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ON THE TOTAL CURVATURE OF NONCOMPACT
RIEMANNIAN MANIFOLDS

By MASAO MAEDA

Let M be a 2-dimensional complete connected noncompact Riemannian
manifold with positive Gaussian curvature K. Then Cohn-Vossen proved in
[2] that M is diffeomorphic to a 2-dimensional Euclidean spase E® and its total
curvature satisfies

(*) ijKdvgzn,

where dv is the area element of M. The purpose of this paper is to show the
inequality (*) is still true for manifolds of nonnegative Gaussian curvature.
That is,

THEOREM. Let M be a 2-dimensional complete connected noncompact Rieman-
nian manifold with nonnegative Gaussian curvature K. Then

HMKdvé%.

The auther dose not know whether this Theorem had been proved by
anyone or not.

Throughout this paper, let M be a complete connected Riemannian mani-
fold and every geodesic parametrized with respect to arc length. A geodesic
¢: [0, 0)—M (or (—oo, o)) is called a ray (or a line) if each segment of ¢ is
minimal. d denotes the metric distance of M. A subset A of M will be called
totally convex if for any p, ¢ A and any geodesic c¢:[0, s]=M from p to g,
we have ¢([0, s])cA. Let C be a non-empty closed totally convex subset of
M. Then C is an imbedded topological submanifold of M with totally geodesic
interior and possibly nonsmooth boundary oC, which might be empty, see [1].
Let M be a noncompact manifold of nonnegative sectional curvature. Then the
following facts were also proved in [1]. Let C be a closed totally convex
subset of M. If dC+#¢, we set

C*:={peC:d(p,0C)=a},

Cmax: m ca..
catg
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Then for any a=0, C* is totally convex and therefore C™** is totally convex
and dim C™x<dim C. For any pe M, there exists a family of compact totally
convex subsets C;, =0 of M such that
1) t,<t, implies C,,CC,, and C,,={¢=C,,; d(q, 9C,,)=t,—t,}, in particular,
aCu: {geCy, = d(g, act2)=tz—tl}y
2) U C=M,
tz0
3) peC, and if 0C,# ¢, then p=dC,.
We set Co=": C(0) and if dC(0)#¢, we set C(1) : =C(0)™2*. Inductively we set
C(i+1) : =C@)™ax if 9C(1)#¢. Then there exists an integer #=0 such that dC(k)
=¢. C(k) will be called a soul of M and denoted by S.

LEMMA 1. Let M be a noncompact Riemannian manifold with nonnegative
sectional curvature and S be a soul of M. Then for any point g,€S, there exist
at least two rays starting from q,.

Proof. Since M is noncompact there exists a ray o:[0, co)—M starting
from ¢,. We set v: =—36(0). Let {C,},, be the family of compact totally
convex sets from which S was constructed as above. Choose an s,>0. Let
¢:[0, LJ-M be the geodesic such that L<s, i.e. ¢([0, L])Cint C;, and ¢(0)=v.
Let {t;} be a sequence such that ;=(0, L] and t;,—0 and {s;} be a seqgence such
that s;—o0 and s;=s,. Let ¢;€0C,; be a point such that d(c(t,), ¢,)=d(c(t,), 0C,;)
and ¢,; [0, d(c(t,), ¢.)]—M be a minimal geodesic from c(¢,) to ¢,. Then for all ¢

L(e(t), e0)=5

where <(c(t;), ¢;(0)) is the angle between ¢(t,) and ¢,(0). To see this, we use
the fact that the function ¢ : [0, L]1—R defined by ¢(s): =d(c(s), 9C;,) is concave
i.e.

¢(at1+bt2)§a¢(t1)+b¢(tz>
where a, b=0, a+b=1, see Theorem 1.10 in [1]. Since g=c(0)eS, ¢ takes a
maximum at 0 and hence ¢ is monotone decreasing. But if <(é(t,), 61(0))>—ﬂ—,

then we can find #/<t, such that d(c(t), ¢.)<d(c(t,), q,). Hence ¢(t)=d(c(t;), q,)
<d(c(t,), ¢,)=¢(t,). This is a contradiction. We choose a convergent subsequence
{¢.,(0)} of {¢(0)} such that ¢,(0)—w. By the construction, the geodesic 7 : [0, o)
—M such that #(0)=w is a ray which satisfies

L, z"(()))§——7§—, q.e.d.

Proof of Theorem. By the Classification Theorem in [1], M must be iso-
metric to a cylinder or a Mdbius band or a P, which is diffeomorphic to E°®.
So we may assume that M is diffeomorphic to E* and not flat. Let S be a soul
of M and {C,},=, the family of compact totally convex subsets of M which
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determines S. For a fixed point ¢,€S, by Lemma 1, there exist two rays
g, 7:[0, c0)—M starting from ¢, and 6(0)=%(0). Since M is diffeomorphic to
E? by the broken geodesic t7'oo : (—o0, c0)—M defined by

(=) if =0
o(t) it t=0,

t7log(t): =

M is decomposed into two domains D,, D, such that D,N\D,=¢, D,UD,=M and
0D,=0D,=7"'og. For each t>0, 9C, is homeomorphic to a circle and ¢ (or 7)
meets 0C, uniquely at o, (or 7z;). For each >0 and 1=1, 2, we set

D%: :Dzmct ’

Ei: =D;noC,,
and

i

[cje E}: there exist minimal geodesics from o, to § and]
L =

from 7, to § which are contained in D:
B} is nonempty subset of Ei. We show this for i=1. We set

geE}: there exists a minimal geodesic from o, to (7]

N, ::{ —
’ which is contained in D}

{qu}: there exists a minimal geodesic from z, to q*‘

which is contained in D}

Let §€E}. We will show if j& N,, then §eN,. By the assumption there exists
no minimal geodesic from 7z, to ¢ which is contained in D!. First of all, we
note that any minimal geodesics from r; to § and ¢, to § are contained com-
pletely dC, or do not interset 0C, except the end points. So we may assume
that any minimal geodesic from z, to § is not contained in 0C,. Let a,: [0, d(z;, )]
—M be a minimal geodesic from 7, to §. Then a, dose not meet z|[0, d(z(0), z.)).
For, if it dose not so, then a,([0, d(z(0), 7,)])=7([0, d(z(0), z,)]), because = is a
minimal geodesic. From the assumption a,& D}, a,([0, d(z,, §)))N\D?+#¢. Hence
a, must meet o at o(s,), $>0. So a,([d(z(0), 7.), d(z;, §)1)C ([0, o)), because o
is a minimal geodesic. This contradicts & o([0, )). Let d: =min {d(q,, 7.),
d(7, r,)}. Then a,([0, 61)C D} or a,([0, 6))CD;. In the first case, we get the same
contradiction by the analogous argument above. It a,([0,8])CD}, then a,([0,
d(z,, §)])\U{restriction of E}! from 7, to §} is a Jordan curve and contains ¢, in
its interior, because z and ¢ are rays. If &N, then by the same argument
above, we see that if b,:[0, d(g,, 7)J—M be a minimal geodesic from o; to ¢,
then b,([0, d(oy, §)1)\U{restriction of E} from o, to ¢} is a Jordan curve and
contains ¢, in its interior. Then by the topological consideration, we see that
a, must intersect b, at a,(s’), s’>0. So a,=b, because a, and b, are minimal
geodesics. This is a contradiction. So §EN,. Similarly if 7€ N,, then = N,.
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That is, every point of E} is contained in N, or N,. If §eFE} is .contained in
a convex neighborhood of ¢, (or z;), then &N, (or N;). So N, and N, are non-
empty. By considering limits of geodesics, we see N, and N, are closed sub-
sets of Ef. Thus, if N,n\N.=¢, then N, and N, are non-empty open and closed
subsets of E!. This is a contradiction. So there exists a point g€ N,\N.C B;.

We choose ¢:= Bt and let a: [0, m{]—M and bt : [0, n{]—M are minimal geo-
desics from 7, to ¢ and from o, to ¢ such that ai([0, m{]), bi([0, ni])c D, i=1, 2.
We denote by Q. the closed bounded domain with the boundary consisting of
four geodesic segments ai, b}, b} and a;.

LEMMA 2. For any pownt g M, there exists a positive number 1(q) such that
Jor all t=H(q), ¢€Q..

Proof. We may assume that ¢g=D,. We assume Lemma 2 dose not hold.
Then there exists a sequence {f;} such that lim¢;=oco0 and ¢&Q,, for all 7. Let
¢:[0,b]>M be a minimal geodesic from ¢, to g. Then ¢((0, b])CD,. Since
every @, contains ¢,, aj, or b, meets ¢([0, b]). Without loss of generality, we
may assume a;; meets ¢([0, b]) at a},(s;;). By the triangle inequality,

d(ai(se;), 9i:)=d(gi;, 9o)—d(qo, @iy (5,))
=d(gt;, 90)—d(qo, )
=t,—d(g0, 9),

d(at(se;), 7)) Zd(Tey, 40)—d(Go, aii(st5))
=d(z;, 40)—d(4o, 9)
=t,—d(g,, ),

since ¢, is a point of the soul S which is made from the family of totally con-
vex sets {Ci};=o. Hence limd(al,(s;;), gi,)=c0 and lim d(a},(s,;), z;;)=c0. By the
1—rc0 100

compactness of ¢([0, b]), we can choose a convergent subsequence of {d},(s;)}.
Let v be its limit vector. Then the geodesic 7 : (—co, c0)—M such that ;(0)=v
is a line by the above fact. Then by the Toponogov’s splitting Theorem (see
[11), M must be isometric to E% This is a contradiction. q.e.d.

Taking a positive number 7y, for 1=1, 2, ---, we set 7,4, : =max {#(q},), t(¢%,), 7:}
+1. Then Q,,CQ;,,; because ¢5,,€Q,,,, by Lemma 2 and a%, b%,, ak,,., bk, are
minimal geodesics, for k=1, 2. Since 7, ] oo, for any point ¢ M, by Lemma 2
there exists 7, such that ¢€Q,,. Hence \;)Qn:M. The vertical angles of Q,,

are not larger than «, because C,, is totally convex. Hence applying the Gauss-
Bonnet’s Theorem to Q,;, we get

HQ Kdv=on.
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The sequence {ﬁ' Kdv} are monotone increasing, so there exists the limit
Q .
value and "

limﬁq Kdv:”MKdv§27r
A q.e. d.

The auther thanks Professor T. Otsuki for his valuable suggestions.
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