K. KOMATSU KÕDAI MATH. SEM. REP. 26 (1974), 44-52

THE GALOIS GROUP OF THE ALGEBRAIC CLOSURE OF AN ALGEBRAIC NUMBER FIELD

By Keiichi Komatsu

Introduction

Let Q be the rational number field and let Q_p be the field of p-adic numbers for any prime number p. For any field F, we will denote by \overline{F} the algebraic closure of F and by G_F the automorphism group of \overline{F} over F. Let k and k' be algebraic extensions of Q such that they are contained in the same algebraically closed field \overline{Q} .

In [2], Neukirch has shown the following results.

THEOREM A. For an algebraic extension k of Q, the following assertions are equivalent to each other:

1) G_k is isomorphic to an open subgroup of G_{Q_p} .

2) There exists a discrete place v of k such that v satisfies the following conditions:

a) v lies above p.

b) The residue field of v is finite.

c) The extension of v to \overline{Q} is unique.

THEOREM B. For finite algebraic extensions k and k' of Q, let W and W' be the sets of finite places of k and k', respectively. If G_k and $G_{k'}$ are isomorphic, then there exists a bijection f of W onto W' such that G_{kv} is isomorphic to $G_{k'_{f(v)}}$ for any place $v \in W$, where k_v (or $k'_{f(v)}$) is the completion of k at v (or k' at f(v)).

THEOREM C. If k is a finite Galois extension of Q and if k' is a finite algebraic extension of Q such that G_k and $G_{k'}$ are isomorphic, then we have k=k'.

Without the assumption that k is Galois over Q, Theorem C does not hold: In fact, there exist distinct two finite algebraic extensions k and k' such that G_k and $G_{k'}$ are isomorphic and that k is isomorphic to k'. Hence, as for a generalization of Theorem C, it is natural and interesting to consider whether, for any finite algebraic extensions k and k', $G_k \cong G_{k'}$ implies $k \cong k'$ or not. In this paper we shall give some affirmative data of this problem. For this purpose in § 3, we shall obtain a refinement of the above Theorem B as follows:

Recieved March 15, 1973.

PROPOSITION. For finite algebraic extensions k and k' of Q, let V and V' be the sets of places of k and of k', respectively. If G_k and $G_{k'}$ are isomorphic, then there exists a bijection f of V onto V' such that G_{kv} is isomorphic to $G_{k'_{f(v)}}$ for any place $v \in V$.

By the above Proposition and local class field theory, we shall show that if G_k and $G_{k'}$ are isomorphic, then the idele groups of k and k' are isomorphic, the unit groups of k and k' are isomorphic, the ideal class groups of k and k' are isomorphic, D=D' and R=R', where D and D' are the discriminants of k and k', respectively and where R and R' are the regulators of k and k', respectively.

§1. Neukirch's results. In this paper, fields shall be local fields of characteristic 0 or algebraic number fields and isomorphisms mean topological ones. Let F be a field, let N be a Galois extension of F, let G be a profinite group and let A be a topological G-module. We shall use the following notations:

$ar{F}$;	the algebraic closure of F
G(N/F);	the topological Galois group of N over F
G_F ;	the topological Galois group of $ar{F}$ over F
μ_F ;	all the roots of 1 in F
$F^{ imes}$;	the multiplicative group of F
Q;	the rational number field
Z_p ;	the ring of p-adic integers
Q_p ;	the field of <i>p</i> -adic numbers
G(l);	the maximal l factor group of G for any prime l
(G, G);	the topological commutator group of G
G^{ab} ;	the factor group of G by (G, G)
$H^n(G, A)$;	the n -th cohomology group of G with coefficients in A .

We adopt similar notations for k, K and so forth.

Let p be a prime number. Then a profinite group G is said to be a prop-group if G is a projective limit of finite p-groups. For a pro-p-group G, the rank of G means the minimal number of topological generators of G.

Let L(I) be the discrete free group generated by a set I and let F_p be the field with p elements. G is said to be a free pro-p-group if G is the projective limit of L(I)/U, where U is a normal subgroup of L(I) such that U contains almost all elements of I and that L(I)/U is a finite p group. Then the rank of G is equal to the cardinality of I and $\dim_{F_p}H^1(G, Z/pZ)$, where the action of G on Z/pZ is trivial and where $\dim_{F_p}H^1(G, Z/pZ)$ is the dimension of the vector space $H^1(G, Z/pZ)$ over F_p . From the definitions follows the following:

LEMMA 1. For two finitely generated free pro-p-groups G_1 and G_2 , G_1 is isomorphic to G_2 if and only if G_1^{ab} is isomorphic to G_2^{ab} .

A pro-p-group G is said to be a Demushkin group if

(1) $\dim_{F_p} H^2(G, Z/pZ) = 1$

(2) the cup product $H^1(G, \mathbb{Z}/p\mathbb{Z}) \times H^1(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^2(G, \mathbb{Z}/p\mathbb{Z})$ is a nondegenerate bilinear form.

The characterization of Demushkin groups (cf. [1]) gives the following:

LEMMA 2. For two finitely generated Demushkin groups G_1 and G_2 , G_1 is isomorphic to G_2 if and only if G_1^{ab} is isomorphic to G_2^{ab} .

The following lemma (cf. [3]) is well known.

LEMMA 3. For a prime number l, let ζ_l be a primitive l-th root of 1 and let K be a finite algebraic extension of Q_p . Then the following assertions hold:

1) If $\zeta_l \in K$, then $G_K(l)$ is a finitely generated free pro-l-group.

2) If $\zeta_l \in K$, then $G_K(l)$ is a finitely generated Demushkin group.

We shall use the following lemmas (cf. [2]) in § 3.

LEMMA 4. For finite algebraic extensions k and k' of Q, let W and W' be the sets of finite places of k and of k', respectively. If G_k and $G_{k'}$ are isomorphic, then there exists a bijection f of W onto W' such that G_{kv} and $G_{k'_{f(v)}}$ are isomorphic for any place $v \in W$, where k_v (or $k'_{f(v)}$) is the completion of k at v (or k' at f(v)).

LEMMA 5. Let k and k' be finite algebraic extensions of Q. If G_k and $G_{k'}$ are isomorphic, then the maximal Galois extension of Q contained in k and the maximal Galois extension of Q contained in k' coincide.

LEMMA 6. Let k and k' be finite algebraic extensions of Q. If G_k and G_k , are isomorphic, then the minimal Galois extension N of Q containing k coincides with the minimal Galois extension N' of Q containing k' and the cardinality of $C(\sigma) \cap G(N/k)$ is equal to the cardinality of $C(\sigma) \cap G(N/k')$ for any $\sigma \in G(N/Q)$, where $C(\sigma) = \{\tau^{-1}\sigma\tau \mid \tau \in G(N/Q)\}$.

COROLLARY. If G_k and $G_{k'}$ are isomorphic, we have |k; Q| = |k'; Q|, where |k; Q| (or |k'; Q|) is the degree of k (or k', respectively) over Q.

It should be noted that Theorem A is a generalization of the following Artin's result.

LEMMA 7. Let k be an algebraic extension of Q, then the following assertions are equivalent to each other:

1) The order of G_k is 2.

2) There exists a real place v of k such that v is uniquely extended to \bar{k} . (The above v is uniquely determined by k.)

§2. The Galois group of the algebraic closure of a local field. In this

46

section, K, K_1 and K_2 shall be finite algebraic extensions of Q_p such that they are contained in the same algebraic closure \overline{Q}_p of Q_p . We will denote by qthe cardinality of the residue field of K, by e the order of ramification of Kover Q_p and by f the modular degree of K over Q_p . Then we have $q=p^f$. Let $n=|K; Q_p|$. Then we have n=ef. Let m be the largest integer such that K contains a primitive p^m -th root of 1. We adopt similar notations, viz, q_i , e_i , f_i , n_i , for K_i , for i=1, 2. See [4] as for results of number theory used in the followings.

It is well known

(1)
$$K^{\times} \cong Z \times Z_p^n \times Z/(q-1)Z \times Z/p^m Z.$$

By local class field theory, we have

(2)
$$G_K^{ab} \cong \prod_l Z_l \times Z_p^n \times Z/(q-1)Z \times Z/p^m Z,$$

where Π_{l} is taken over all prime numbers. For completeness we shall give a proof of the following lemma.

LEMMA 8. For a profinite group G and prime number p, $G^{ab}(p)$ and $G(p)^{ab}$ are isomorphic.

Proof. Let N be a normal subgroup of G such that the factor group G/N is G(p). Then we have $G(p)^{ab} \cong G/(G, G)N$. Suppose that the group (G, G)N contains a subgroup H such that the index |(G, G)N; H| is p and that H contains the subgroup (G, G). It follows $|N; N \cap H| = p$ from $|HN; H| = |N; N \cap H|$ and HN = (G, G)N. This contradicts the definition of N. Hence $G^{ab}(p)$ is isomorphic to G/(G, G)N. This completes our proof.

PROPOSITION 1. Let K_1 and K_2 be two finite algebraic extensions of Q_p . Then the following assertions are equivalent to each other.

- 1) K_1^{\times} is isomorphic to K_2^{\times} .
- 2) $\mu_{K_1} = \mu_{K_2}$ and $n_1 = n_2$.
- 3) $q_1 = q_2$, $e_1 = e_2$ and $m_1 = m_2$.
- 4) $G_{K_1}^{ab}$ is isomorphic to $G_{K_2}^{ab}$.
- 5) $G_{K_1}(l)$ is isomorphic to $G_{K_2}(l)$ for any prime l.

Proof. 2) from 1): Since K_1^{\times} is isomorphic to K_2^{\times} , we have that the torsion subgroups of K_1^{\times} and of K_2^{\times} are isomorphic. Hence we have $\mu_{K_1}=\mu_{K_2}$. By (1), K_i^{\times} is isomorphic to $Z \times Z_p^{n_i} \times Z/(q_i-1)Z \times Z/p^{m_i}Z$ for i=1, 2. Therefore the maximal compact subgroup U_i of K_i^{\times} is isomorphic to $Z_p^{n_i} \times Z/(q_i-1)Z \times Z/p^{m_i}Z$ and then $U_i(p)$ is isomorphic to $Z_p^{n_i} \times Z/p^{m_i}Z$ for i=1, 2. For the torsion subgroup T_i of $U_i(p)$, the factor group $U_i(p)/T_i$ is isomorphic to $Z_p^{n_i}$ for i=1, 2. Since n_i is the rank of $U_i(p)/T_i$ as Z_p -module and since $U_1(p)/T_1$ is isomorphic to $U_2(p)/T_2$, we have $n_1=n_2$. In a similar way, we can prove 1) from 4) part, so its proof is omitted.

3) from 2): The cardinality of μ_{K_i} is $p^{m_i}(q_i-1)$, $q_i=p^{f_i}$ and $n_i=e_if_i$ for i=1, 2. Therefore it is clear.

4) from 3): It follows from (2).

4) from 5): Let $q_i - 1 = \prod_i l^{\alpha_{l,i}}$ be the decomposition of $q_i - 1$ into the product of powers of distinct prime numbers for i=1, 2. From (2) and Lemma 8, we have

(3)
$$G_{K_i}(l)^{ab} \cong \begin{cases} Z_l \times Z/l^{\alpha l_i, i}Z & \text{for } l \neq p, \\ Z_p^{n_i+1} \times Z/p^{m_i}Z & \text{for } l = p, \end{cases}$$

for i=1, 2. Since $G_{K_1}(l)^{ab}$ and $G_{K_2}(l)^{ab}$ are isomorphic for any prime l, we shall obtain $\alpha_{l,1}=\alpha_{l,2}$, $n_1=n_2$ and $m_1=m_2$ in a similar way as the above 2) from 1) part. From (2), it follows that $G_{K_1}^{ab}$ and $G_{K_2}^{ab}$ are isomorphic.

5) from 4): Since $G_{K_i}^{ab}(l)$ and $G_{K_i}(l)^{ab}$ are isomorphic for $i=1, 2, G_{K_1}(l)^{ab}$ $G_{K_2}(l)^{ab}$ are isomorphic. From Lemma 3, $G_{K_1}(l)$ and $G_{K_2}(l)$ are finitely generated free pro-*l*-groups or finitely generated Demushkin groups. Hence from Lemma 1 and Lemma 2, we have that $G_{K_1}(l)$ and $G_{K_2}(l)$ are isomorphic. This completes our proof.

COROLLARY. Let K_1 and K_2 be two finite algebraic extensions of K such that K_1 is an unramified extension of K. If G_{K_1} and G_{K_2} are isomorphic, then we have $K_1 = K_2$.

Proof. Since K_1 is unramified over K, K_1 is the extension of K generated by μ_{K_1} . $G_{K_1} \cong G_{K_2}$ implies $G_{K_1}^{ab} \cong G_{K_2}^{ab}$. By Proposition 1, we have $\mu_{K_1} = \mu_{K_2}$ and $n_1 = n_2$. Hence $K_1 \subset K_2$ and $|K_1; K| = |K_2; K|$. It follows $K_1 = K_2$.

§3. The Galois group of the algebraic closure of an algebraic number field. In this section, we denote by k and k' finite algebraic extensions of Q such that they are contained in the same algebraic closure \overline{Q} of Q. We shall use the following notations:

- *a*; the cardinality of μ_k
- r_1 ; the number of the real places of k
- r_2 ; the number of the imaginary places of k
- $\zeta_k(s)$; the zeta-function of k
 - V; the set of places of k
 - W; the set of finite places of k
 - P_{∞} ; the set of infinite places of k
 - S_{∞} ; the set of real places of k
 - k_v ; the completion of k at $v \in V$
 - q_v ; the cardinality of the residue field of k_v .

We adopt similar notations, viz. a', r'_1 , \cdots for k'.

LEMMA 9. Let k and k' be finite algebraic extensions of Q. If G_k and $G_{k'}$ are isomorphic, then we have $\mu_k = \mu_{k'}$.

48

Proof. Let M be the maximal Galois extension of Q contained in k. Then by Lemma 5, M is the maximal Galois extension of Q contained in k'. Hence from $\mu_k = \mu_M$ and $\mu_{k'} = \mu_M$, we have $\mu_k = \mu_{k'}$.

LEMMA 10. Let k and k' be finite algebraic extensions of Q. If G_k and G_k , are isomorphic, then we have $r_1 = r'_1$ and $r_2 = r'_2$.

Proof. Let α be an isomorphism of G_k onto $G_{k'}$. For $v \in S_{\infty}$, let \bar{v} be an extension of v to \bar{Q} and let $H_{\bar{v}}$ be the decomposition subgroup of G_k for \bar{v} . Since v is a real place of k and since G_{kv} is isomorphic to $H_{\bar{v}}$, the order of $H_{\bar{v}}$ is 2. Therefore the order of $\alpha(H_{\bar{v}})$ is 2. Let K' be the subfield of \bar{Q} attached to $\alpha(H_{\bar{v}})$ in the sense of Galois theory. By Lemma 7, there exists a real place \bar{v}' of K' which is uniquely extended to \bar{Q} . Let $f_{\alpha}(v)$ be the restriction of \bar{v}' to k' which is uniquely determined by \tilde{v} . Let \bar{v}^* be another extension of v to \bar{Q} , then $H_{\bar{v}}$ and $H_{\bar{v}^*}$ are conjugate in G_k to each other. Hence f_{α} is well defined as a mapping of S_{∞} to S'_{∞} . By a similar way, using the inverse α^{-1} of α , we construct a mapping $f_{\alpha^{-1}}$ of S'_{∞} to S_{∞} such that $f_{\alpha} \circ f_{\alpha^{-1}}$ and $f_{\alpha^{-1}} \circ f_{\alpha}$ are identity mappings. Hence we have $r_1 = r'_1$. It is well known that the degree |k; Q| (or |k'; Q|) is equal to $r_1 + 2r_2$ (or $r'_1 + 2r'_2$). By the Corollary of Lemma 6, we have $r_1 + 2r_2 = r'_1 + 2r'_2$.

Now, using Lemma 10 we can extend the Neukirch's bijection between the finite place sets W and W' in Lemma 4 to a bijection between the place sets V and V'.

PROPOSITION 2. Let k and k' be finite algebraic extensions of Q. If G_k and $G_{k'}$ are isomorphic, then there exists a bijection f of V onto V' such that G_{kv} and $G'_{k'(v)}$ are isomorphic for any place $v \in V$.

COROLLARY. If G_k and $G_{k'}$ are isomorphic, then there exists a bijection f of V onto V' such that k_v^{\times} and $k_{f(v)}'$ are isomorphic for any place $v \in V$. Hence f(W) = W' and $f(P_{\infty}) = P'_{\infty}$.

Proof. It follows from Proposition 1 and Proposition 2.

Let K (or K') be a finite algebraic extension of k (or k') and let W_K (or $W_{K'}$) be the set of finite places of K (or K'). For a place $v \in W$ such that v lies above prime p, let $e_k(v)$ be the order of ramification of k_v over Q_p . We adopt similar notations, viz. $e_{k'}(v')$, $e_K(w)$ and $e_{K'}(w')$ for k', K and K', respectively.

LEMMA 11. If α is an isomorphism of G_k onto $G_{k'}$ such that $\alpha(G_K) = G_{K'}$, then there exist two bijections f of W onto W' and F of W_K onto $W_{K'}$ such that f and F satisfy the following conditions.

- a) G_{kv} is isomorphic to $G_{k'_{f(v)}}$ for any place $v \in W$.
- b) G_{K_w} is isomorphic to $G_{K_{F(w)}}$ for any place $w \in W_K$.
- c) A place $w \in W_K$ lies above $v \in W$ if and only if F(w) lies above f(v).

Proof. Using Theorem A, we can prove this Lemma in a similar way to the proof of Lemma 10. So its proof is omitted.

LEMMA 12. Assumptions and notations being as above, if K is an unramified extension of k', then K' is an unramified extension of k'.

Proof. Using Proposition 1 and Lemma 11, we have $e_k(v) = e_{k'}(f(v))$ and $e_K(w) = e_{K'}(F(w))$ for any place $v \in W$ and $w \in W_K$. Suppose that w lies above v. Since K is an unramified extension of k, we have $e_K(w) = e_k(v)$. A place w lies above v if and only if F(w) lies above f(v). So we have $e_{K'}(F(w)) = e_{k'}(f(v))$ and K' is an unramified extension of k'.

LEMMA 13. Assumptions and notations being as Lemma 12, if K is the absolute class field of k, then K' is the absolute class field of k'.

Proof. Let L' be the absolute class field of k'. From Lemma 12, K' is an unramified extension of k' and G(K'/k') is commutative. Hence we have $K' \subset L'$. Let L be the extension of k such that $\alpha(G_L) = G_{L'}$, then we have $L \subset K$. Since $L' \subset K'$ follows from $L \subset K$, we have L = K.

LEMMA 14. Let C(k) and let C(k') be the ideal class groups of k and k', respectively. If G_k and $G_{k'}$ are isomorphic, then C(k) and C(k') are isomorphic.

Proof. Let K be the absolute class field of k and let α be an isomorphism of G_k onto $G_{k'}$. It is well known that C(k) is isomorphic to G(K/k). Let K' be the extension of k' such that $\alpha(G_K) = G_{K'}$, then K' is the absolute class field of k'. Hence, C(k') is isomorphic to G(K'/k'). From $G_k/G_K \cong \alpha(G_k)/\alpha(G_K)$, we have $G(K/k) \cong G(K'/k')$. So we have $C(k) \cong C(k')$.

THEOREM. Let k and k' be finite algebraic extensions of Q. Let D be the discriminant of k over Q, let C(k) be the ideal class group of k, let R be the regulator of k, let E be the unit group of k and let k_A^{\times} be the idele group of k. We adopt similar notations for k'. If G_k and $G_{k'}$ are isomorphic, then we have D=D', E and E' are isomorphic, k_A^{\times} and $k_A'^{\times}$ are isomorphic, C(k) and C(k') are isomorphic and R=R'.

Proof. In Lemma 14, it has shown that C(k) and C(k') are isomorphic. Let h and h' be the class numbers of k and k', respectively. We have h=h'. Using the bijection f of Proposition 2, we have $q_v=q'_{f(v)}$ for any $v \in W$. So it follows that

$$\begin{aligned} \zeta_k(s) &= \prod_{v \in W} (1 - q_v^{-s})^{-1} \\ &= \prod_{v \in W} (1 - q_{f(v)}^{-s})^{-1} \\ &= \zeta_{k'}(s) \end{aligned}$$

for Re(s)>1. From the theorem of identity, we have $\zeta_k(s) = \zeta_{k'}(s)$ for any com-

50

plex number s. Let G_1 and G_2 be defined by the formulas

$$G_1(s) = \pi^{-s/2} \Gamma(s/2), \qquad G_2(s) = (2\pi)^{1-s} \Gamma(s)$$

where $\Gamma(s)$ is the gamma function. Let $Z_k(s)$ and $Z_{k'}(s)$ be defined by the formulas

$$Z_{k}(s) = G_{1}(s)^{r_{1}}G_{2}(s)^{r_{2}}\zeta_{k}(s)$$
$$Z_{k'}(s) = G_{1}(s)^{r'_{1}}G_{2}(s)^{r'_{2}}\zeta_{k'}(s).$$

Since, from Lemma 10, we have $r_1 = r'_1$ and $r_2 = r'_2$, it follows that $Z_k(s) = Z_{k'}(s)$. It is well known that $Z_k(s)$ is a meromorphic function in the complex plane, holomorphic except for simple poles at s=0 and s=1. Further, it is well known

$$\lim_{s \to 0} sZ_k(s) = -2^{r_1}(2\pi)^{r_2}hR/a$$
$$\lim_{s \to 0} sZ_{k'}(s) = -2^{r'_1}(2\pi)^{r'_2}h'R'/a'$$

By Lemma 9, we have a=a'. So we have hR=h'R'. Hence it follows R=R'. Since we have

$$\lim_{s \to 1} (s-1)Z_k(s) = |D|^{-\frac{1}{2}}2^{r_1}(2\pi)^{r_2}hR/a$$
$$\lim_{s \to 1} (s-1)Z_{k'}(s) = |D'|^{-\frac{1}{2}}2^{r'_1}(2\pi)^{r'_2}h'R'/a'$$

it follows |D| = |D'|. So we have D=D' because the signs of D and D' are $(-1)^{r_2}$. From the Dirichlet's theorem of the units, E is isomorphic to $\mu_k \times Z^{r_1+r_2-1}$ and E' is isomorphic to $\mu_{k'} \times Z^{r_1'+r_{2'}-1}$. By Lemma 9 we have $\mu_k = \mu_{k'}$. Hence E is isomorphic to E'. From Corollary of Proposition 2 and the definition of the idele group of k, k_A^* and k'_A^* are isomorphic. This completes our proof.

Now we shall give an example in which G_k determines the isomorphism class of k, using the theorem of P. Hall: Let G be a solvable finite group, and let H_1 and H_2 be subgroups of G such that the orders of H_1 and H_2 are equal and relatively prime to the index $|G; H_1|$, then H_1 and H_2 are conjugate in G.

PROPOSITION 3. Let k and k' be finite algebraic extensions of Q, let \tilde{Q} be the solvable closure of Q and let l be a prime number such that |k; Q| = l. If G_k and $G_{k'}$ are isomorphic and if k is contained in \tilde{Q} , then k is isomorphic to k'.

Proof. Let us use the notations of Lemma 6. Since k is contained in \hat{Q} , G(N/Q) is solvable. By Lemma 6, N=N' and the order of G(N/k) is equal to that of G(N/k'). Since |G(N/Q); G(N/k)| is prime number l, it is easily seen that the common order of G(N/k) and G(N/k') is relatively prime to l. Hence by the theorem of P. Hall, G(N/k) is conjugate to G(N/k') in G(N/Q). Therefore k is isomorphic to k'.

For the above Galois group G(N/Q), it should be noted that the commutator group of G(N/Q) is commutative. Now we shall give an example of the above field k: For an integer m such that $\sqrt[l]{m}$ is not contained in Q, the field $Q(\sqrt[l]{m})$ is contained in \tilde{Q} , $|Q(\sqrt[l]{m}); Q| = l$ and $N = Q(\sqrt[l]{m}, \zeta_l)$, where ζ_l is a primitive *l*-th root of 1.

BIBLIOGRAPHY

- [1] J. LABUTE, Classification of Demushkin groups, Can. J. Math. 19 (1966), 106-132.
- [2] J. NEUKIRCH, Kennzeichnung der p-adischen und der endlich algebraischen Zahlkörper, Inventiones math. 6 (1969), 296-314.
- [3] J.P. SERRE, Cohomologie Galoissienne, Lecture notes in Math. 5 Springer-Verlag (1964).
- [4] A. WEIL, Basic Number Theory, Springer-Verlag (1967).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.