
F._BRICKELL AND K. YANO
KODAI MATH. SEM. REP.
26 (1974), 22-28

CONCURRENT VECTOR FIELDS AND

MINKOWSKI STRUCTURES

BY FREDERICK BRICKELL AND KENTARO YANO

§ 1. Concurrent vector fields. We make the general assumption that all
the differentiable manifolds and geometric objects which we use are of class
C°°. Let M be a differentiable manifold and V a linear connection on M. A
vector field A on M is concurrent with respect to V if

FuΛ=u

for all vectors u tangent to M. ([4])

Example. Let V be a real vector space of dimension n and choose a basis
Ei, •••, En for V. A vector v e 7 can be expressed uniquely as

v=Σx%(v)Eif i=l, .-, n

and the standard chart (x\ •••, xn) defines a manifold structure on V which is
independent of the particular basis chosen. The vector field yΣilx

ι{dldxi) also
is independent of the chosen basis and we call it the radial vector field on V.
The conditions

Pd/dx* (d/dxj)=0, i, 7 = 1 , •••, n

determine a complete linear connection on V which we call the standard con-
nection on V. The radial vector field is concurrent with respect to the standard
connection.

A riemannian metric g on M determines a unique connection on M called
a riemannian connection. We say that A is concurrent with respect to g if it
is concurrent with respect to the corresponding riemannian connection.

Example. Let x1, •••, xn be a standard chart on the real vector space V.
If Lau~l is a constant positive definite matrix then the conditions

g(β/dx\d/dx')=a%J, i,j=l, ~-,n

determine a riemannian metric g on V. The corresponding riemannian con-
nection is the standard connection. Consequently the radial vector field is
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concurrent with respect to g. The riemannian metrics obtained in this way
are all euclidean metrics. We will see in Theorem 2 that they are all the
metrics on V for which the radial vector field is concurrent.

Our first theorem states necessary and sufficient conditions for a vector
field to be concurrent with respect to a riemannian metric.

THEOREM 1. A vector field Λ on a manifold M is concurrent with respect to
a riemannian metric g if, and only if,

Λ=gradF, LAg=2g

where F—{l/2)g{Λ, A) and LΛ denotes the Lie derivative with respect to A.

Proof. We show that the conditions are both necessary conditions. Let
X, Y be any two vector fields in M and let V denote the riemannian connec-
tion. Because A is concurrent we find that

XF=-±-X{g{A, Λ)=g(VxΛ, Λ)=g(X9 A)

and therefore A— grad F. Secondly we have, using LΛX=PΛX— X and LΛY—
VΛY-Y, that

(LΛg)(X, Y)=A(g(X, Y))-g(LΛX, Y)-g{X, LΛY)

=PΛ(g(X, Y))-g(FAX-X, Y)-g(X, FΛY-Y)

=2g(X, Y).

We show that together the conditions are sufficient. The first condition
XF=g(X, A) and the identity [Z, Y1F=X(YF)-Y(XF) lead to

φ(Z, Y)=Φ(Y, X) (1)

where Φ(X,Y)=g(X,VγA-Y). The second condition (LΛg)(X, Y)=2g(X, Y),
written as g(P'XA, Y)+g(X, VγA)=2g(X, Y\ gives at once

Φ{X, Y)+Φ(Y,X)=0. (2)

The relations (1), (2) together imply that Φ(X, Y)=0 for all vector fields X, Y
in M. Consequently

FYA-Y=O

for all vector fields Y in M and therefore A is concurrent with respect to the
riemannian metric g.

As an application of Theorem 1 we prove

THEOREM 2. Let V be a real vector space of dimension n and origin O. The
riemannian metrics on V—O for which the radial vector field is concurrent are
given in terms of a standard chart by
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where the functions gi3 are positively homeogeneous of degree zero and satisfy the
relations

Σ (βg%J/dx*)xxx>=0, z, , k=l, ~,n.
1,3

The only riemannian metrics on V for which the radial vector field is concurrent
are the euclidean metrics ΣιjatjdxιdxJ where the a%3 are constants.

Proof Let A denote the radial vector field. In terms of a standard chart
xι, ~ , xn we have, for any riemannian metric g= ^Σtfjgijdxtdx3

f

and
(LAg)tJ= Σ x\dglj/dxk)+2glJ.

Consequently the conditions in Theorem 1 translate to

The first condition is equivalent to

and the second condition is equivalent to the condition that the functions gi3

be positively homegeneous of degree zero. It follows at once from the homo-
geneity condition that the only metrics which extend to V are those for which
the functions gl3 are constants.

We describe some special metrics on V— 0 for which the radial vector field
is concurrent. Let L be a positive C°° function on V—O, positively homogeneous
of degree one, and such that the matrix of elements

is positive definite. We extend the domain of L to V by defining L(0)=0 and
call the pair (F, L) a Minkowski structure. If L is symmetric, that is L(—v)=
L(v), then L is a norm on V. The riemannian metric yΣn,jgιjdxιdxJ is defined
on V— O and is independent of the particular standard chart x1, •••, xn. We
call it the riemannian metric associated with the Minkowski structure. When
L is a euclidean norm we obtain the euclidean metrics for which the functions
gl3 are constants. These metrics extend to complete metrics on V. We prove

THEOREM 3. A riemannian metric g on V—O is associated with a Minkowski
structure on V if and only if:—
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(i) The radial vector field A is concurrent with respect to g.
(ii) For any vector fields X, Y in V—O

g{P'χY—P'XY, A)=0

where V is the riemannian connection determined by g and V is the
standard connection on V.

Proof. We work with a standard chart x\ •••, xn on V. The necessity of
the conditions follows easily from the Euler relations for a homogeneous func-
tion. To prove the sufficiency we begin with condition (i). We write

g= Σg τ jdx ιdx3, F^-o- ΣgιjXιxJ

ι,j 6 ι,J

and apply Theorem 2 to show that dF/dxl=^kgikx
k

f and that each function gtJ

is positively homogeneous of degree zero. Consequently, using the fact that
d2F/dxidxJ is symmetric in z, j , it follows that

:* and that Σ ~5V xk=0. (3)

The condition (ii) can be expressed as

The relations (3) enable us to deduce that

But this fact implies that

and therefore g is associated with the Minkowski structure (V, L) where

% 2. Vector fields concurrent with respect to complete connections. The
condition that a vector field is conncurrent with respect to a complete linear
connection appears to be a very strong condition. We will prove two theorems
concerning linear connections which are either riemannian or closely related
to riemannian connections. We begin with two lemmas.

LEMMA 1. Let M be a differentiable manifold and suppose that A is a vector
field on M which is concurrent with respect to a complete linear connection. Then
A is complete.
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Proof. Let m be any point in M. We have to show tuat the maximal inte-
gral curve of A starting from m is defined for all values of its parameter.
Because V is complete there exists a geodesic γ, defined for all values of its
parameter s, and such that

Consider the vector field along γ defined by

As γ is a geodesic and A is concurrent with respect to V we find that

π TT dγ |7 Λ dr dγ Λ

Therefore, because t/(l)=0, it follows that U is the zero vector field among γ.
Consider the curve c defined by c(t)=γ{et). We find that

c(0)=m,

Consequently c is an integral curve of A starting from m. As c is defined for
all values of its parameter t it follows that A is complete.

LEMMA 2. Let E denote euclidean space and V the corresponding riemannian
connection. Then any vector field A on E which is concurrent with respect to V
has just one zero.

Let O denote this zero and regard E as a euclidean vector space V of origin
O. Then A is the radial vector field on V.

Proof We use rectangular cartesian coordinates x1, --, xn. Let A—
'Σιιλ

td/dxι be a vector field on E. Because

it follows that

Λ=Σ(βλ'/dx

Consequently A is concurrent if and only if dλ3/dxι=-δl or λ3—x3+a3 where
a1, •••, an are constants. Therefore A has just one zero at the point of coordi-
nates (— α\ •••, — an). The rest of the lemma follows easily.

THEOREM 4. Suppose that M is a connected and complete riemannian mani-
fold and that A is a vector field on M, concurrent with respect to the riemannian
connection. Then A has just one zero and M is isometric with euclidean space.
(See [1] and [3])
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Proof. Let g denote the riemannian metric on M. Lemma 1 shows that A
is complete and therefore generates a one parameter group of transformation
of M. According to Theorem 2, LΛg—2g so that these transformations are all
homothetic transformations of M. Apart from the identity transformation they
are not isometries. Consequently Lemma 2 on p. 242 of [2], Vol. I, shows that
M is locally euclidean.

As M is complete it is covered isometrically by euclidean space E (see,
for example, [2], Vol. II, pp. 102-105). The vector field A lifts to a vector field
A on E which is concurrent with respect to the riemannian metric on E.
Lemma 2 shows that A has just one zero. Therefore A has just one zero and
E covers M just once. Consequently M is isometric with E.

Theorem 4 and Lemma 2 show that, to within isometries, the only examples
of a vector field concurrent with respect to a complete riemannian metric are
the radial vector fields on euclidean vector spaces. Together with Theorem 3
they provide a characterisation of Minkowski structures in terms of such a
vector field.

Our final theorem is a slight generalisation of Theorem 4. Again it shows
that essentially the only examples of a vector field concurrent with respect to
a complete linear connection of a special type, are the radial vector fields on
real vector spaces.

THEOREM 5. Let M be a connected riemannian manifold with metric g. Let
V be a complete linear connection on M which preserves g and has the same
geodesies as g. Suppose that A is a vector field on M which is concurrent with
respect to F. Then A has just one zero and M is isometric with euclidean space.

Let O denote this zero and regard M as a euclidean vector space V of origin
0. Then A is the radial vector field on V.

Proof. Because F has the same geodesies as g it follows that g is complete.
Therefore Theorem 5 is an immediate consequence of Theorem 4 and Lemma
2, once we have shown that A is also concurrent with respect to the riemannian
connection.

Let X, Y, Z be any vector fields in M and let T denote the torsion of F.
The symmetric connection F associated with V is given by

F has the same geodesies as F and therefore coincides with the riemannian
connection. Because both V and F preserve the riemannian metric it follows
that

g(T(X, Y), Z)+g(T(X, Z), Y)=0. (4)

We put F=Q/2)g(A, A) and calculate XF. We find by using (4) and the
fact that A is concurrent with respect to F
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XF=g(?xA, Λ)

=gψzΛ, Λ)+g(T(X, A), A)

and therefore

A—graάF. (5)

A similar calculation gives

(LΛgχx, γ)=gφxΛ, Y)+g(x, M )

=g(FxΛ, Y)+g(X, VYA)+g{T{X, Λ\ Y)+g(T(Y, A), X)

=2g(X, Y)

and therefore

LΛg=2g. (6)

According to Theorem 1 the relations (5) and (6) together imply that A is
concurrent with respect to V.

We conclude with the remark that it is very easy to construct an example

of a non-symmetric connection which satisfies the conditions in Theorem 5.

For instance let V be a real vector space of dimension 4 and choose a standard

chart x1, •••, x*. Define a connection V by

d/dx1 \P/OX )—2-ι^ijkO/OX i *Ί Ji R — 1 > *•• , 4

where the functions CikJ are skew-symmetric in each pair of indices and

ζ~* γ4 Γ* γ3 r< ~2 /~< γl

This connection preserves the euclidean metric g^dx1)2^ \-{dxAf and has
the same geodesies as g. The radial vector field is concurrent with respect to F.
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