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ON AN EXTENSION THEOREM AND ITS APPLICATION
FOR TURNING POINT PROBLEMS OF LARGE ORDER

BY TOSHIHIKO NISHIMOTO

1. Introduction.

Our results in this paper are concerned with the asymptotic nature of solutions
of second order ordinary differential equations of the form

Λ/α "h -2/z, °* y —b(γ cYϊ/
• L) d 2 ~~

as a small parameter ε tends to zero. Here h is a positive integer and p(x,έ) is a
holomorphic function of x and ε which has an asymptotic expansion is power series
of ε with polynomial coefficients:

(1.2) /teβ)

in the region

(1.3) W <

There has been much investigated by many authors about the above type of
equations and in particular the turning point problems are the subject of many
papers and monographs. According to the problems in physical applications, it is
desired to find the asymptotic behavior of solutions in an unbounded region of x
which may not contain the turning points, or in a given bounded region which
may not contain the turning points, or in a small neighborhood of a turning point
containing turning point itself. In these cases, it is difficult to construct uniformly
valid asymptotic expansions in a region where it is needed for application except
for particularly simple equations. For these problems, the so-called W-K-B approxi-
mation may be the most familiar among the scientists of many fields, and this
method has been put on rigourous mathematical foundations recently by several
authors, in particular the precise definition of the region of existence of asymptotic
solution and the lateral connection formula around a simple turning point were
given by Evgrafov and Fedoryuk [2], the connection formulas and their error bounds
at a simple turning point were given by Frδman and Frδman [3]., Olver [9], and
Wasow [11].
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Usually, the W-K-B approximation is correct in a certain sectorial region of
complex ^-plane which is unbounded and deleted the arbitrarilly small neighbor-
hood of turning points. On the other hand, the comparison method or the related
equation method is used to obtain uniformly valid asymptotic solutions in sufficien-
tly small neighborhood of a turning point, but at present this is applicable to very
special class of equations, to be more precise, the order of turning point is at most
two. The one more alternative method in analyzing the local theory is the match-
ed asymptotic approximation, we call it simply the matching method which has
been used effectively by myself when the order of turning point is greater than
two.

The purpose of this paper is to extend the region of existence of the W-K-B
type approximation of the equation (1.1) to an unbounded sectorial region such
that:

1], the domain of influence of each turning point is deleted. The domain of
influence is a neighborhood of turning point which shrinks to the turning point
itself as e tend to zero, and is determined from the characteristic polygon associat-
ed with the turning point. The characteristic polygon of (1.1) will be explained
in section 2.

2], the independent variable x goes to infinity as well as the parameter ε tends
to zero in such a way that the quantity \xεa\ remains bounded, where a is a posi-
tive constant given precisely in later.

The results presented here are of interest in several respects. At first, this is
one of the example in which the Kaplun's extension theorem and matching prin-
ciple of the asymptotic theory can be used rigorously. Roughly speaking, the ex-
tension theorem asserts that if an asymptotic approximation is uniformly valid in
an interval of x, then it is uniformly valid in a wider interval depending on the
parameter ε. The stretching and matching methods are frequently used in various
problems of applied mathematics, in particular the boundary layer theory of fluid
mechanics, but it is in general very difficult to obtain a wider interval depending
on ε in which an asymptotic approximation is uniformly valid. Hence it is ambigu-
ous to ascertain that the outer expansion and the inner expansion can be matched
rigorously. In turning point problems of second order ordinary differential equa-
tions, this is overcome because that the extension theorem can be applied to obtain
a wider region of x explicitly which enable us to prove that the regions of exis-
tence of an outer and an inner expansion are overlapped for all sufficiently small
parameter ε. For the Kaplan's extension theorem, we refer the reader to the book
Cole [1], or Van Dyke [10].

Secondly our results play an essential part when we analyze the turning point
problems in local by the matching method under the condition that the characteris-
tic polygon consists of at least two segments. We explain this point in details.
The differential equation we consider is of the form (1.1) with h — \ or in vector
form it becomes
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,.v dy Γ 0 1Ί
(A) Slte=\J(x,s) 0>

Here the function f(x, ε) is holomorphic in the region D

D: |a?|^j?o<l,0<e^60,

and has a uniformly asymptotic expansion in power series of ε such that

f(x, ε)~xq + Σ φv(x)ε (^positive integer),
v = l

as ε tends to zero with holomorphic coefficients:

The problem is to find asymptotic expansions of the equation (A) in the full
neighborhood of the origin as ε tends to zero. The characteristic polygon associat-
ed with a turning point x=0 of (A) consists at most two segments, and when it
satisfies the one segments condition the above problem was considered by myself
in [6], [7] by using the matching method. Suppose that the one segment condition
does not satisfied, then the problem becomes quite complicated because of appear-
ing the secondary turning points. The simplest equation of such cases was treated
recently by Nakano and Nishimoto [5] by using the results of [2]. The condition
that the characteristic polygon consists of two segments is simply described by

(1.2) 2m1+2-q<0.

According to the theory of Iwano and Sibuya [4], the region D is divided into
four types of subregion in each of which the equation (A) has different principal
part. In the following we write down these regions and corresponding differential
equations.
( 1 ) Outer domain D!

A:

where we put r=mι and Bvμ are constant 2-fry-2 matrices.
(2) The first intermidiate domain D2

D2: mε01^

(A2) ε 1 -" 1 - r ι --



EXTENSION THEOREM AND ITS APPLICATION FOR TURNING POINT PROBLEMS 461

0 1

+ ψirSr 0

where Bg>(s) are 2-by-2 matrices of polynomials of degree at most (k + q)l(q-r).
(3) The second intermidiate domain A

A: Mep ^.

where #f 0) are 2-by-2 matrices of holomorphic functions of
( 4 ) Inner domain A

A: \x ^

where ^4)(0 are 2-by-2 matrices of polynomials of t of degree at most
Here w and M are appropriate constants and

The problem is to know the asymptotic behavior of one outer solution in the
full neighborhood of the origin. To do so, it will be used the matching method, that
is, an asymptotic solution of each differential equation (A*) (ί=l, 2, 3,4) is to be
constructed in some region A so that the overlapping region between two adjacent
regions A and A f i (/=!, 2, 3) exists, and thereafter it will be calculated the con-
nection matrix between the asymptotic solutions of (A*) and (At.L1) (ί=l, 2, 3) at a
suitable point of overlapping region. If we consider the differential equation (Az)
in a small neighborhood of the origin, it has a turning point at the origin of order
r and it is easily seen that the characteristic polygon associated with it consists of
only one segment. From this fact, the asymptotic solutions of (A8) and (A4) can
be constructed and matched together in the neighborhood of the origin by apply-
ing the results of [6], [7]. Therefore the remaining task to be done is to find the
regions A (ί = l, 2, 3). More precisely, our aim is to construct a certain sectorial
region A which not only contains A and A but also overlaps with A in absolute
value \x\ for all sufficiently small ε, and if this is done, the regions A (/= 1,2,4)
are obtained which overlap with each two adjacent regions. This is one of the
main applications of our theory, and the differential equation (A2) has the just the
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same form as (1. 1) if we replace ε by some fractional power of ε.

In section 2, we explane the domain of influence at each turning point by
using the characteristic polygon, in section 3, the given differential equation is
changed into an asymptotically diagonal equation by appropriate transformations,
and their asymptotic properties when x tends to infinity or to turning point are
studied in three lemmas. In section 4, it is defined the canonical region based on
the definition of Evgrafov and Fedoryuk [2], and from a small deformation of this
region we introduce in Lemma 4. 1 the region D[γ, ε] which we call the admissible
region. The existence of asymptotic expansion of fundamental solution in the region
D[γ, ε] is proved in section 5. In section 6, we treat, as an example of application
of our theory, a second order differential equation having a turning point at the
origin of large order and solve the central connection problem at the origin.

The main results of this paper was published in [8] without proof. The pre-
sent paper is then devoted to give the proof and the application. Some notations
and symbols are different from the previous paper.

2. Characteristic polygon and domain of influence.

Let pv(x) of (1. 2) be polynomials of x whose degree may depend on the indices
and we assume that

po(x} = xq+Poq-ιxq-1 + ••• +A>o,

(2.1)

pv(x)=pvqvx
q»+pvqv-lx

q»-l+ ••• +Ao (y = l,2,3, ),

where pjk (j— 0, 1, 2, •••,&=(), 1,2, •••,#») are constants which may be zero and qv is
an integer at most av + β with nonnegative rational numbers a and β. We call in
this paper the roots of p0(x) turning points of the given differential equation (1. 1)
Now we introduce for each turning point the notion of the characteristic polygon
and the domain of influence. Suppose that x=ak is one of the turning point, then
we rewrite the polynomials pi(x) (/=0, 1,2, •••) as a polynomials of (x-ak) such
that

In the X—Y plane, we plot the points Pvμ = (v/2, μ/2) for which the coefficients pvμ

of the above expressions are not zero and R = (h, —1). The characteristic polygon
associated with the turning point ak is a polygon I\k beginning from P0r and
ending at R, convex downward, consists of finite number of segments connecting
two points Pik such that all of the other points Pvμ are above or on the polygon.

If the equation of the segment Lca*° of the characteristic polygon, which is
situated on the upper and left hand side and is between P0r and some point Pts

(Fig. 1) is given by
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Y

•X

Fig. 1.

then the domain of influence Najc at the turning point ak is roughly defined by

(2.2) Nak: x-ak^Nελak,

with

t
^ \ pak 2 I' '-* r-s

where N is some positive constant. Here it is to be noted that

pak 2

because the point R above the line Zc α*>, and the equality is correct if and only
if the characteristic polygon consists of only one segment connecting P0r and R
and in this case λak=pak=2hl(r-i-2).

The precise definition of the domain of influence at ak will be given at sec-
tion 4 where we construct the admissible regions.

3. Lemma.

We state in this section a few lemmas that are necessary for our subsequent
studies. The differential equation considered in this paper is written in vector
form such that

(3.1)
dx

.— L
lp(x, β) OΓ

We assume here that in the region D
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D: H<oo, O^ε^εo, |e

the function p(xy ε) can be asymptotically expanded in the sence that for each ra,
there exists constant M such that

where the functions pv(x) and the constants a, β are as defined in the section 2.
For the equation (A2) in the Introduction, the constants h, a and β correspond

to the numbers q— 2r— 2, [2(q— r)]-1 and q(q—r)~l respectively, if we replace ε by
£ l/2(ff-r) e

At first, the equation (3. 1) is changed by the transformation

1
._

-V>o
into

(3.2) eft.|L=v'
ax

where

_
-l -i 4

-Ϊ -1]

_ r ! -
V A L - 1 I

Since the leading term is diagonalized, we can proceed as usual to make the
equation (3.2) formally diagonal and then we have the following lemma.

LEMMA 3. 1. For every m, it can be constructed a linear transformation

(3. 3) 2=(S-eQ1)(£-6

aQ2) - (E-e^hQm,h)zm

such that the equation (3. 2) becomes

.
ax

(3.4)

under the restriction that in a region defined in later the functions Qv must matisfy

(3.5) He

Here E is the 2-by-2 unit matrix and for the norm of the matrix Q = (qjk) we use

the quantity ||Q|| = ΣS,*
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The matrices Qv are antidiagonal and Gv are diagonal, and their elements are
determined from the elements of A3 (0^/^v) and Qj (1^/^v — 1) such as

(3. 6)

where ii, iz, iv+h-ι, k and I are nonnegative integers. Above expressions mean that
the elements of Qv and other matrices in the left side of (3. 6) are linear combinations
of the elements of the matrices in the brackets of (3. 6). And we assume that in
these expressions the products specify only the matrices and their multiplicities, but
do not indicate the order of performance of product. Lastly the term Rm+h+ι(x> e)
εm+h+ι can foe expanded formally

v=m+h+l
(3.7)

ί1 - QΪSM*; 2*1+2/2+

Ό; ιΊ+2/2+

where the symbol X denotes the same meaning as for Qv.

Proof. We can prove this lemma by the induction on m. Firstly this will be
proved for m=Q. The equation (3.2) becomes by the transformation z=(E—εQι)wι

ML

Since (E— εQO"1 can be expanded in power series of εQi by virtue of (3.5), we
have

h dwi ,— f[~l OΊ / _ Γl OΊ Γl 0~U 1 pl Γ 1 1~]\
~dx~= p* 0 -1 Γ \ 0 -1 I 0 -1 \ ~2~ύ~ -1 ij/

Here if we define the matrix Qi by

*~
then Gi becomes

"-•firG -!}
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Clearly the matrices Qι and Gi have the properties mentioned in the Lemma, and
ε2R2(x,ε) satisfy the same relation (3.7) with 1 in place of m+h. Assuming that
the Lemma is true for v=r<h, we prove for v=r+l. Then there exists a trans-
formation

z=(E-εQl) -(E-εrQr)wr

from which we have

where the matrices QV1 Gv(v^r) satisfy the properties of the Lemma and Rr+ι,v(x)
satisfy the relation (3.7) with r in place of m+h. By the transformation

the above equation becomes by the same calculation as for v = l,

. dwr+i ,—ί
dx

{ (έ Gy(^ +ι [J _ J]

with

Σ

where δ(k)=0 if ^=0 and =1 if
Suppose that

and if we put

then we have

L 0

2

0

0

0ss(a?).
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Thus the matrix Qr+ι is antidiagonal, Gr+ι is diagonal, then the elements of
Qr+iO) and Gr+iGc) have the form (3.1) with u=r+Kh. And the above expression
of εr+27?r+2(a?, ε) shows that this can be written as (3. 7) and this prove the Lemma
for m=0. For m^l, we can prove it by the same method as for y=r+l and will
not repeat it.

From the above Lemma, we can determine the grouth order when x-+oo, and
the order of poles at the turning points for the elements of Qv, Gv and Rm+h+ι(x, ε).

LEMMA 3. 2. The grouth order of elements of the matrices Qv and Gv as x
tends to infinity is at most

and the order of pole of elements of the matrices Qv and Gv at a turning point ak

is at most »lpak, that is, if x approachs to ak)

Qv and Gv=O[(x-akY
v/pak}.

Proof. At first let us denote the grouth order at infinity of elements of Qv or
Gv by Q(QV) or G(GV). From (3.8), (3.9) and the assumption (2.1) for pv(x) we
have

Assume that the above Lemma is true for Q(QV) and Q(GV) (v<m\ then we
have from (3. 6) and Av(x) in (3. 2)

max

^ max {i1(a + β-q) + i2(2a + β-q)+ - +im-1((m-ΐ)a+β-q)
*l

q)γk} = ma

(β<q)

where γk is 0 if k=Q, and 1 if
Next, we consider the order of pole at a turning point ak of order r. From

(2.2) A/A and ^ί/A \/AΓ can be written in the neighborhood of ak as

A~ = Γ-ir' +^*)(* ^M^+o[*-*4
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(x-ak}-r/z-l^(x-akY
h/p^(x-ak)

h/p^r/z-\

but from the definition of characteristic polygon and ρak, we have μ—

and —r/2—l+h/pak^Q. From these facts and the expressions (3.8), (3.9), the order
of pole of Qv, Gυ is at most l/pak. Suppose that the order of pole of Qυ, Gv is at
most vlpak for v<m. Then from the expressions (3.6), the order of pole of Qm and
Gm is at most

2*'2+ ••• +(m-l)im-ι+K), pϊi(i!+2it+ ••• +ι^+/) + l + -£-l = — ,
Z J pak

this proves the Lemma.

LEMMA 3. 3. Let δι be sufficiently small positive constant. Then it satisfies

(O[\xa+β-qε\m+1-

O[\xaε\m+ί'\x\ah+β-q/2]

as x tends to infinity under the restriction

where aι — a + β—q if β^q and a if β<q, and it satisfies also

εm+ VΛ Λm+Λ+ι(a?, e)=0[|(a?-flr»)"1/pβ^Γ+1 I«-

as a? approaches to the turning point ak in such a way

We remark here that if <5ι is taken small enough, the inequality (3. 5) is auto-

matically satisfied. The proof of this Lemma is easily derived from the above
two lemmas.

4. Canonical regions and admissible regions.

In this and next sections, we construct an asymptotic expansion of fundamen-
tal system of solutions of the differential equation (3.4), and in this section it is
defined the canonical region which is fundamental in establishing asymptotic pro
perties of solutions.

The differential equation considered here is

fjy _ f m+h ]
(4.1) ε" -Jΐ.= ^/p<> 2 G,(xy + εm+MRm+h+1(x,ε) \zm.

UX \ υ = 0 J

For simplification we write
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^ β) °
-0 -ff(*, 4 A _ 0 -i

where

8 > o

and define the functions ξ(x, Λ?O), £A(#, # o, ε) and matrix ΛΛ(# , x0, ε) by

£O, j?o) = \ Vp^~dx, ζh(x, Xo, ε) = \ εΛg(Λr, e) Jar,
Jα?o J^PO

(4.3)

(^'ε) ..° Λ0 -&(#, Λ?O, ε)J

Moreover we introduce here matrix functions zm(x, e), e2;m( ,̂ ε), «;TO(ΛT, ε), wm(j?, ε)
and ^m(^7, ε) by

Zm(x, έ) = zm(x, ε)p0-
1M exp Λh(x, x0, ε),

S ^ _ f m I

V/>0 1 Σ Gv+h(x)εv\dx,
XQ lϋ=0 J

S
Λ? _ ί m+Λ,

e"ΛV/>o I Σ Gv(a?)
tfo I v=0

um(x, έ) = zm(x, ε)-wm(x, ε),

WW(Λ?, e) = ύm(x, ε)A~1/4 exp /ΪΛ(Λ?, a?β, ε),

then ύm(x,e) satisfies

ύm(x, ε) = lm(>, e)— ώm(a?, ε),

(4.5)

r(a?,e) 0 Ί, _ A Γflf(α?,e) 0
0 -^,ε)JWw W mL 0 -rf*f

Let «<y(a?, ε) and wu(x, ε) (ί, ; = 1, 2) be components of ύm(x, ε) and ύ)m(x, ε) respec-
tively, then the above equation becomes for each component

«ίι=

(4. 5)a
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where the functions g^x, ε) and gz(x, ε) are the diagonal elements of diagonal mat-

rix [ΣJLi V^oG/t+vs'L and the last term in each equation denotes a linear combination

of the components in the bracket whose coefficients are elements of εmi-1VpoRm+h+ι.

Now we shall prove the existence of solutions of the above equation. To do
so, it will be convenient to introduce the notion of canonical region with respect
to ξ(x,xo) following to Evgrafov and Fedoryuk [2].

The family of curves

Re ξ(xy #o)=constant

does not depend on initial value xϋ, the choice of the path of integration in the
as-plane and the determination of the square root of pQ(x), and has branch points
at turning points. The curves which pass through turning points are called the
Stokes curves, and they divide the #-plane into a finite number of simply connect-
ed unbounded regions: Stokes regions. Here we consider the function ξ(x, x0) as
the mapping of the x-plane into the f-plane. Since each Stokes curve is mapped
onto a straight segment or a ray parallel to the imaginary f-axis, the image of
Stokes region is a vertical strip or a half plane.

The canonical region with respect to ξ(x, x0) is a union of an appropriate number
of Stokes curves and adjacent Stokes regions bounded by the Stokes curves, con-

Fig. 2.
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tains no turning points in its interior, and is mapped by ξ (x, xϋ) onto the whole
f-plane cut by a finite number of verticals. Each canonical region contains in its
interior at least one Stokes curve.

We give here a simple example of canonical regions in the case p0(x)=x5—x,
and then ξ(x, χ0) = f*o Vx5—x dx.

The Stokes curve configuration and Stokes regions are given at Fig. 2. The
real curves and the dotted curves denote the Stokes curves and anti-Stokes curves
on which Im £(#,#<>)= const, respectively. Each Stokes curve and Stokes region are
numbered as in the Fig. 2.

For the above example, we give here a set of canonical regions. The union
of all canonical regions of this set covers the whole x-plane two times except turn-
ing points.

ι U S2 U S3 U /i2 U /<ι,

2 U S4 U S5 U S6 U /02 U /<8 U /-ιι,

=S3 U S4 U /«,

=S6 U S7 U /-i

The corresponding images £)(ί) of the above Z>cl) and £>(2) in the ^-plane are
described in figures, Fig. 3-1 and Fig. 3-2.

Fig. 3-1. Fig. 3-2.

After introducing the canonical regions, we construct admissible regions by
deforming the canonical regions appropriately. Let X and Σ be the complex x and
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ξ plane respectively and D be one of the canonical regions. The image of D under
the transformation ξ=ξ(x, x0) of X into Σ will be denoted by 3).

Suppose that a\y #2, ••,#», b\, ~,bm be the set of turning points that are on the
boundary of D, a Stokes curve from each a3 is going into the interior of D and
bj is on the Stokes curve issuing from one of ak. For example, if we take Z)(1)

as a canonical region D, then the turning point x=Q is considered as bίt and α?=l,
f as #ι and #2 respectively.

We denote the inverse images of ak and b3 under the mapping ξ=ζ(x, XQ) by
8jc and bj respectively. Then the region S) in Σ is a whole plane with several
cuts issuing from £*(&=!, 2, •••,»), and each J, is on one of these cuts.

For all sufficiently small ε such that 0<ε^ε0, a region g)[ε] is introduced by

where <52 is sufficiently small positive constant and «2 is a positive rational number
defined by

(4.6) a2

U (q!2-l-ah>β),

and if α = /3=0, we put <D = £)[ε].
Now we change the region £)[ε] into ££)|j, ε] for small positive number γ by

deleting small neighborhoods of cuts and some portions near the boundary, so that
it satisfies following conditions:

Let 57(+) and ^(~) be two points on the boundary of <D[γ,ε] such that ̂  =
±(<Wε)Cί+2)/2αr2, then for every point ξ in £)[γ,ε] we can describe two piecewise
smooth curves c(+)(s, ζ, ^c+)) for 0^s^s(+) and c^^s.ξ,^) connecting ξ and ^c±)

respectively, and they satisfy

(1) c(±)0, f, 57(±)) are contained in ^)[r, ε], cc±)(0, f, ^c±))=ί, cc±)(5(±), ζ, >?c±))
=)7C±), where 5 denotes the arc length of the curves from ζ.

(2) On these curves, the following inequalities are satisfied

ds

d Re f Λ(a?, a?0,
ds

-^— f on cc

We take the inverse image of this region <D[γ,ε] as the admissible region.
Now we specify how to construct the region £)[γ, ε] and two curves cc±:>(s, ?, ̂ c±)).

Let us define the argument φ by tanφ=2γ/Vl— 4^2.

(1) We describe two lines issuing from ^c+) with arguments π/2+φ and
-π/2-φ, and cut off from j0[ε] the right hand parts of lines. Analogously, draw-
ing two lines from η<-> with arguments πβφ and — τr/2+^, we delete the left hand
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parts of lines from £)[ε].
(2) In the neighborhood of άk=ζ(ak,x0) for which we assume that the ver-

tical cut is directed downward and there are no b3—ξ(b3,x<>} on this cut, we firstly
draw concentric circles C and C' around άk whose radii are A/ε2>lαfc/cr+2:> and pf

(Nε2λak/cr+2:><p') respectively. Here r is the order of turning point ak and λak is
the positive number defined in §2: Zak = ((h + l)lpak—r/2—I)-1. Moreover write two
segments Li and Lz starting from άk with arguments φ and π—φ respectively. Let
Pi, Qi be cross points of Li with C and C', and P2, Q2 be cross points of L2 with
C and C' respectively. From Pi we draw a segment of argument — π/2+2^ to
cross point RI with C', and from RI continue a line of argument — π/2+φ to the
boundary of £)[ε]. Let us denote this polygonal segment by h. Analogously we
describe a point R2 and a polygonal segment /2. We delete from cj)[ε\ the neigh-
borhood of vertical cut that is a region surrounded by A, upper circle PιP2, /2 and
the boundary of £)[έ\ (Fig. 4).

(3) When the vertical cut from άk direct upward, the modification to be made
is trivial, and if it brings on it some point bjt we can analogously define neighbor-
hood of cut which is to be deleted from <D[ε]. In what follows, we omit the de-
tailed descriptions about this case for simplicity.

Thus we obtained the region £)[γ, ε] by perfoming the above procedures for
all άk and cuts. Next it is defined the curves cc+)(s, ζ, i?c+)) and cc~°(s, f, y^) for
every ζ in <D[γ, ε]. Clearly the cueve cc~°(s, ζ, j^"0) is drawn by the same method as
for cc+)(s, ξ, >7c+)), and then we only explain how to construct the curve cc+)(s, ζ, ^c+))
(Fig. 4).

(4) Before defining cc+)(s,ζ,57c+)), we divide <£[γ,e] into several subregions.

Fig. 4.
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Let 3)[άkt ε] be a region such that

*, el = .0[r, ε] Π (ξ: N'ε^

We draw a line of argument -π/2-φ from the point Q2, and denote by g)^[άk,ε]
the region bounded by this line, the arc Q2R2 and the boundary of £)[γ, ε]. Analog-
ously the region £D^[άk,ε] is defined which is surrounded by the line of argument
— π/2+φ starting from Q1? the arc QiRi and the boundary of <D[γ,ε]. Then the
region £)[γt ε] is divided into a finite number of subregions:

r> £] = U {S)\P* ε] U £)^[άk, ε] U £>^[άk, ε]} U ®'[γ, ε],
fc = l

where

Sύ'\y* e] = 5>[r> ε]- U {®\ak, ε] U <£^[άk, e] U3><->[Λ*, ε]}.

(5) For ξ in ^'fr, s] and $)^\Άk, ε], we can easily draw a curve cc+)(s, ξ, η< ~>)
contained in £D'[γ,ε} and ^~^[άkt ε] on which it satisfies except for a finite number
of points

^

ds

by connecting several segments, owing to their shapes.
(6) Let us divide £)[&k,ε] into three parts: £)ι[dk,ε]t ^Dz[dkjε] and <D3[άk, ε]

where <Dί[άk, ε] is a part of ^[ά^ε] below the segments LI, ^)2[αfc, ε] between Li
and L2 ^)8[«*, ε] below L2.

(7) For ξ in <Dι[άk,ε], we draw downward a segment of argument — π/2+φ
from £ to a point of (7 or to a point on the segment PiRi. In the former case
we connect it with a curve defined in (6), and in the latter case we continue it
along PiRi and then combine it with the one described in (6).

(8) For ζ in ^)z[άky £], cc+)(s, f, ^c+)) is a curve along the circle of radius
\ξ— ak\ from £ to a point on Li and connect it with the curve defined in (7).

( 9 ) For ξ in S)J(ά^ ε] and ^(+)[flfc,e], cc+)(s, f, )7(+)) consists of a segment of
argument π/2— φ from £ to the point on L2 and the connected curve described in

(8).
From the method of above construction, we can prove the following two lem-

mas.

LEMMA 4. 1. For sufficiently small ε0, <52 and sufficiently large N' in the cons-
truction of <3)[γ, ε], we have

ds

d Re £Λ(#, Λ?O, ε)
•^-γ along
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LEMMA 4.2. For all ξ in <D'[γ,ε\ and £)<+)[άk, ε], there exists a constant K in-
dependent of ξ and ε such that

(4-7) \ {exp(-2£Λ(

f*
where η=\ \/p0 dx, and for all ζ in

(4.8)
Jc(+)(s, £,?(+))

Analogous inequalities hold when the integrals are taken along cc-)(s, ξ, -η^).

The letter K is used here to denote some positive constant independent of ε
and x or f, and this K will be used often in later, but in all cases it does not
always mean the same constant number.

Proof of Lemma 4.1. It is sufficient if we prove the first inequality of the
Lemma. We recall that

2A
then

_
Λ ~ ds

In the last equation, if each term of the expression

is sufficiently small in the region considered, then we have

ds
^ on

owing to the method of construction of cc+)(s,f, )?c+)). From the grouth order of
pv(x) as α -̂ oo and the order of pole at the turning points, the expression (4.9)
becomes as small as we want if ε, |Λ| and \(x—a^-l/pake\ are taken small, and
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these are much smaller if ε, \χ"lε\ and \(x—ak)~1/λakε\ are taken sufficiently small
since «ι^α2, paic^λak.

Thus in the f-plane if the constants ε0, d2 are taken sufficiently small and N'
sufficiently large we have the desired inequality.

Proof of the Lemma 4. 2. First, the inequality (4.7) is proved. For ζ in $)'
[γ,ε] the integral path cc+)(s, £, oy(+)) can be written

where t(s) can be a piecewise linear function and along the path, we have

Re ζh(x, τ, ε) = Re {£Λ(#, xθ9 ε)--£Λ(r, xQj έ)}^γs.

Then

ir
{exp(-2£Λ(:e,r,<I ( {

I Jc(+)(S,f,r/(+))

Here we consider the two cases: when |f|^Mand |?|^M If |£|^M, the last ex-
pression is clearly bounded for some K, since

Jo Jo

and if \ζ\^M,

S
S(+) poo / | / / ς λ j \

e-*r \ξ+t(s)\rds^\ξ\r\ g-8r*(l + Ws^fflfΓ.
o Jo \ M /

Second, we prove the inequality (4.8).
(1) Let £ be in ^Dι[άk, ε] and ξ—ζ(aky xo) = \ξ—ξ(ak, x0)\etφ. The integral

path cc+)(s, ί, 3?c+)) consists of possibly three parts, c(

2

+\s, ξ, 5y(+)), C!(+)(s, £, >?(+)) and
Cs+)(5, ί, ̂ (+)). Here cί+)(s, f, ^(+)) is in the exterior of ^[ΛA, ε], c^+)(s, f, 97(+)) is a
straight segment of argument — πβ+φ from f to a point Se which is on the C'
or PiRi, and if S€ is on PiRi, the segment S^Ri is the c(

3
+\s, ξ, ̂ c+)).

Now we estimate the integral of (4.8) for each part. Firstly we have

for some constant K.
Next, e2

(+)(s, <?,,37(f)) can be written

where

π
~~2



EXTENSION THEOREM AND ITS APPLICATION FOR TURNING POINT PROBLEMS 477

~φ.

Then we have

\η-ξ(ak, Λ?0)| ̂  If-ίfofc, #o)| COS (φ-ψ)

-r + i f |COS(^> — 0)|

Λs, £,?<+))

Lastly we consider the contribution of the part Cg+)(s, f, rf* °). On this segment

(i*,)'--*'-1'"-̂ '*COS

and we have

\Sζ-ξ(ak, Λ?0)| = |f-f(ύr fc, #o)| cos(9?-0) tan ̂ ,

where ^ is a certain argument satisfying 0<ψξ<πl2—2φ. Then we have

==2γ\l-r\ ' ^>^" ' 2γ\l-r\ ' ^-«,^;,

Thus by adding the above three estimates, we obtain the desired inequality (4.8)
for ζ in 3)ιlάkt e].

( 2 ) For ξ in ^2[^,ε], we denote by cί+)(5,ξ,^c+)) the part of c ( + )(s,f,>? ( J )) in
the interior of 2)^άk,ζ\, and by c^+)(s, f, 5 y ( 1 ) ) the remaining part. From (1),

for some constant ^x. On the other hand, cί+)(s, f, ̂ 0)) can be written as

η-ξ(ak, Λ?0)= |f-f(α*, a?o)|ew

ds=\ζ-ζ(ak,x0)\dθ,

then we have
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Thus by adding the above two inequalities, we obtain the inequality (4.8).

( 3 ) For ζ in <3)*[άk, ε] the contribution of the integral from the path in the
g)s[άk, ε] is obtained by the same method as (1), and the contribution from other
part is obtained from (2), and then inequality (4. 8) is proved for this case.

Therefore we can conclude that the inequality (4.8) holds for all ξ in <£>[άkίε\.

Finally for ξ in <3)w[άk, ε], the inequality (4.7) can be proved easily by com-
bining the above procedures and we omit them here.

Thus we have proved the Lemma 4. 2.

Now let us denote the inverse images in the x-plane of £)[γ,ε], <D[άk,ε] and
c(±)(s, f, 3?c±)) under the mapping

Wdx by D[r,ε],D[αk,ε]

and cc±)(s, x, j?(±)), where

We call D[γ, ε] the admissible region and also the inverse image of a region
{£: \ξ — άk\^Nfε2iαk/( r^^} the domain of influence at αk. It is shown in Fig. 5 below
the admissible regions corresponding to «£D(1) and «0(2) of Fig. 3.

Fig. 5-1. Fig. 5-2.
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5. Existence theorem.

We consider in this section the existence and estimates of solutions of differen-
tial equations (4. 5)ι and (4. 5)2. Since the method of analysis is almost parallel for
the both equations, it is treated only the equation (4. 5)ι. As usual the differential
equation (4. 5)ι change into the following integral equation

(5.1)

(x, e) = εTO+1 \ exp\ ςrι(s, ε)ds L/A)
J r i i(ar) L Jr J

(x,ε) = em^{ Γexp(-2£Λ(a?, r, ε) + Γ
J r2l(*) L \ Jr

where the pathes of integration of f*gi(s,ε)ds (& = 1, 2) are appropriate curves con-
necting # and r and lying in the interior of D[γ, ε], FH(#) is a curve connecting x
and some bounded fixed point x0 in P[̂ , ε], and γzι(x) is the curve c^ °(5, Λ?, ^0

(+))
defined in the previous section.

It is noted at first that the function Wn(τ, ε), w^(τ, ε) and the integral j*r

x Qi(s, ε)ds

are uniformly bounded for x, τ in the region D[γ, ε], and hence so is for exp/f ^(5, ε)ds
since we have from the Lemma 3. 2

K{l+\x\u(h+v)^-q/2},

, ε],

and then

(5.2)
xεD[ak,ε]

for y = l, 2, « ,w and for some positive constant Kr, where D[ak, ε] was introduced
in the previous section and

D^[γ,ε] = D[r,ε]-(J D[a*,e].
k = l

We now prove the following existence theorem by the method of successive
approximation.

THEOREM 5.1. There exists a region D[γ, ε] and a system of solutions {un(x,έ),
u2ί(x, ε)} of the integral equation (5.1) in D[γ, ε] such that

(5.3)

+1 for

α*)emτl for
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for some positive constant K.

Proof. Let us define the successive approximation by

\x, ε) = ε™+1( ΓexpΓg^s,
J r i l(ar) L Jr

dτ,

-2&U r,ε) +

X

From the Lemma 3.3 we have

\\εm+1Vpo Rm+h+ι{Un, «2i, Wi i , Waι}ίι|| (ί = l, 2)

(5.4)

| + ̂ 2i|},jS^,

r, ε],

, ε]

for some L. Then from the remark stated above and the Lemma 4. 2, we have

(5.5)
, e],

(.=1>2)

where .ftΓ is a positive constant.

Since 7?m-rΛ+ι[wn, #21, ^n, ̂ 2i]ίi is a linear function of its variables,

(5.6)

where

X { - - ftf- 1}, 0, 0}*!*

\ gι(s, if ι = l,

if ί =

From (5.4), (5. 5), (5.6) and the Lemma 4.2, we have for some constant Z/,

ί/εL/(H-|Λ?|a(ro+1)βVcw+1) for a?€D^[r,e],
l«ff(a?,e)-«ίV(a?,e)|^

l/CL/(a?-uft|-
2cw+1)/ia*)e2(TO+1) for #€£>[#*, ε]

and by the induction it is easily proved
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(5.7)
for xeD[ak,ε].

Then if the quantities ε, \xa*e\ and \x— ak -1/λaJcε are taken sufficiently small,
that is, if we take the constant ε0, <52 and N in the Lemma 4. 1 smaller if neces-
sary, the series

(5. 8) ΣlW1^, β)-«a>(*, ε)} (i =1, 2)
fc=0

are uniformly and absolutely convergent to a bounded and holomorphic function
MH(X, ε) in the region D[γ, ε]. The functions UH(X, ε) constitute a system of solution
of the integral equation (5. 1). The estimate (5. 3) can be proved from (5. 5), (5. 7)
and (5. 8), and hence the Theorem 5. 1 is proved.

The solution of the integral equation (5. 1) is a solution of the differential equa-
tion (4. 5)ι and by the parallel arguments, the solution of (4. 5)2 are obtained. Thus
we have a system of solutions of the differential equation (4. 5).

From the Lemma and (5. 2), the following two lemmas are clearly satisfied.

LEMMA 5. 1. If the matrix function wm(x, ε) in (4. 4) is expanded in power series
of ε with coefficients w(^(x\ it satisfies

^^)εm+1 for

\-<m+1>/λa*)εm+1 for χζD[ak,ε],

for some positive constant K.

LEMMA 5. 2. If the matrix function

F(x, ε) = {(E-εQ1)(E-ε^Q2) - (E-ε^hQm+h}}{E+W$(x}ε+

is rearranged in power series of ε with coefficients yι(x) such that

then we have

ίK(l+\x\^m+1^)εm^ for
\\F(x.ε)-{E+yι(x)ε+ .- +ym(x)ε™}\\^\

(K(\x-ak\-^+1^^εm^ for x

From the above two lemmas and the Theorem 5. 1, we have the following
main theorem.

THEOREM 5. 2. The differential equation (3. 1) has a fundamental system of
solutions such that
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i
(5.9)

+ Ym+ι(x, ε)} exp ΛΛ(α?, #0, ε),

remainder term Ym+ι(x, ε) satisfies

cw+1>e')6TOfl for

/0r 5ow^ constant K. The constant numbers a2 and λak are defined at (4. 6) and
(2.2) respectively.

6. Example.

In this section we consider as one of the example of applications of our theory
the central connection problem of the differential equation

in the neighborhood of the origin D={x: \x\^.d}. As usual it is more convenient
to consider the above equation in the vector form

O

In the notation of the Introduction, each constants becomes #=5, wι = r=l,
/oi = 1/4, ρ2= 1/3, TΊ = 5/8 and ^2=2/3, and corresponding to the descriptions of the
Introduction we consider the following three differential equations in some subre-
gions of D.

(1) D(\ Mε1/4^

-,,-Γ1 °
"'*' dx

(Ai)
. ΓO 11 Γ 0 O Ί

»,ε) = L n\-ε\ 5
LI OJ Ly -t 2-χ- "*!

2

(2) Dί: «e"«g

_ _= = Ί 0

(A2)
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(3)

dzt
dt

o]
The fundamental systems of solutions of the equations (Ai) and (A4) are obtain-

ed by the usual method of constructing the outer and inner solutions as in [6].
The equation (A2) is analysed by the method described in this paper.

1. Firstly we construct the fundamental system of solutions of the equation
(Aj). In what follow, -rf means \ηa\ expzαarg^ for all complex η and rational
number a.

If we put

OΊΓ1 Γ1 Ί-LO lJ

0

the equation (6.1) becomes

dz*
dx Γ1 Ί-Lo -ij

0

From the method used in my previous papers [6,7], we can construct an asym-
ptotic expansion of a fundamental system of solutions of the above equation. Let
Γ be a sector in the #-plane such that

T: -

Then there exist a region D! of ε, #-plane defined by

A:

where εi, ci, c2 are small constants independent of ε, and an actual solution y\(xt ε)
of (6. 1) of the form

OΊΓ1

(6.2)

xexp
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Here Zι(x, e) satisfies the following asymptotic property

for some positive constant K.

2. Next, the equation (A2) will be analysed. According to the results obtained
in the preceding sections, we choose one of admissible regions which is covenient
for matching procedures with DI in the paragraph 1 and with £>4 in the next
paragraph 3. In this case, let Atr, ε] be the admissible region constructed from
the canonical region £>(1) defind in the example of § 4. The letters q, α, and β used
in the theory become #=5, α=/3=0, and the order of turning points located at
5=0, ±1 and ±i are all one.

By the transformation

the equation (A*) becomes

where

P\s) ~s — 5, and f(s) —

Then applying the results of the Theorem 5.2, we have

x- ,,., 0

xexp

0

Here the matrix function zz(s, e) has the following asymptotic properties

(K(\s-ak\-s/2)ε1/8 for

where α*=0, ±1 or ±ι.

3. In this paragraph, we construct the fundamental system of solutions of the
equation (A4). At first, we find out a formal solution of the form

Then each function Vi(f) must satisfy



EXTENSION THEOREM AND ITS APPLICATION FOR TURNING POINT PROBLEMS 485

dvQ__

=[»_, »]. «»>,[» g.
where

The differential equation for fl0(ί) is the so-called Airy equation. The funda-
mental system of solutions is given explicitly using the Hankel functions of order
v=l/3, (see [7] section 3)

„ . 00(} Lo ί
where £=(2/3X3/2, and

Γl
Lo

Here /p(f), /_„(£) are the Bessel functions of order y = l/3, and the formulas of con-
vergent power series expression of /„(£) for |£|<oo and the asymptotic expansion
of £t(<)(f) (ΐ=l,2) for |f|>l, \argξ\<π are well known:

where (v,m)=Γ

The nonhomogeneous equation for vj(t) has the solution which is holomorphic
in the neighborhood of the origin, and can be expanded asymptotically at infinity
such that

where
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Thus we obtain formal solution z*(t, ε), and from this we can construct a fun-
damental system of solutions y*(x,έ) of (6.1). Let x=ε1/8t, t=(3ξ/2)2/Ά and a region
L>4 be a neighborhood of the origin such that

D4: |/33/2ε|^4 or la?11'^-1!^, Q<ε^ε,

for sufficiently small c4, c(.
Then the equation (6. 1) has a fundamental system of solutions y4(x, ε) such

that

(f, e),

a Λ\6 4)

for some positive constants K and /0

4. Now we are on the position of calculating the relation between the solutions
y\(xy ε) and τ/4(#, ε) by the matching procedure. We remark at first that connection
matrices between yι(x,έ) and yz(x, ε), and y4(xte) are asymptotically diagonal (see
for example [7], [12]). Let us define the connection matrices LI and L2 by

(6. 5) yι(x, ε)=y2(x, ε)Lι, y2(x, e)=y*(x, ε)L2.

The matrix LI is obtained by comparing the expressions (6. 2) and (6. 3), where
we need the asymptotic expansion of (6. 3) when 5 tends to infinity. The indefinite
integral in the bracket of exponential matrix function is to be defined by

-1/8 Γ VJds=ε-1/8l(S s5/2ds — |-Γ V3/2Js+Γ L/p -sδ/2+-|- s~

7

When 5 tends to infinity, the last term of the above expression is the order of O(ε).

Thus we have after a short calculation that

(6.6) L1=e-1/16{E+0(ε1/8)}.

The matrix L2 is asymptotically determined from the expressions of y2(x, ε) in
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the neighborhood of α?=s=0 (#*=()) and y*(x,ε) when t tends to infinity. From
(6. 3) (6. 4) and (6. 5) we have

β Ά« -ϊ y 0

-r
(6.7)

Γl OΊΓ1 O

- HLo

where z(/, ε) = Σy=o Vy(0εt/8.
Here we put s=sη=ψ1/lz and ί=^ with \γε2/™\ sufficiently small and \η\ large.

Then we have

Vp(s)= Vsδ-s= V^βeB

/> (5)-1/4 = (s5 - s)-1/4 = e-n/ V1/4e"1/48(l + O0?ε1/12)4).

By putting the above quantities into (6. 7), we have

= exp
i(ε-— -— \
Ύ 2 4J

0

L2exp

X
-P ε~1/8Vpds 0

From the asymptotic nature of z2(s, ε) and 04(/, β).

and definition of integral \ Vpζΐjds gives
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where we put c=\ (Vp(s)—s5/2)ds.
Jo

Since the connection matrix is asymptotically diagonal and does not depend on
•η, we can conclude that

(6.8) L2^
o \ i/6

j) '
4exp "6Λ

0

0

Therefore the central connection problem can be solved by using (6. 5), (6. 6)
and (6.8), that is, the outer solution of the equation (6.1) expressed asymptotically
by (6.2) in the region D\ has the asymptotic expansion at the origin of the form

where

xexp

i2v

I — y)sιn I^TT

0 ) sin vπ

r-i ri
\_e-™ -e"»\

H)
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