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1. Introduction

In ([Brl]), R. L. Bryant showed that any oriented 6-dimensional submanifold
@: M® — @ of the octonions € admits the almost complex (Hermitian) structure
J defined by

9.(JX) = 0. (X)(n x &),

where {& 7} is a local oriented orthonormal frame field of the normal bundle
of ¢ over a neighborhood of each point of M°. The induced almost complex
(Hermitian) structure is a Spin(7)-invariant in the following sense.

Let ¢,p,: M® — € be two isometric immersions from the same source
manifold to the octonions. If there exists an element g e Spin(7) such that
gop, =@, (up to a parallel translation), then the two maps are said to be
Spin(7)-congruent. If the immersions ¢, and ¢, are Spin(7)-congruent, then the
induced almost complex structures coincide.

We shall give a classification (Theorem 5.1) of 6-dimensional extrinsic homo-
geneous almost Hermitian submanifolds of the octonions € by making use of the
classification of the homogeneous isoparametric hypersurfaces of a unit sphere
([HsL], [TT]), and also introduce a list of 6-dimensional submanifolds of € which
are Riemannian homogeneous but not homogeneous with respect to the induced
almost complex structure (§6).

2. Preliminaries

Let H be the skew field of all quaternions with canonical basis {1,i, j,k},
which satisfies

P==k*=-1, ij=—ji=k, jk=—-kji=1i, ki=—ik=].

The octonions (or Cayley algebra) € over R can be considered as a direct sum
H@® H = € with the following multiplication

(a+ be)(c +de) = ac — db + (da + bé)e,
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where ¢ = (0,1) e H®H and a,b,c,d € H, where the symbol “~” denotes the
conjugation of the quaternion. For any x, y € €, we have

xy,xyy =X, x5y, ¥,

which is called “normed algebra™ in ((H-L]). The octonions is a non-commutative,
non-associative alternative division algebra. The group of automorphisms of the
octonions is the exceptional simple Lie Group

G, = {g € SO(8) | g(uv) = g(u)g(v) for any u,ve C}.
In this paper, we shall concern the Lie group Spin(7) which is defined by
Spin(7) = {g € SO(8) | guv) = glu)z,(v) for any u,ve €},
where y,(v) = g(g~'(1)v). Note that G, is a Lie subgroup of Spin(7):
Gy ={g € Spin(7)|g(1) =1},

The map y defines a double covering map from Spin(7) onto SO(7), which

satisfies the following equivariance
g(u) x g(v) = y,(u x v),

for any u,v € €, where u x v = (1/2)(tu — av) (which is called the “exterior prod-
uct”) where o =2{v,1) — v is the conjugation of ve €. We note that u x v is
pure-imaginary for any u,v e ¢.

The Lie algebra g, is the subalgebra of so(7) whose basis is given by
aGrs + bGys + cGrg,
aGs + bGyg + ¢Gsy,
aGy + bGyy + ¢Ggs,
(2.1) aGs) + bG3 + ¢Ggy,
aGy + bG7y + ¢Gag,
aG17 + bGas + ¢Gs3,
aGe + bG34 + ¢Gos,

where a,b,c e R with a+b+c=0, and Gj(er) =dpe; —dixej. The Lie algebra
spin(7) is the subalgebra of sn(8) whose basis is given by

dGy + aGaz + bGas + cGre,

dGa + aG3 + bGas + ¢Gsy,

dGso + aGy + bGy7 + ¢Ges,

(2.2) dGa + aGs) + bGr3 + ¢Gep,

dGsy + aGis + bG7y + ¢Gsg,

dGey + aG17 + bGyy + ¢Gsa,

dGqo + aGg) + bG3g + cGys,

where a,b,¢,d e R with a+b+c¢+d=0.
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2.1. Spin(7)-structure equations

In this section, we shall recall the structure equation of Spin(7) which was
established by R. Bryant ([Brl]). To do this, we fix a basis of the complexifica-
tion of the octonions C ®i € over C given by

N = (1/2)(1 — V—1¢), N = (1/2)(1 + V—1g),
Ey, =iN, Ey = jN, Es=—kN, E; =iN, E; = jN, E3 = —kN.

We extend the multiplication of the octonions complex linearly on C ®g €.
Then we have the following multiplication table;

A\B || N E; E; E; N | E E> E;
N N 0 0 0 0 E, E, Es
E; E; 0 —E; | E; 0| —N 0 0
E, | Ey| Ej 0 —-E || 0 -N 0
E; Ey | -E, | E 0 0 0 -N

s
&
5
=
o | O o | O
(e
o

E
0 —N 0 EQ E3 0 —El

0 0 —N || Es | —E2 | E 0

=
S| o | o | O
|
=]
o

We define a € < Spin(7) admissible frame field as follows. Let o be the origin
of the octonions. The Lie group € > Spin(7) acts on €@ End(C ®x€) as
follows

(x,9)(0;N,E,N,E) = (g-0+x,9(N),g(E),g(N),g(E))
(

= (x,9(N),9(E),g(N),g(E))

:(O;N’E’N’E)(p(lx) 223)’

. I Oixs
where (x,g) € € > Spin(7) and
(9) pin(7) (p(X) p(9)

frame (x;n, f,7, f) is said to be a € X Spin(7) admissible frame if there exists an
element (x,g) € € < Spin(7) such that

(x7n7f7ﬁ7f) = (‘x7g)(0;N7E7N7E)'

) is its matrix representation. A

ProposITION 2.1 ([Brl]). The Maurer-Cartan form of € > Spin(7) is given
by
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0 0 Oixs 0 013
v [ V=1p b 0 -6
d(x;n, [0, f) = (x;n, [, f)| @ | K 0 (0]
v 0 | —/—1p -
@| 0 0] b i

= (x’n7f7 ﬁ?f)w)

where  is a spin(7) @ €(c Moyxo(C))-valued 1-form, p is a real-valued 1-form, v is
a complex valued 1-form, o, b, 0 are M3y -valued 1-forms, i is a u(3)-valued
1-form which satisfy v —1p+trx =0, and

0 6 -6
o =|-0> o o' |,
0> -0 0

for 0="(0",6°,0°). The l-form s satisfies the following integrability condition
dy+y Ay =0. More precisely

dx = (l’l,f,fl,f)

Sl = & =

dn=nV—-1p+ fh+ f0,
df = n(="0) + [ +a(="0) + /[0,
and the integrability conditions are given by
dv=v—=lpav+DHrw+'0rd,
do=-bhrv—Krw—0ArV—[0] A@,
d(V=1p) ="HAh+ 010,
dhy=—bhavV—-lp—xab— [0 A0,
d9=0AV—1p—rKnrb0— [0 AD,
dc =HhAh—xAk+0A"0—[0]A[0).

3. Gram-Schmidt construction of Spin(7)-frame fields

In order to construct a Spin(7)-frame field, we first recall the Gram-Schmidt
construction of a G,-frame.
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LeMMA 3.1.  For a pair of mutually orthogonal unit vectors ey, eq in €y put
es = ereq.  Take a unit vector ey, which is perpendicular to ey, e4 and es. If we
put e3 = ejey, eg = eyeq and e; = eseq then the matrix

g = [61,62,63,64,85,@6,67] € SO(7)7

is an element of Gy.

From Lemma 3.1, by taking e; = 7 x &, we obtain a G,-frame field given by
N*=(1/2)(1 = V—Tles), N*:(1/2)(1+\/—_le4)
Ef = (1/2)(e; — V—Tes), (1/2)(er + vV —1es),
E; = (1/2)(es — V—1es), E; = (1/2)(er + V—Tleg),
Ef = —(1/2)(es — V—le7), Ei=—(1/2)(e3 + V—le;).

Then we see that spanc{N*, E{, E;,E;} is a v/—1-eigenspace T(l'0 CcC®C)
with respect to the almost complex structure J = R,.¢ at pe €. On the other
hand, n = (1/2)(¢ — v/—1y) is a local orthonormal frame field of the complexi-
fied normal bundle 79 M7,  Since T " L0 ar = qu(m €, there exists a My, (C)-
valued function a; = '(ay1, aa1, a31,a41), such that

n= (1/2)(5 - \/__177) = (N*’El*vEZ*’E;)al

By applying the Gram-Schmidt orthonlormalization to the pair {n,a;} with respect
to the Hermitian inner product of T ( HO)(‘Z we may obtain three My, (C)-valued
functions {a,,as, a4} such that {al,az,a3,a4} is a special unitary frame. We set

fl = (N*vEl*sz*aE;)aiJrla
for i =1,2,3, then
(nafaﬁaf) - (nvﬁvﬁaﬁvﬁvflaf23f3),
is a (local) Spin(7)-frame field on M.

Remark 3.1. The above procedure comes from the following relation

Spin(7)/Spin(6) = Spin(7)/SU(4) = S® = G,/SU(3).

4. Spin(7) invariants

We shall recall the invariants of Spin(7)-congruence classes for 6-dimensional
submanifolds (M,¢) in €. By Proposition 2.1, we have

ProrosITION 4.1 ([Brl]). Let ¢ : M — € be an isometric immersion from an
oriented 6-dimensional manifold to the octonions. Then
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(4.1) dyp = fo+ [,

(4.2) v=0,

(4.3) dn=nvV—-1p+ fh+ £0,

(4.4) df = n(="b) + fx +n(="0) + f10],
and the integrability conditions imply that

(4.5) do=—-kArw—[0] A,

(4.6) d(V—=1p) = hAbh+ 00,

(4.7) dhy=—bhavV—-lp—xab— [0 0,
(4.8) d0=0AV—=1p—xn0—[0] AD,
(4.9) de =bAah—rxar+0OA'0—[0]A[0).

The second fundamental form II is given by
II=-2Re{('how+ "Ood) ®n},

where the symbol “o” is the symmetric tensor product. By Cartan’s Lemma
(since v =0), there exist Mj3,3-valued matrices 4, B, C such that

B 4 w
- )
where ‘A=A and 'C = C. We have the following decomposition
%Y = (—'w o Aw) @ n,
Y = ('@ o 'Bw — 'w o Bo) @ n,
%2 = (~'@ o Ca) @ n.

We shall write each elements more explicitly. There exists a unitary frame
{ei,Je;} for i =1,2,3, such that

n=(1/2)(E=vV=1In), fi=(1/2)(e—V-1Je).
Thus the elements of the second fundamental form are given by
Ay = =2AU(f, f7), 7,
By = *2<H(fi7ﬁ),ﬁ>,
C;= —2<II(f,-,]§)7ﬁ>.

We shall recall the relation of Ricci x-tensor p* and *-scalar curvature t* which
are fundamental invariants of almost Hermitian geometry. The Ricci *-tensor
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and *-scalar curvature of an almost Hermitian manifold M = (M,J,{,)) of
dimension 2n, are defined by

1 2n
pr(x,y) = EZ (R(ei, Jei)Jy, x)
i=1

and

2n

T = ZP*(ei, €,

i=1

respectively. Note that Ricci x-tensor is neither symmetric nor skew-symmetric,
in general.

ProrosiTiON 4.2 ([H2]). The Ricci *-tensor and x-scalar curvature of an
oriented 6-dimensional submanifold in € are given by

p*(x,y) ='a(AB— BC — '(AB — BC))p
—'a(AA — B'B — 'BB+ CC)f + its conjugation
" = —4(tr AA -2 tr 'BB +tr CC),
where x = fo+ fa, y = ff+ fB and o, € M3, (C).

4.2. Spin(7)-congruence theorem
In this section, we shall give an equivalent condition for two isometric
immersions to be Spin(7)-congruent. Namely, we have the following.

PROPOSITION 4.3. Let M® be a connected, oriented 6-dimensional manifold
and ¢, 9, : M® — € be two isometric immersions with same induced metrics and
almost complex structures. Let II(2 0) II (2.0) pe the corresponding (2,0) part of
the 2nd fundamental forms. T hen lhere exlsts an element g € Spin(7) such that
gog, = o, if and only if 1120 =10

Proof. By (4.1) in Proposition 4.1, w, @ are determined by the induced
almost Hermitian structure. We may check that p, b, and 6 depend on w, @ and
19, By (4.4), x and 6 depend only on the unitary frame f, f, df and df.
Hence they depend only on the induced almost Hermitian structure. By (4.10),
B and C are also. If we fix II*? we get the desired complete information of
the immersion. q.ed

5. Orbits of the isotropy representations

In this paper, we shall determine the 6-dimensional extrinsic homogeneous
almost Hermitian submanifolds of the octonions. The terminology of extrinsic
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homogeneous for submanifolds of € means that a submanifold is obtained as the
orbit (at some point) of a Lie subgroup of R® > Spin(7). In this case, we see
that the index of relative nullity is constant on such a homogeneous submanifold.
We note that the notion of the index of relative nullity is not intrinsic one (see
[KN)).

Let (M™,p) be a homogeneous submanifold in an n-dimensional Euclidean
space R”, and let k be the index of relative nullity of (M™, ¢). Taking account
of completeness of M™, we see that M™ admits the splitting o(M™) =
R¥ x g(M™ ) and M™ =RF x M"* where ¢ is an isometric immersion
¢: M™k - R" . In this splitting, we may assume that the image of ¢ is
included in a sphere S"~*~! (and hence, p(M") is included in the generalized
cylinder R¥ x §"%-1 = RF x R".

From the classification of ([HsL], [TT]) of homogeneous isoparametric
hypersurfaces of a sphere, we see that the following 6-dimensional manifolds
M® = (M®,p) are extrinsic homogeneous almost Hermitian submanifolds of the
octonions ¢ with respect to the almost Hermitian structure induced by the
isometric immersion ¢.

1. ¢ is totally geodesic. (¢:R® — € ~R®, flat Kihler manifold).

2. ¢ is totally umbilic in Im€. (p:S® — Im € ~R7, nearly Kihler 6-

sphere).

3. ¢:S'xR>—1ImGE~R’ is defined by

¢(eﬁ97x1a22523)
110[0 0 0 |0 0 0 |
x| 1/0 0 0 |o o 0 0
2101 0 0 [0 0 0 0

(e EE)| 2|00 e 0 Jo 0 0 0
0jojlo o0 el o 0 0 1
Zzlolo 0 0 |1 o 0 8
510/0 0 0 |0 ¢/ 10 o X
ololo o 0 |0 0 e V-I0

=e&x1+ Eiz1 + Erzy + E3€E0 + Eyzi + Erzy + E5 6\/7_19,

for (e, x1,21,22) € S' x Rx Cx C (~ S' x R?)
4. ¢:R' xR’ = @ is define by (y: R — R? is a helix)
(1, X0, X4, X5, X6, X7)
= lxo + i cos(at) + j sin(at) + kbt + ex4 + iexs + jexe + kexy
= (0;N,E,N, E)Avy,
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where vo=(1 0 1 0 0 0 1 0 0) and

1 0 0 0 0]0 0 0 0
Xo+v—1lxs |1 0 0 0]0 0 0 0
V—=1xs 0 cos(at) —sin(at) 0| 0 0 0 0
V—1xg 0 sin(at) cos(at) 0] 0 0 0 0

A=| =bt—vV—-1x; | 0 0 0 110 0 0 01,
xXo—vV—=1lxs | 0 0 0 0] 1 0 0 0
—v—1xs 0 0 0 0|0 cos(at) —sin(at) 0
—V—1x4 0 0 0 0|0 sin(af) cos(at) 0
—bt++vV—-1x7 | 0 0 0 0]0 0 0 1

for (l, X0, X4, X5, X6, X7) eR' x R°.
5. ¢:58%xR* — Im € (quasi-Kihler manifold)

o(q, X1, X2, X3, X4) = qig + ex1 + iexy + jexs + kexy,

where g e Sp(1) = S? < H and (x;,x2, x3,x4) € R,
6. ¢:S8°xR>—1ImC is defined by
9(q, x1,X2,x3) = ix1 + jxa + kx3 + ge,
for (q,x1,x2,x3) €S> x R3.

7. ¢:8°xR! = Im G, is defined by

¢(xa 21122523)

1 0 O1x3 Oix3
X I O1x3 Oix3
0351 031 U 03x3
03«1 0341 033 U

= (0;¢,E,E)

S O = O O = O =

3 3
:8x+ZE,-z,»+ZE,
i=1 i=1

where po= (6, E,E)!(0 1 0 0 1 0 0), UeSU(3) and ‘(z1,22,23)
— U'(1,0,0).
8. ¢:8'xS%— 8" cR®=C is defined by
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(0(6\/_—10721722723)
1
1
V10 01x3 0 01x3 8
o —(V=10)/3
— (N,E,N,E) 031 e U 3_ 0353 e
0 01x3 e V10 01x3 1
03x1 0343 030 V10537 1
0
0
3 3
= NeV10 4 o(V=10)/3 ZEiZi + Ne V10 4 o= (V=T10)/3 ZEiZiv
=1 =1
where po=(N,E,N,E)(1 1 0 0 1 1 0 0), UeSU(3) and
(z1,22,23) = U'(1,0,0).
9:8*x 8> ST (@ is defined by
(9((117%) ={q1 + q2¢&,
for (q1,¢2) € S x S3.
9:T?xR* — € is defined by
go(e‘/’_w‘,eﬁg‘,zl,zz) = (0;N,E,N,E)Av,
= Ne\/TWI + Ele\/jlel + Erzy + Esz
+ Nemol + Elemal + E>z; +E3Zz,
where
w='1'1 100 1 1 0 0),
and
1 0 0 0 0 0 0 0 0
0 /10 o 0 0 0 0 0 0
0 0 el 9 0 0 0 0 0
o2 0 0 e Vit 0 0 0 0 0
0 0 0 eV 0 0 0
0 0 0 0 0 e V-I0 0 0 0
0 0 0 0 0 0 eV 0
50 0 0 0 0 0 e/l g
50 0 0 0 0 0 0 eVl
.9 :R?x 8" x 83 = @ is defined by



EXTRINSIC HOMOGENEOUS ALMOST HERMITIAN 6-DIMENSIONAL SUBMANIFOLDS 307
o(x1,x2,e", q) = x11 + x2i + (cos 0 + i sin 6) j(cos 0 — i sin 0)
+ (g(cos 8 — i sin 6))e
= x11 + x2i 4 cos(20)j + sin(20)k + (g(cos 0 — i sin 0))e,
where (x1,x2,e¢",q) e R* x S! x §3.
12. :R' x $2 x 83 — € is defined by
o(x1,q1,42) = x11 + q1ig, + (924, )¢,

for (x1,q1,42) e R' x $3 x S3. The image of ¢(R'x S*x 8% is
R' x $?x §* €.
13. ¢, : SO(2) x SO(3) x R? — $5 x R? = C* ®R? = R® is defined by

0, (0,9, x1,x2) = x11 + x2¢ + cos ty(cos Oqig + sin O(qiq)e)
+ sin #y(—sin Oqjq + cos 0(qjq)e),
for (0,q) e S' x Sp(1), (x1,x2) € R?> and 0 < ty < /4 (constant).

Remark 5.1. We note that the above immersion ¢ x id : SO(2) x SO(3) x
R? — S° x R? c R* ® R* = R is a product of the immersion ¢ : SO(2) x SO(3)
— 83 which is the isoparametric hypersurface with four distinct principal
curvatures and the image ¢(SO(2) x SO(3)) = SO(2) x SO(3)/Z,. The induced
almost complex structure is homogeneous, since this manifold is a principal orbit
of the adjoint action of SO(2) x SO(3) which is included in U(3) = SO(6) as
a Lie subgroup. We note that it is also included in SU(4). The action of
SO(2) x SO(3) is an isotropy representation of the symmetric space SO(5)/SO(2)
x SO(3). We define the action p of the Lie subgroup SO(2) x SO(3) of Spin(7)
by

p(0,q)(ao - 1+ ar + (bo + b1)e)
= (ag cos(36) + by sin(30)) - 1 + (cos(8)qa1G — sin(6)gbq)
+ {(—=ao sin(30) + by cos(30)) - 1 + (sin(0)qa1q + cos(0)gb1q) }e,
where ag,byp € R and a;,b; e Im H. Then the immersion is given by

94, (0,q) = p(0,q)(cos(t0)i + sin(to) je),
where 0 < 1) < n/4.

Further, we have the following result.

THEOREM 5.1. Let M® = (M®, ¢) be an extrinsic homogeneous almost Her-
mitian submanifold of the octonions € with respect to the induced almost Hermitian
structure induced by the isometric immersion . Then (M°, ) is one of the above
submanifolds in (1)—(13).
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6-dimensional Riemannian homogeneous, but not homogeneous almost
Hermitian submanifolds of ¢

The following 6-dimensional submanifolds (M, ¢) of 8-dimensional Euclidean
space are Riemannian homogeneous, but not homogeneous with respect to the
almost complex structure induced by ¢.

MRS

(S* x R%,9)

(S* x S' xR, p)

(8% x 8%, 9)

(52 x §2 x R?, p)

(S' x S? x R? p)

(In the above (1)—(5) the isometric immersion ¢ represents the standard
one, respectively.)

Further, the submanifolds (M, ¢) of € in (6)—(10) are given respec-

tively as the orbits of adjoint action at the origin of some Riemannian
symmetric spaces G/K and they are all isoparametric hypersurfaces in S*
or S7 which are Riemannian homogeneous. Denoting by g and T the
Lie algebras of G and K, respectively, and let g = f+ m be the standard
decomposition of the Lie algebra g corresponding to the Cartan invo-
lution on G/K. Then the subspace m of g is identified with the tangent
space of G/K at the origin eK.
(M3 x R3¢ x id), where ¢ x id is a product immersion of the identity
map id :R* - R® and ¢: M? — S* cR® is the isometric immersion
from M? into S*(c R®) such that (M?,¢) is the Cartan hypersurface of
the unit 4-sphere S* with three distinct constant principal curvatures. It
is well-known that (M3, ¢) is obtained as a principal orbit of the adjoint
action defined by the isotropy representation of the symmetric space
SU(3)/SO(3), namely

SO(3)/Z, ® Z, = Ad(SO(3))(po),

for some nonzero tangent vector py at the origin o = e(SO(3)).
The isoparametric hypersurface

SU(3)/T? = Ad(SU(3))(po)

of S7 with three distinct principal curvatures is given by the orbit of the
isotropy representation (an orbit of the adjoint action) of the symmetric
space (SU(3) x SU(3))/SU(3) for some nonzero tangent vector py at the
origin o = e(SU(3)).

The isoparametric hypersurface

SO(2) x SO(4)/(Z, x SO(2)) = Ad(SO(2) x SO(4))(po)

of S7 with four distinct principal curvatures is an orbit of the isotropy
representation (an orbit of the adjoint action) of the symmetric space
S0(6)/SO(2) x SO(4) at the origin 0 = e(SO(2) x SO(4)) where p is a
nonzero tangent vector at o.
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9. The isoparametric hypersurface
S(U(2) x U(2))/S" = 4d(S(U(2) x U(2)))(po)

of S7 with four distinct principal curvatures is an orbit of the isotropy
representation (an orbit of the adjoint action) of the symmetric space
SU(4)/S(U(2) x U(2)) at the origin o = e(S(U(2) x U(2))) where py is
a nonzero tangent vector at o.

10. The isoparametric hypersurface

Ad(SO(4))(po)

of S7 with six distinct principal curvatures is an orbit of the isotropy
representation (an orbit of the adjoint action) of the symmetric space
G,/SO(4) at the origin o = ¢(SO(4)) where py is a nonzero tangent
vector at o.

6.1. A brief proof for the assertion in §6

We shall give a brief proof for the assertion stated in §6, namely that the
ten 6-dimensional submanifolds of € introduced in a previous section are all
Riemannian homogeneous, but not homogeneous with respect to the induced
almost complex structure defined in §1. To do this, we shall show that the Lie
subalgebra of s0(8) corresponding to the subgroups of SO(8) acting transitively
on each manifolds of the 10 examples can not be included in Spin(7).

1. R?x S* By (2.2), we can easily see that a Lie group SO(5) which acts
on R (canonically) can not be realized as the Lie subgroup of Spin(7).

2. R'xS'x 8% A Lie group SO(2) x SO(5) which acts on R’ can not
be realized as the Lie subgroup of Spin(7).

3. S?2xS8* A Lie group SO(3) x SO(5) which acts on R® can not be
realized as the Lie subgroup of Spin(7).

4. S§?x S?xR2 By (2.2), a Lie group SO(3) x SO(3) which acts on R®
canonically, can not be realized as the Lie subgroup of Spin(7).

5. S'xS8?xR® By (2.2), we see that the canonical action of SO(2) x
SO(3) on R°cR’, can not be realized as the one of subgroup of
Spin(7). Now, we show that the submanifold is not homogeneous with
respect to the induced almost Hermitian structure. Since the universal
covering group of the isometry of S? is isomrphic to SU(2), so we
have to examine the possibility of representation from the Lie group
S! x SU(2) to Spin(7) such that the image through some point in € is
diffeomorphic to S! x S2. We shall consider the following two cases.
First, we assume that g(1) =1 for any ge SU(2), then SU(_2) is a
subgroup of G,. Taking account of the classification of the represen-
tation of such SU(2) as the subgroups of G,, we may easily see that
its orbit is (i) S® = R* or (i) a hypersurface in S? x S? or (i) a 3-
dimensional submanifold of S? x S3, which does not coincide with S2, or
(iv) the one of an irreducible representation of SU(2) whose representation
space is R”. In any cases, we can not represent S' x S? as an orbit of a
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subgroup of Spin(7) in Im €. Secondary, we assume that g(1) # 1 for
some g € SU(2). Then {g(1)|ge SU(2)} = S? = spang{1,e;,e;} where
er,ep € Im €. Then, we may deduce a contradiction by using the
equivariance of the exterior product of €.

pxid: M>xR>—= S*xR*cR>@®R?=R®, where ¢ : M> — S* is the
Cartan hypersurface of a 4-dimensional sphere (the isoparametric hyper-
surface with three distinct principal curvatures). This submanifold is a
Riemannian homogeneous but the induced almost complex structure is
not homogeneous. M3 is obtained as an orbit of the the irreducible
representation of SO(3) = SO(5) on R>. The action of SO(3) on R® is
given by an isotropy representation of the symmetric space SU(3)/
SO(3). More explicitely, M? is an adjoint orbit Ad(g)(po) at some
point pyo € m where m is the subspace (corresponding to the tangent
space at the origin of the symmetric space SU(3)/SO(3)) defined by
su(3) =m®sn(3). We note that the Cartan involution ¢ is given by

o(u) = u,

for any u € SU(3), and m is the (—1)-cigenspace of o,.. The Lie algebra
su(3) is spanned by

eo = diag(0, V=1, —V~1) = V=1(Ex — Ez),
e1 = (1/V3) diag(2V—1,—V—1,-V~1) = (V=1/V3)(2E\| — Exn» — Ez3)
er=Gp=En—Ey, e=V—1(En+Ey),
ey =Gi3 = Eiz— E31, es=V—1(E+ Ey),
e = G = Ex3 — Eq, e7 =V —1(Ex + E3),

where Ej; denote the elementary matrix. {eo,ei,e3, es,e7} is a basis of
subspace m. For any X € s0(3), X can be represented by

X = oyex + ones + a3eg,

for o; e R. Let A(X) be the representation matrix with respect to the
above orthonormal frame, that is

ad(X)(eo,e1,e3,es5,e7) = (eo, €1, €3, 5,e7)A(X).
By direct calculation, we have
A(X) = 0 {—Goy + V3G12 + G}
+ o2{Gos — V3G13 — Gag}
+ 03{2Go4 + G23}.

From this and (2.2), we get a contradiction.
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7.

Let M°® be a 6-dimensional isoparametric hypersurfaces of S7 with three
distinct principal curvatures. It is known that this submanifold M® is
obtained as an principal orbit of the isotropy representation of the
Riemannian symmetric space SU(3) x SU(3)/SU(3) as follows. Let

m={(X,-X)| X esu(3)},

be the subspace of the su(3) @ su(3). Then we have the decomposition
su(3) @ su(3) = m @ ker o,, (Cartan decomposition) where

0-(97 h) = (h, g)7

for (g,h) e SU(3) x SU(3) is the Cartan involution. We may easily
check that

ker o, = {(X,X) | X e su(3)}.

We may identify m with s1(3). Then the isotropy representation is given
by
Ad(g)u = gug™.

for u e m. Hence the tangent space of the corresponding orbit is given
by
ad(X)u,

for X € su(3) = ker g,. If the hypersurface M admits the homogeneous
almost complex structure, then

I: {ad(X) ‘X (S 511(3)},

is a subalgebra of spin(7). We may derive the contradiction as follows.
To do this, we shall consider the linear representation ad(X) on m. Let
{e;}]_, be the orthonormal basis of m with respect to the canonical inner
product (X, Y) = —tr XY on spin(7) given by

eo = diag(0, V=1, —V—1) = V=1(Ex — Ez),
e1 = (1/V3) diag(2v—1,—V—1,-V-1) = (V=1/V3)(2E1| — Ex, — Es3),
er=Gp=En—Ey, e=V—1(Ep+ Ey),
e =Gi3 =Ez—E3, es=vV—1(Es+Ey),
e =G = Ey3 — Eyy, e7 =V —1(Ex + E3),

where Ej; denote the elementary matrix. For any X e su(3), it can be
represented by

X=uV—1E; +aV—1E»+uvV—1E33
+ p1Gio+ poV—1(Ein + Exn) + 1 Gis
+ @V —1(Ei3 + E31) +11Gas + 1V —1(Ex + Ex),
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for o, pi,qi,rie Rand o) +0p + 03 = 0. Let 4(X) be the representation
matrix corresponding to the above orthonormal frame {e,—}?zo, that is

Cld(X)(e(% €1,€2,-.. 767) = (607 €1,€2,... 767)A(X).
By direct calculation, we get
A(X) = o1 {—G2 — 2Gys — Ge7}

+ 02{—G23 — Gas — 2Ggr}

+ pi{—Gos + V3Gi3 + Gas + Gs7}

+ p2{Gox + V3G — Gag + G}

+ q1{Gos + V3Gis — Gy + Gy7}

+ ¢2{—Gos — V3G14 — Gy7 — G34}

+ r1{2Go7 + G2 + G35}

+ Vz{—2G()6 + Gy — G34}.
We can see that the subspace of so(8) generated by the above basis can
not be contained in spin(7), by (2.2), this is a contradiction. g.ed
The isoparametric hypersurface M°® of S7 with four distinct principal
curvatures is the isotropy representation (an principal orbit of the adjoint
action as follows) of the symmetric space G,(R®) = S0(6)/S0(2) x
SO(4) (the Grassmann manifold of oriented 2-planes of 6-dimensional
Euclidean space). It is the principal orbit of the tangent space at the
origin 0 = e(SO(2) x SO(4)) where e is the unit element of SO(6).
Then M° = SO(2) x SO(4)/Z, x SO(2) = Ad(SO(2) x SO(4))(po) where
po 1s a nonzero tangent vector at o. The corresponding Cartan invo-
lution ¢ is given by

o(u) = sus™!,

where s =diag(1,1,—1,—1,—1,—1). Let m be the subspace of sp(6)
which is corresponding to the tangent space at the origin ((—1)-eigenspace
with respect to the Cartan involution), that is, s0(6) = m @ (s0(2) ®
s0(4)). The action of Ad(SO(2) x SO(4)) = SO(2) ® SO(4) on m is

given by
Ad(R(o),A)<_0,u g) = (—A’uO’R(O) R(U())u’A),

where (R(6),A4) € SO(2) x SO(4), R(0) = (

=1 o)

cos) —sin @ nd
sinf cosf )’

ue M2X4(R)}.
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The tangent space of this action on m is spanned by
Gos + G5 + G + G37,
Go1 + Gas,  Gio+ Gsg,  Goa + Gug,
Gi3 + Gs7, Gz + Gyz, G+ Ggr.

We can show that this subspace of so(8) which is generated by the above
basis, by (2.2), can not be included in spin(7). g.ed

9. It is well-known that an isoparametric hypersurface of unit sphere S’
with four distinct constant principal curvatures is obtained as a principal
orbit of the the adjoint action defined by the isotropy representation of
the symmetric space SU(4)/S(U(2) x U(2)), namely

M°=S(U(2) x U(2))/S"' = 4d(S(U(2) x U(2)))(po)
for some nonzero tangent vector py at the origin o = e(S(U(2) x U(2))).

The corresponding Cartan involution ¢ is given by

o(u) = sus™",

where s = diag(1,1,—1,—1). Let m is the subspace of su(4) which is
corresponding to the tangent space at the origin, ((—1)-eigenspace with
respect to the Cartan involution), that is, su(4) = m @ (su(2) @ su(2)).
The action of Ad(S(U(2) x U(2))) on m is given by

A4 0 0 o 0 Ao'B
Ad = _
(0 B)(—’& 0> <—B’oc’A 0 )

where (4, B) € S(U(2) x U(2)) and

{0

The tangent space of this action on m is spanned by

oe MM(C)}.

Go1 + G2z, Gas+ Gg7,  Gor + Gas,  Gaz + Gg,
Gox + Gi3 + Gys + Gs7,  Goz — G2 + Ga7 — Gsg,
Gos + Gi5 + Gog + G37,  —Gos + Gia — Go7 + Ge.

By (2.2), we can show that this subspace of s0(8) generated by the above
basis, can not be included in spin(7). qg.ed

10. It is well known that an isoparametric hypersurface M°® of S7 with six
distinct principal curvatures is obtained by the isotropy representation of
the symmetric space G,/SO(4). We may observe that it is given as an
principal orbit of an adjoint action of SO(4) on the tangent space at the
origin 0 = e(SO(4)) of G,/SO(4), say, M® = Ad(SO(4))(po) for some
nonzero tangent vector py at the origin 0. We note that the action of
SO(4) in G, is given by
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p(q1,q2)(a + be) = qraqy + (q2bq1 e,

where (¢q1,¢2) € Sp(1) x Sp(1) and a+beeIm €. The Cartan involu-
tion is given by

o(u) = sus™!,
where s =diag(1,1,1,—1,—1,—1,—1). Then m is the subspace of g,
which is corresponding to the tangent space at the origin, ((—1)-eigenspace
with respect to the Cartan involution), which is spanned by following
basis.

eo = (1/V3)(=2Gs1 + G713 + Gg), e = G73 — Gea,
ey = (1/V3)(=2Gu+ Gn + G3), €3 = Gy — G,
es = (1/V3)(=2G17 + G + Gs3), €5 = Goy — Gs3,
e6 = (1/V3)(=2Ge1 + Ga4 + Gas), €7 = G4 — Gos,

where Gj = E; — Ej; is a basis of so(7). The subspace m is invariant
under the adjoint action of SO(4). We may identified with m to the
tangent space at the origin o of G»/SO(4). For any X €sp(4), we
denote the representation matrix A(X) corresponding to the above
orthonormal frame, that is

ad(X)(ep, e1,e,...,e7) = (eg,e1,€2,...,e7)A(X).
By direct calculation, we get
A(X) = w{Go1 — Go3 + 3(Gus — Ge7)}
+ 02{=2(Go2 + Gi3) + V3(Gos — Gi7 + Gas — G3s)}
+ a3{=2(Gos + Gi2) + V3(Go7 + Gis — Gas — G34)}
+ Bi{—Go1 — G2z + Gus + G716}
+ Bo{—=Go2 + G135 + Gas — Gs7}
+ B3{—=Go3 — Gia — G47 — Gss},
where X = Zf’:l oy + Pivi, (o4, f; € R) and
up = —2Goz + Gys + G, up = —2G31 + Gas + Gs7,
u3 = —2G12 + Ga7 + Ggs,
vl = —Gas + Gr6, V2 = —Gue + Gs7,  v3 = —Ga7 + Ges,

which span the Lie algebra so(4). We can see that the subspace of
sp(8) which is generated by the above basis related to A(X) can not be
included in spin(7), we get the desired result by (2.2). g.e.d
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7. Some product immersions

In this section, we shall consider the almost Hermitian structure derived from
the specified product immersion ¢ x id : M2 x R* = H®H ~ €. Now, we in-
troduce several Spin(7)-invariants for such submanifolds. In the next section
§7.1 we calculate them for some concrete examples of such submanifolds.

First we shall give the surface theory in the quaternions H. Let ¢ : M?> — H
be the surface in H and let #, & a local orthonormal frame field of the normal
bundle. We can define the induced almost complex structure J in the same way
of the octonions case, as follows

9.(JX) = 9. (X)(n x <),

where # x ¢ denote the exterior product of the quaternions (which coincide with
that of the octonions.) Let {ej,e2} be an orthonormal frame (local) field of the
tangent bundle. we may take e, = Je; and that &(y x &) =# and 7(y x &) =&
Since 7 x ¢ € S? = Im H, there exists a g€ S°> = H such that 5 x & = gig, by
taking account of the Hopf fibration S3 — S2. We define the G,(< Spin(7))-
frame field along the immersion ¢ x id : M? x R* — € as follows

(1/2)(1 = V=1qig),
(1/2)(9jg — V-1(~gkq)),
(1/2)(ge — V=1(~ig)e),
f3* = —(1/2)((jg)e — V-1(kq)e).

We may choose C-valued functions a;;, aj; satisfying the following equality

(7.1) (1/2)(& = V—=1n) = n*ay + fian.
We set

(7.2) ¢ =&l +&19iq + &rqjq + &34k,
(7.3) n =1l +1mqiq + 1:4jq + n39kq.
Then, since # x & = qig and &(y x &) = imply that
(74) (M0, 1115 112,1m3) = (—€1, €0, &3, —&2).

By (7.1), (7.2), (7.3) and (7.4), we get ay =&+ V—1&), ap =& —V—1&,.

Therefore, if we set
So+v-I& —(&L+vV-1&) 0 0
V-1 —v-1 0 0
(al a  a a4) _ 62 + 63 éO él
0 0 1 0
0 0 0 1
then, we see that (¢ @ a3 a4) € SU(4). The (local) Spin(7)-frame field
along the immersion ¢ x id is given by
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n=(1/2)(¢ - V~1y),
fi = (1/2)(1 = V=1(gig)) (~ (& + V=1&3)),
+(1/2)(q7q = V=1(=gkq))(& — V=1&),
fr = (1/2)(@e — V=1(~ig)e),
fr = =(1/2((a)e — V=1(kq)e).

We may remark that g €S> is determined up to the action of S!, therefore
locally, we take ¢ as the local section of the Hopf fibration z : S3 — S? which is
defined by n(q) = qig. Let x =¢ x id : M* x R* — € be a product immersion.
Then we have

dp=e @u' +es @ 1,

where {u', u?} are dual 1-forms with respect to the orthonormal basis {ej,e,} of
M?. Then the dual I-forms {w,;} of the product immersion x are given by

W = 2ddx, f;> = 1 + V-1,
wy = 2dx, 5> = <dv, §y — V—1{dy, ig),
w3 = 2dx, f3> = <dv, jg) + vV~ 1dy, kg,

where x(m, y) = p(m) + ye for any (m,y)e M?> x R*. On the other hand, we
have

dn=n@V—-lp+f@b+f®0,
therefore, the I-forms by, 8 are given by
b’ =2ddn, f> and 0 =2dn, f;>,

respectively. If necessary, exchanging the special unitary frame from (f1, /2, f3)
into the unitary frame (fie®, e, f3), we obtain the following Spin(7)-frame
field given by (denoting it again by using the same symbol)

n=(1/2)(& - V-1p),

Si=(1/2)(p.(er) = V=T, (e1)),

fr=(1/2)e (g — V=1(~ig)e),

fr==(1/2)((j9)e = V=1(kq)e).
Then b! is given by

b = (=1/8){(tr e — V-1 tr 4,) 0"
(bl — by + 20%) — V(R — 1y — 2k ")

Also we have h? =§* =0. Therefore Iy is given by
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bl Bll 0 0 601 I‘III 0 0 E
b=[p>|l=[ 0 0 0|+ 0 0 0| w2],
b’ 0 0 0/ \&? 0 0 0/)\w?

where By = (—1/4)(tr A —V—1tr 4,) and
An = (=1/8)((hy = hyy +2hy) = V=1(h; = h3, = 2hy,)),

where hj = (A(e),¢>, hi={Ay(ei),e> for i,j=1,2. In the same way,
0' = (1/2)<dé — V=T dn,p,(e1) + V=1J(p.(er))> is given by

0" By 0 0\ [o! Ciu 0 0\ /!
O0=160*1= 0 0 0|l |+] 0 0 0| w?],
0? 0 0 0/ \w 0 0 0/ \?

where Bi = (—1/4)(tr A: + v —11tr 4,) and
Cii = (=1/4)((hy = hy, = 2hiy) = V=1(h{; — h3, + 2hyy)).

We may remark that Bryant ([Brl]) proved that M° is a complex manifold
with respect to the induced almost complex structure, if and only if B is
identically zero. In this case, the condition is equivalent that M? is a minimal
surface of R*. By a simple calculation, we get

|411]? = (1/16)(|o]* — 2K +4K"), |Cu|* = (1/16)(|o]® — 2K — 4K™),

where |a|2, K, K+ denote the square length of the second fundamental form, the
Gauss curvature, and the normal curvature of ¢(M?), respectively. We note that
the normal curvature is defined by as follows; K+ = {[4¢, 4,](e1),Je1y. We can
easily see that the ellipse of curvature

{o(X,X)e T*M? | X e T,,M? | X| =1},

is a circle in the normal bundle, if and only if [4};|* =0 or |Cy|* = 0.

7.1.  Spin(7)-invariants for some product submanifolds in €
1. S2xR*
{x+yeeImH®He|xeImH, yeH, |x| =r}.

The position vector can be considered as an outward normal vector field.

We put ¢ =x/r and y =1 as an orthonormal frame of the normal

bundle. The nontrivial elements of the Spin(7)-invariants are given by
Bll =2 / r.

This example is a quasi-Kéhler submanifold with vanishing first Chern
class ([H1]).
2. (Catenoid xR*) we shall consider the map from R x S' to Im H such that

@(t,0) =t-i+ acos 0 cosh(t/a) - j + asin O cosh(t/a) - k,
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for (,0) e R x S'. The unit normal vector field ¢ is given by
& = (1/cosh(t/a)) — sinh(t/a) - i+ cos 0- j+sin 0 - k,

We can take the another unit normal vector field # = 1, The nontrivial
elements of the Spin(7)-invariants are given by

Ay = Cy = —1/(2a cosh(t/a)?).

The -scalar curvature t* is given by v* = —4/(a cosh(s/a)?)?. Thus t*
is a negative non-constant function. The product immersion ¢ X id :
R xS!'xR* - Im@ is a simplest (non Kihler) complex manifold with
vanishing first Chern class.

8. [Examples with non-trivial characteristic classes

In this section, we shall introduce an example of product submanifolds in €
with non-vanishing 1st Chern class. Let RP? be a 2-dimensional real projective
space, and ¢ x id : RP? x R* — @ be the product immersion, where ¢ : RP? — H
is the map defined by

¢(‘x’y’z) = (1)i7j7k)

for x>+ y> +z2=1. If we set
(x, y,z) = (sin ¢ cos 6, sin ¢ sin 6, cos @),
for 0 < ¢ <m and 0 < O < 2z. Then the above immersion is rewritten as

cos 20 sin® ¢
sin 20 sin® ¢
sin 0 sin 2¢
cos 0 sin 2¢
Then the orthonormal frame of the normal bundle is given by

2 cos 20 cos 2¢

(ﬂ(@,¢) = (laivjvk)

1 o 2 sin 260 sin 2
éz—(lﬂl7j7k) . : ¢ )
V1 +3cos?(2¢) —sin 0 sin 2¢

—cos @ sin 2¢
—sin 26 cos ¢

cos 20 cos ¢
=(1,i,/,k
1= (11,7, —cos 0 sin ¢

sin 0 sin ¢
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The exterior vector cross product # x & is given by
cos? ¢
nx&=(i,j,k)(2/y/1 +3cos2(2¢))| cos 30 sin’ ¢
—sin 30 sin® ¢
By solving the equation
n X é = qlqv

we may obtain a local Spin(7)-frame field in §7.2. With respect to the local
orthonormal frame field on RP2,

{1/(sin ¢)3/30,1/1/1 + 3 cos2(2¢)d/d¢},
the shape operators are given by
o= (1 —5cos2¢)/(24/1 + 3 cos?(2¢)) 0
T 0 —4/(\/T13cos2(29))° )

0 cos2¢—1)

A, =1/ 1—|—3cos2(2¢)(cosz¢_1 0

from which, we get
An = —(1/4){(1 = 5 cos 24)/(21/1 + 3 cos?(2¢))

+4/(1/1 43 cos2(24))” +2(cos 2¢ — 1)/(1/1 + 3 cos2(2¢))},

By = —(1/4){(1 = 5 cos 24)/(2\/1 + 3 cos2(24)) — 4/(1/1 + 3 cos2(24))°},
Cii = —(1/4){(1 = 5 cos 2¢)/(24/1 + 3 cos?(2¢))

+4/(\/1+3cos2(24))* — 2(cos 2¢ — 1)/(1/1 + 3 cos?(2¢))},
and otherwise are zero. By direct calculations, we get

Le1(p(S?) x RY), [p(S?)]) # 0,
and hence, the first Chern class does not vanish ((H1]).

Remark 8.1. From the above arguments, we may observe that the product
manifold S? x R* admits at least three different kinds of almost Hermitian
structures from the point of view of almost Hermitian geometry. Namely, the
first one is the canonical almost Hermitian structure on P'(C) x C? coming from
the product Kéhler structure. The second one is a quasi-K&dhler structure on
S? x R* which is compatible with the canonical Riemannian metric with vanishing
1-st Chern class. The remaining is the one introduced in the above arguments of
the present section.
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Remark 8.2. The Gauss curvature K and the normal curvature K+ of the
above example are given by
K= 1 — 3 cos 2¢(2 + 2 cos 2¢)
(143 cos?(24))*

KL —8 + (1 + 3 cos? 2¢)(1 — 3 cos 2¢)
N 2(1 + 3 cos?(24))

)
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