - ”(%)}

ae{-1,+1}",
n(o.)=0

ol {131 Joss< 151} [
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From the same argument for p(a), we can show the second equation in this
lemma. ]

LEMMA 3.9. If there exists ae{—1,+1}" such that both « and @ are
admissible to an m-dimensional scalar product space V, then
1+ (71)[("1*1)/2]

d<
=m 2

Proof.  We can see n(a) — n(&) = 2n(o,) — [(d + 1)/2]. Hence |n(a) — n(a)]
>1 when d =1,2 (mod4). In this case, without loss of generality, we can
assume n(a) —n(a) > 1. If both « and & are admissible to V, then n(a) < ind V'
and p(@) <dim ¥ —ind V. Hence we have

d=p@ +n@ <dmV—-indV+ind V-1=m-—1.
Hence we have d <m—1, d =1,2 (mod4). When d =0,3 (mod 4), at least,
d <m. These inequalities imply
d< m—1 m=1,2 (mod4),
m m=0,3 (mod 4).

Therefore this lemma is proved. O

Proof of Theorem B. Let ¢,... &4 be the Frenet signatures of ¢;-geodesics
of M in M. Put o= (e1,...,es). Since M is indefinite, from Theorem A, both
o and & must be admissible to M. By Lemma 3.9,

1+ (71)[('"*1)/2]
2
where m=dim M. On the other hand, max{n(«),n(%)} <ind M and
max{p(«), p(@)} <m —ind M must also hold. Using Lemma 3.8, we have

[#} < min{ind M, m — ind M} = /.

d<m

Therefore we have d < 4/. Theorem B was proved. O

Remark 3.10. We note

mingm————— 4/ » = 1+ (_1)[("4—1)/2J
m-———— ([m/4] <1< [m/2]).
Moreover we can prove the following: There exists o = (g,...,&) such that

both o and & are admissible to M, where k is equal to the right hand side of the
inequality in Theorem B.
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CorOLLARY 3.11.  Let f: M — M be a helical geodesic immersion of order
d. If M and M are Lorentzian manifolds, then d is less than and equal to 4.

4. Helical geodesic immersions into a space-form

Let f: M — M be an isometric immersion between semi-Riemannian mani-
folds. We put for integers k, [, h such that k,/>2 and 0 </h <k—1 and
v,weT,M (qe M)

vii(v) = (D*2B)(09), (D'2B) (")),
v,/(’ (v, w) = (D*2B) (0" w, v* 1) (D2B) (0))).

Let & be an admissible signature to M. We consider the following equations for
any natural number i > 2

(%) Vi (o, w) = {(—U(W 2elvidv, v o, Wy k+1=2i,
7 0 ke+1=2i+1,
where v; is constant, k,/>2, 0<h<k—1 and v,we T,M (qge M).

Hereafter we assume that M is a semi-Riemannian manifold of constant
sectional curvature and M is a (not necessarily indefinite) semi-Riemannian
manifold. We prepare the following Lemma.

LemMA 4.1. Let m be a fixed natural number satisfying m > 2. If
(%2),...,(Bwm) and
(10) i(v) = {(—1)<k">/2ei’”lvm+1<v, " k4l =2m+2,

’ 0 k+1=2m+3,

Sfor any ve TM hold, where vy is constant, then we have (By1).

Proof. Taking account of (10), we need only to consider the case
{v,w) =0. Because of (%),...,(%Bm), for any ve TM,
(11) A(DIZB)( )l)/\U—O (2£i£2m—1).
Applying Ricci identity to (D*2B)(vF), (2 <k <2m —1), we have

(D*B) (v, w, v*) — (D*B)(w,v**1)

k—1
RL(U W)(Dk ZB Z Dk 2B’ vh , R(v,w)v, k*h*l).
h=0

By (4), (11) and <v,w) =0, we obtain for 2 < k,/ <2m—1
(R (0,w)(DF2B) (%), (D'2B)(v))) = <[ A(pr-2p)t)s A(pr-2py oty 0, W) = 0.

Moreover vk (v, R(v,w)v) =0 for k + [ =2m,2m + 1 because of (v, R(v,w)v) =0
and (%,,). Therefore we have for k+/=2m+2,2m+3
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(12) vy (v,w) = v,i (v, w).
Differentiating (%,,) for k+1=2m+1 in the direction of v, we have for
1<h<2m-2

h h— h— h—
v21m,2(v7 W) =0 v2lmll,2(Va W) - v2m£1,3(v’ W) = _v2mll,3(v7 W)

== (_1>hvgm—h,/1+2(v7 W)7
where V' and W are local vector fields extending v and w such that the covariant
derivative V,V =V,W =0. Using (12) for k+/=2m+2,

0 1 0
v2m—h‘h+2(va w) = V2m7h‘h+2(vv W) = —=Va i, h+3(U w)

1 2m—h—-2_0
= _v2m—h—lﬁh+3(v’w) == ( 1) " V2 Zm(v W)

Thus we have v} ,(v,w) =19, (v,w) for 0 </ <2m—1. On the other hand
using Lemma 2.1 for (10) in the case of (k,[) = (2m,2), we have for {v,w) =0

2m—1
E v2m NONT -i—2v2 om0, W) = 0.

h _ 0
Because of vy, ,(v,w) =3 ,,(v,w), we have for 0 <h <2m—1

(13) vgm Z(U W) - V2 2m(v W) 0.
Furthermore, using (%,,), we get for k+/=2m+2 and 0 <h <k -1
Vi (0w) =0V (Vo W) =i (o,w) = =i o (0, w)

== ()R

).
The above equation and (13) imply (Bps1) for k+1=2m+2. To obtain
(Bs1) for k+1=2m+ 3, differentiating (%,,+1) for k+71=2m+2 in the
direction of v, we have for 1 <h <2m—1

h
Vé’m+172(u7 W) = (_1) vngrlfh,thZ(Ua W)'
Using (12) for k+1=2m+3,
2m+1—-h-2
vngrlfh h+2(U7 W) ( 1) " Vg 2m+1 (U W)

Thus we have v}, ,(v,w) = —v3,,  (v,w) for 0 <h <2m. By Lemma 2.1 for
(10) in the case of (k,/) = (2m+1,2),

2m

h 0 —
Z Vo120, W) + 23 5,4 (0,w) = 0.
h=0
h _ 0
Because of vy, | ,(v,w) = —vy,,, . (v,w) we have for 0 <h <2m

(14) v§m+l,2(vv W) = Vglm-ﬁ—l (Ua W) =0.
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Furthermore, using (%,,+1) in the case of k+/=2m+ 2, we have v,’; (v, w) =
(-1~ ng;ilzz(v w), where k+1/=2m+3 and 0 <h <k —1. This equation
and (14) 1mp1y (Bpi1) for k+1=2m+3. Thus, we get (Bmi1). O

The following theorem is a semi-Riemannian version of a result on helical
geodesic immersions, which is proved by Sakamoto in [9] (see [6] also).

THEOREM 4.2. Let ¢ be a fixed admissible signature to M and f: M — M a
helical geodesic immersion of (d; A, ..., 4-1;€1,...,&q4). Then, for c = foy (yis
any e-geodesic of M), the Frenet frame field oy,...,04 of o is given by

(#) o1 =d'(=U),

(70) o1 = G~ 1) St (DB,
where 2 g i <d. The coefficients aj; satisfy

(i) af, =1 (1<i<d),

(i) a ]” 1, =0 (0</j-1<4d),

(i) aj; =0 (2<z<d)

(IV) a}g _Es Eslj'z 2at 2/+az 1,j-1 (3S]+1 Siﬁd),

where E? - (¢¢1)'e; and Lo =0. Moreover we have (%;) for 2 <i<d.

Proof.  Let y be an ¢-geodesic of M. Put ¢ = foy. From Theorem A, ¢
satisfies for 1 <i<d
(15) Vyoi = —Ef |Efdi-10i-1 + 2011,
where Ef = (eel)isi ={g,0;y (0<i<d), eg=4=4,=0 and oy =041 =0.
Because of Vyo, = B(U?) and (15),_,, we have (%) and (B(U?),B(U?)) =
32/112<U ,U>%. The latter equation and Lemma 2.1 imply for any ve TM,
(16) (B(v?), B(v*)) = e2A{<v, v)7.
Differentiating (16) in the directions of v and w respectively,

V%jz(U,W) =0 v%,Z(V’ W) - V2173(U,W) = —V%73(U, W)a

1
vgz(v, w) = W v22(V') =0,

where V', W and V"’ are local vector fields on M extending v, w and v respec-
tively such that their covariant derivatives V,V, V,W and V,, V'’ vanish. Codazzi
equation (2), the above equations and (16) imply (%,).

Let m be a fixed natural number satisfying 2 <m < d — 1. We assume that
(Z:) and (%;) hold for 2 <i<m and every ¢ = foy. Because of (%,),...,
(Bm), for any ve TM,

(17) A(DI 23)( )U/\U—O (2£1S2m—1)
Differentiating (%,,) along the direction of U,

m

(18) Vo = (A1 dmar) >k (=AprapwnU+ (D' B)(UT)).
j=2
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When m = 2, we have Vyoy = A (—=e{B(U?), BUU*)YU + (DB)(U?)) = —eeyh U
+7Y(DB)(U?). On the other hand, Vyo, = —ees4 U + Jpo3 from Frenet for-
mulas. Thus (%3) holds. In the case where m >3, we will see that (%)
holds. Because of m > 3, Vya,, is orthogonal to U. Hence (17) and (18) imply
that the tangential part of Vyo,, vanishes, that is,

m

(19) > A unU =0,
j=2
Therefore, taking account of (15),_,, and (%,-1), we obtain (%), that is to
say,
m+1 ) )
imUerl = (/’Ll te /’mel)il Z ali1+lﬁj(D‘/7zB)(U‘/)’
j=2

where we put

e _ & € _
am+1,m+1 - 17 am+1,m+2 - am+1,1 - 07

e _ e & 192 €
am+l,j - Em—lEm)”m—lam—l,_

jtan, 0 2<j<m).

We shall prove (%B,+1). Let xe TM be an g -vector and ., an & -geodesic
of M, and put o, = foy. Because of (%,),...,(%B,) and (F,41) for oy,

) 2 3 3
V41, m+1 (X) = &m+1 (/Ll o 'lm) - § a,,;.;_l’]amu]_’nvl,n(x)-
(/,n) #(m+1,m+1)

This equation and (%,),...,(%,) imply that vy m+1(x) is independent of the
choice of the ¢-vectors x. Thus we put vyii mr1(x) = vus1 € R. By Lemma
2.3, we get for any ve TM

(20) Vot L1 (0) = &l v (o, o)™

Differentiating (%,,) for k+1=2m+1, we get vii1 1(v) + Vi, 111(v) = v - v ) (V)
=0, where V is a local vector field on M extending v such that the covariant
derivative V, V' vanishes. So, by (20), we have

1) Vit (v) = (=) ED2gmely o o)™ (k+ 1= 2m +2).
From (21) and the constancy of v,,1,

1
(22) Vm+2,m+1(v) = EU . Vm+1,m+1<V) =0.

Differentiating (21) in the direction of v, we have vii1 ;(v) + Vi, 111(v) = v - v ) (V)
=0 for k+/=2m+2. This relation and (22) imply

(23) i) =0 (k+1=2m+3).
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Using Lemma 4.1, the inductive hypothsis, (21) and (23) imply (%1). This
completes the proof of the theorem. O

The coeflicients 4 ; of (7;) have the following properties.

Lemma 4.3. The coefficients af; of (#;) in Theorem 4.2 satisfy
(24) a;; =0 (i+: odd),

(25) a;; = (ee D= ’)/zaslj (i + j: even).

Proof.  Because of (i) and (iii), for i+ j=1,3, a5, =aj,=a5,=0. Us-
ing (iv), we can see that (24) holds for every natural numbers 7, j such that i + j
is odd, by the induction. We shall prove that (25);; is true for even i+ j.
Equation (i) says that (25);; holds for 1 <i < d and (iii) implies that (25), ; holds
for any odd natural number suth that 3 <i<d. Hence we obtain (25) for
1 <j<i<3hold. Let3<k<d. Suppose that (25);; holds for 1 <]<l<
k. Since we already showed that (25),,,, and (25); ., hold, it suffices to
show that (25),,,, for 2</<k—1. Using the assumption of induction, we
have for even (k+1)+/

g _ e £12 e &
iy = Ep Bl gy + a2y

YEDD2g00 4 () k=02

= (5‘91)6k718/c}~1§—1(831 Q1,1 A 1-1

= (&91)<<k+1)7l)/2(Skflglc)v%—1"1&1.1 + azél, I-1)

= (681)«“1)70/2“&1,#

We have complete the proof. O

PrOPOSITION 4.4. Let & be a fixed admissible signature to M and
f:M— M a helical geodesic immersion of (d;Ay,..., a-1;€1,...,84). Then
we have for any ve TM and m (3 <m < d),

(26) Za‘jsl@ v)) m]/ZA pi2g) it = 0.
Jj=2

If d =2, then f is parallel If d =3, then, for any ve TM,

d+1

(27) > a, edo, o)) (DI B (v]) = 0,
j=2

where we put
€] _ 2 — 4 _
g = b a1 =a54 400 =0,

& _ 2 &l &l i
aaurl’j—£d_18d/1d71ad71’j+ad7j71 (2S] Sd)
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Proof. Let xe TM be an ¢j-vector. Using ¢;<{x,x)» = 1, we rewrite Equa-
tion (19) in the proof of Theorem 4.2 into the form

m

Z a, i (e1<x, x> >/2A(Dj’23)(xj)x =0.
j=2

From (24), each non-vanishing term of the left hand side is a tensor field of
degree (m +1). Taking account of Lemma 2.2, the above equation holds if x is
replaced by any ve TM. Thus we have (26). Let yx be an ¢ -geodesic of M
such that y7(0) = x, and put o =foy,and X =c.. If d =2, then Vyo,, =
—e164105 1. Hence, () in Theorem 4.2 implies (DB)( =0 for any ¢-vector
xe TM. By Lemma 2.2 and Codazzi equation (2), we can see that f is parallel.
When d > 3, because of Vyoy s = —&4-16444-10x.a-1, (Fa-1) and (F,), we have

d
(28) Y eanreaid ity +a)(DIPB) () + (DU B) (<) = .
=2

Using ¢<{x,x) =1 again, we can rewrite (28) into (27). O

COROLLARY 4.5.  For any null tangent vector z of M, A(pi2py-z =0 (i = 2)
and (D/72B)(z/) =0 (j>d+1).

Proof. By aj,., 4.1 =1 and (27), we can see that (D*?B)(v*) (k>=d +1)
is a linear combination of <, u> @H=02(pi=2B)(vi) (2 <i<d). If we replace
v by any null vector ze TM in (26), (27) and the above linear combination,
then we obtain A(pr2py.nz=0 (i>3) and (D"?B)(z') (i>d+ 1) because of
a3, =-=aj, . =1. We must prove Ap.2z=0. By virtue of (%), we
have Ap2yv = v{v,vpv for any v, hence the proof is complete. O

COROLLARY 4.6. (4;) holds for any natural number i > 2.

Proof. Let xe TM be an ¢-vector. Then, from aj,, ,., =1, (24) and
(27), we see that (D*2B)(x¥) (k >d + 1) is a linear combination of (D"2B)(x?),

i=3,5...,d ori=2,4,...,d", according as k is odd or even, where we note
that the coefficients are independent on the choice of &-vector x. Thus, from
(%2),...,(Ba), vk.1(x) is constant for any k,/ > 2 and ¢;-vectors x, and v ;(x) =0

in the case that k+/ is odd. Put v; =v;;(x) (i>d+1). By the same way of
showing (%,,+1) in the proof of Theorem 4.2, we can prove that (%;) holds for
i >d+ 1 inductively. O

From Theorem 4.2, we see that i-th Frenet vectors of ¢ (i > 2) are normal
to M. Hence we get d < p+ 1, where p is the codimension of f. However,
when M is indefinite, the order of helical geodesic immersion depends on not only
the codimension but also the index of the normal spaces (Theorem C). To see
this fact, we prepare the following paragraphs. For any o= (&,...,&s) €
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{=1,+1}7" we put a® = (e3,65,...,60/), a° = (62,¢4,...,6q») and & = ((—1)%e,
(=1)%3,...,(=1)%,). By definition, we have n(a) = n(a*) 4+ n(a®), n(é¢) = n(a®)
and n(a°) = [(d — 1)/2] — n(a®). Thus n(a) = n(a®) + [(d — 1)/2] — n(a®).

LeMMA 4.7. For a,ae{—1,+1}"" we have
d+1

min  max{n(«),n(@)} = min  max{p(a), p(@)} = {]
ae{—1,+1}9! we{—1,+1}4! 4

Proof. Because of 0 < N(a°) < [d/2],

min { lmax{n(oz),n(o?)}

ae{-1,+1}4"
=  min  max{n(«),n(a)}
ae{—1,+1}7",
n(o€)=0

= min max{n(fx"), {?] - n(oc")}

ae{fl,Jrl}d*],
0<i<||l_|dt]
<1< D = —4 .

n(a®)=0
From the same argument for p(o), we can show the second equation in this

= minq{ maxq i -1 _;
= axy i, 5 —1i
lemma. O

LEMMA 4.8. If there exists ae{—1,41}*"" such that both « and & are
admissible to a p-dimensional scalar product space V, then

_1)\[lp/2
dSp-i—%.

Proof. We can easily get n(a)—n(@)=2n(a’)—[(d—1)/2]. Hence
|n(a) —n(a)] =1 when d = 0,3 (mod 4). In this case, without loss of generality,
we can assume n(x) —n(a) > 1. If both o and & are admissible to ¥/, then
n(e) <ind ¥ and p(&) < dim ¥V —ind V. Therefore we have

d—1=p@)+n@ <dmV—-—indV+ind V-1=p-—1.

Hence we have d <p, d=0,3 (mod4). When d=1,2 (mod4), at least,
d < p+1. These inequalities imply

J< p+1 p=0,1 (mod4),
“p p=2,3 (mod4).

Therefore the proof is finished. O

Proof of Theorem C. Let ¢,...,e; be the Frenet signatures in M of ¢ -
geodesic of M. Put o= (e,...,&). Since M is indefinite, from Theorem A
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and Theorem 4.2, both o« and & must be admissible to the normal spaces of M.
By Lemma 4.8,

1+ (_1)[1’/2]

—

On the other hand, max{n(x),n(&)} <ind T,M*+ and max{p(«),p(a)} <
p —ind T,M* must also hold (g€ M). Using Lemma 4.7, we have

{#} < min{ind T,M", p — ind T,M"} = 1.

d<p+

Therefore we have d <41’ +2. Theorem C was proved. O

Remark 4.9. We note

_1\lp/2
min{p—kw,M/ +2}

2
4] +2 o<l'<(p-1)/4]),
— 1+ (=1 [p/2]
p+ T (- n < <0 - 0/2)
Moreover we can prove the following: For a p-dimensional scalar product space
V', there exist o = (e, ..., &) such that both « and & are admissible to V', where k

is equal to the right hand side of the inequality in Theorem D.

COROLLARY 4.10. Let f: M — M be a helical geodesic immersion of order
d. If M is indefinite and ind M =ind M, then d <2. Hence f is parallel.

Here we recall several notions which is proper in semi-Riemannian geo-
metry. Let 7 be a scalar product space. A subspace W of V is called an
isotropic subspace, if all non-zero vectors of W are light-like. The dimension of
a maximal isotropic subspace of V' is equal to min{ind ¥ — dim V,ind V'}. Let
L be a merely submanifold of a semi-Riemannian manifold N. In general, the
induced tensor field g on L from the semi-Riemannian metric on N is not
necessarily non-degenerate. If ¢ =0 on L, then we call L an isotropic sub-
manifold, following [5]. Thus, for an isotropic submanifold L, T,L (g€ L) is an
isotropic subspace of T,N.

Let N be a semi-Riemannian manifold of constant sectional curvature.
Hereafter, we say that L is totally geodesic in N, if Vy Y is tangent to L for any
tangent vector fields X, Y of L, where V is the Levi-Civita connection of N. We
note that a semi-Riemannian manifold N of constant sectional curvature satisfies
that if, for each point ¢ € N and any subspace V' of the tangent space 7,N, there
exists a totally geodesic submanifold L containing ¢ such that the tangent space
of L at g is V.

We recall the definition of a normal section for an n-dimensional semi-
Riemannian submanifold M immersed in an (n+ p)-dimensional semi-
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Riemannian manifold M of constant sectional curvature. For a point ¢ in M
and a non-zero vector v in T,M, the vector v and the normal space T,M*
determine a (p + 1)-dimensional subspace E(q,v) of T,M, which determines a
(p + 1)-dimensional totally geodesic submanifold L satisfying ¢ € L and T,L =
E(q,v). Then the intersection of M and L gives rise to a regular curve f§, in a
neighborhoods of ¢ such that f(0) = v, which is called the normal section of M
at ¢ in the direction v. Without loss of generality, we may assume that f, is
parametrized by arc-length whenever v is non-null.

In this paper, we say that an isometric immersion f : M — M has geodesic
normal sections, if any geodesic of M is locally a normal section. Similarly to
the Riemannian case, the next proposition holds.

ProrosITION 4.11. A helical geodesic immersion has geodesic normal sec-
tions.

Proof. Equation (27) and the continuity of (D'=2B) imply, for any ve TM,
(29) span{(D"?*B)(v') |2 < i < d} = span{(D'*B)(v")|i > 2},

and the dimension < (d —1) because of Theorem 4.2. By Proposition 4.4,
Api2pywiypAv=0 for any ve TM and i >2. Let ¢ be an arbitrary point in
M and y:1— M a geodesic of M satisfying y'(0) =ve T,M, put o= foy.
Then, we have for 1 <i<d

i

(30) Vir'la' = (DB (1),

J=1

where (D"'B)(V')=V =¢' and ¢! is a function on I. So we have ¢ (0) e
E(g,v), (1 <i<d). Let L be a totally geodesic submanifold of M determined
by E(g,v). Then L has the induced connection V* ie., VEY =VyY for any
tangent vector fields X, Y of L. Let f be a curve on L satisfies the following
equation with an initial condition '(0) = v

(31) Z (D/72B)(V).

By virtue of V%Y = Vy Y and the uniqueness for solutions of Equations (30) and
(31), we see that ¢ coincides with f locally (hence f is a normal section of M at ¢
in the direction v). Thus all geodesics of M are normal sections of M. This
proposition is proved. ]

Remark 4.12. Chen and Verheyen [4] proved that a Euclidean helical sub-
manifolds has geodesic normal sections. In the Riemannian case, its inverse was
proved by Verheyen [11]. Moreover Hong and Houh [6] showed it in case the
ambient space is of constant sectional curvature. However, in the proper semi-
Riemannian case, space-like geodesics of a submanifold with geodesic normal
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sections are not necessarily helices (in the sense of this paper) in the ambient
space. See Example 2.3 in Blomstrom [3], for example.

We say that a curve ¢ in a semi-Riemannian manifold N of constant sectional
curvature is of proper order d if the image of ¢ is contained in a d-dimensional
totally geodesic submanifold of N and not in any (d — 1)-dimensional totally
geodesic submanifold of N.

As can be seen from Example 3.4, under the assumption that f : M — M is
a helical geodesic immersion, the proper order of a null geodesic of M in M need
not coincide with one of a space-like geodesic of M. A direct computation shows
that f and 10 f in Example 3.5, and f in Example 3.6 map each null geodesics
of S? to curves whose proper order is equal to the helical order in S3(3), R; and
S36(6) respectively. On the other hand, though 10 f in Example 3.6 is a helical
geodesic immersion of order 4, each null geodesics of S? are mapped to curves of
proper order 3 in R] by 1o f. In general, for the behavior of null geodesics
mapped by a helical geodesic immersion, we can obtain Theorem D.

Proof of Theorem D. Let z a null vector of T,M (ge M) and y a null
geodesic of M satisfying y’(0) =z. We have for 6= foy

o) =3 (DB (Z)),
=1
where (D~!'B)(Z') = Z = ¢’. On the other hand, (%;) (i > 2) imply for any null
vector z tangent to M
((D*2B)(z"), (D"?B)(z")) = 0,

for any k,/ > 1. Therefore we have (¢¥), ¢!y = 0 along ¢ for any k,/ > 1 and
see that ¢’(0),...,0!?(0) are contained in an isotropic subspace V of E(q,z),
where dim V' </'+ 1. By virtue of Proposition 4.11 and (29), ¢ is a normal
section of M and its proper order < d. Since M is of constant sectional
curvature, there exists an isotropic totally geodesic submanifold L) determined

by V. Since, from (29), we can see that span{c’,...,d?} is parallel along o,

the image of 0 =« Ly and dim Ly =dim V' =1["4+1. So, the proper order of

o <min{/’+ 1,d}. Theorem D was proved. O
REFERENCES

[1] N. ABE, Y. NakanisHI AND S. YaMmAGucHI, Circles and spheres in pseudo-Riemannian
geometry, Aequationes Mathematicae 39 (1990), 134-145.

[2] A. BessE, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, Springer,
Bd. 93. Berlin, Heidelberg, New York, 1978.

[3] C. BromstrOM, Planar geodesic immersions in pseudo-Euclidean space, Math. Ann. 274
(1986), 585-598.

[4] B. Y. CHEN AND P. VERHEYEN, Submanifolds with geodesic normal sections, Math. Ann. 269
(1982), 59-66.



(6]

(7]

[9]
(10]

(1]

HELICAL GEODESIC IMMERSIONS OF SEMI-RIEMANNIAN MANIFOLDS 343

K. L. DuGGAL AND A. Besancu, Lightlike submanifolds of semi-Riemannian manifolds and
applications, Kluwer Academic Publishers, The Netherlands, 1996.

Y. HonG anD C. S. Houn, Helical immersions and normal sections, Kodai Math. J. 8 (1985),
171-192.

S. MARKVORSEN, A characteristic eigenfunction for minimal hypersurfaces in space forms,
Math. Z. 202 (1989), 375-382.

B. O'NEILL, Semi-Riemannian geometry with application to relativity, Academic Press, New
York, 1983.

K. Sakamoro, Helical immersions into a unit sphere, Math. Ann. 261 (1982), 63-80.

J. L. SYNGE AND A. ScHILD, Tensor calculus, Mathematical expositions 5, University of
Toronto Press, Toronto, 1949.

P. VERHEYEN, Submanifolds with geodesic normal sections are helical, Rend. Sem. Mat. Univ.
Polit. Torino 43 (1985), 511-527.

Kouhei Miura

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

Tokyo UNIVERSITY OF SCIENCE
WAKAMIYA-CHO 26, SHINJUKU-KU
Tokyo 162-0827

JAPAN

E-mail: miura@ma.kagu.tus.ac.jp



