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ON CERTAIN (Λ g, u, v, ^-STRUCTURES

BY U-HANG Ki AND JIN SUK PAK

§ 0. Introduction.

Yano and Okumura introduced what they call an (/, g, u, v, Λ)-structure, where
/ is a tensor field of type (1, 1), g a Riemannian metric, u and v 1-forms and λ is
function satisfying

— λVy V °/= — λUy

=-λV, fV=λU,

b, v(U)=Q

and

g ( f X , f Y ) = g(X, Y)-u(X}u(Y}-v(X}υ(Y]

for arbitrary vector fields X and F, where U and V are vector fields associated
with 1-forms u and v respectively.

Submanifolds of codimension 2 in an almost Hermitian manifold or hypersur-
faces in an almost contact metric manifold admit an (/, g, u, v, Λ)-structure ([3], [2]).

If an (/, g, u, v, Λ)-structure satisfies S=0, where S is a tensor field of type (1,2)
defined by

S(X, Γ) = LΛ f](X, Γ)+(ΛOCX; Y)U+(dυ)(X9 Y)V

for arbitrary vector fields X and F, [/, /] being the Nijenhuis tensor formed with
/, the structure is said to be normal ([3]). We put

T(X,Y,Z)=g(S(X,Y),Z).

If

T(X, Y, Z)-{(dw)(fX, Y, Z)-(dw)(fY, X, Z)=0,

w being a tensor field of type (0,2) defined by w(X, Y)=g(fX, Y) for arbitrary
vector fields X, Y and Z, then we say that the (/, g, u, v, Λ)-structure is quasi-normal
([2]).
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A typical example of a differentiate manifold with a normal (or quasi-normal)
(/> Qy u, v, Λ)-structure is an even-dimensional sphere Szn. Yano and one of the pre-
sent authors proved the following two theorems from this point of view.

THEOREM 0.1. In a manifold with (f, g, u, v, ̂ -structure such that the function
λ(l—λ2) is almost everywhere non-zero, the conditions

and dv=2aw

are equivalent, where £u denotes the operator of Lie differentiation with respect to
the vector field U and a is a function. In particular, if a is non-zero constant,
then the structure is normal.

THEOREM 0.2. Let M be a complete normal (or quasi-normal} (f, g, u, v, λ)-
structure satisfying

Xug = — 2cλg or dv=2cw,

c being a non-zero constant. If λ(l—λ2) is almost everywhere non-zero function and
dimM>2, then M is isometric with an even-dimensional sphere S2n.

The main purpose of the present paper is to prove the following

THEOREM A. Let M be a complete quasi-normal (f, g, u, v, ̂ -structure satisfy-
ing one of the following conditions:

(0.1)

(0.2)

(0.3)

(0.4) dv=2dw,

a, β, γ and δ being non-zero functions. If λ(l—λ2) is almost everywhere non-zero
function and dimM>2, then M is isometric with an even-dimensional sphere S2n.

In the sequel, we assume that the function λ(l—λ2) is almost everywhere non-
zero and use the index notation.

In section 1, we prove that a quasi-normal"(/, g, u, v, Λ)-structure satisfying (0.1)
and (0.3) implies dw—Q.

In section 2, we prove theorem A and its corollary.
In the last section 3, as an application of theorem A, we study a totally um-

bilical submanifold of codimension 2 with a quasinormal (/, g, u, v, Λ)-structure in
almost Tachibana manifold.

§ 1. Quasi-normal (f, g, u, v, Jί)-structure.

We consider a C°° differentiate manifold M with an (/, g, u, v, Λ)-structure,
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that is, a Riemannian manifold with metric tensor g which admits a tensor field /
of type (1, 1), two 1-forms u and υ (or two vector fields associated with them), and
a function λ satisfying

f f f f > = - δjh

///» sβts = gjt - UjUi -

(1.1) utft

t=λvi or ffu

Vtftt=-2ui or ft

h

(1.2)

being skew-symmetric. Such an M is even-, say, 2^-dimensional.
We put

(l 3) Sy4

Λ=//Γί/<*

where

and F, denotes the operator differentiation with respect to the Riemannian connection.
If the tensonsor Sjih vanishes, the (/, g, u, v, ^-structure is said to be normal.

If the condition

(1. 4) S,,Λ-(

where

and

is satisfied, then we say that the (/, g, u, v, Λ)-structure is quasi-normal ([2]).
Yano and one of the present authors derived the following general formulas in

a manifold with an (/, g, u, v, Λ)-structure

S = Vji -fj%SVts - λ(fJ

tUti -ftUt

(1.5)

Sjih — (fj'ftjh —filftjk)

(1.6)

(1.7)
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(1.8)
= -CvOih, - VtfjCrtth -λftXuQth - λ*Vih + (λff - UiV^Uth,

where £u and £v denote Lie differentiation with respect to uh and vh respectively.

LEMMA 1.1. In a manifold with quasi-normal (/, g, u, v, λ)- structure such that
the function Λ(l— Λ2) is almost everywhere non-zero, we have [2]

(1. 9) λ(\ - Wujt = Ui ffitJCrt* - (λUiV* + (1 - W}-£0*,

(1. 10) λ(l - λ*)Vji = - VifjVXuQst - (λViU* - (1 - λ*)f f \JCvgjt,

and consequently

(1. 11) UuQji)uW=(), Uυgji)u^=Q.

We now prove

LEMMA 1.2. A quasi-normal (/, g, &, #, λ)-structure such that λ(\—λ2} is almost
everywhere non-zero and satisfies

(1.12)

(1.13)

a and β being functions implies fjt=Q.

Proof. Substituting (1. 4), (1. 12) and (1. 13) into (1. 7) and (1. 8), we have re-
spectively

vjt = - Zafji , Uji = 2/3/jί ,

from which, using (1. 12) and (1. 13),

(1.14)

(1.15)

Differentiating UtU^l— λ2 covariantly and taking account of (1.15), we find

(1.16) Pjλ=-aUj-βVj.

Using (1. 4), (1. 14) and (1. 15), we get from (1. 6)

- otfίh) - Vi(βλgjh - afjh),

or equivalently,
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= λ(auj + βVj)gih, - λ(aut + βVi}gjh

from which, using (1. 1), (1. 14) and (1. 15),

(1. 17) fjΨhfu=-λ(aUj+βvJ)

Transvecting (1. 17) with fk

3 and using (1. 1), we find

k - avk)gih + (βut - aVi)( - gkh + ukuh + υkvh\

or, using (1. 1) again

- ΓΛ fit + uk(ViVhλ +λFhUi -

= λ\βuk - avk)gih + (βUi - ouiX - gkh + ukuh

Substituting (1. 14), (1. 15) and (1. 16) into the last equation, we find

Vhfik = - Qhί(βuk - avk) + gkh(βUi - aVi),

from which, fhik=Q. This completes the proof of the lemma.

§2. Quasi-normal (f, g, u, v, ^-structure satisfying Xugn^aλgji.

In this section, we assume that the (/, g, uy v, Λ)-structure is quasi-normal and
satisfies

(2.1) -Cugjί

where a is a non-zero function.
By Theorem 0. 1, (2. 1) is equivalent to

(2.2) vji=

Substituting (1. 4), (2. 1) and (2. 2) into (1. 5), we have

= 2aλ(u/vt - UiV ) - 2λ(f3ΨtUi -

Transvecting this equation with ujvl and taking account of the skew-symmetry
of fjth and uji, we find

0 = 2aλ(l - 2)2 + 2λ(l - λYuΨtλ,

that is,
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(2.3) uΨtλ=-a(l-λ*).

Moreover, differentiating vtv
t = l—λ2 covariantly and using (2.2), we find

vt(PtVj—2cχfjt)=-λPj}(ί that is,

(2. 4) vΨtVj

Similarly we can prove from utu
t = l—λz and (2.1) that

(2. 5) uΨtUj

Substituting (2. 1) and (2. 2) into (1. 7) and taking account of (1. 4), we have

—λUiK, or,

or, using (2. 1) and (2. 2) again,

(2. 6) λPh^+fWtVh

Transvecting (2. 6) with vh and using (2. 1), we have

λtf( - PiUt + 2aλgtί) - λfτψtλ = 2a^i,

that is,

(2. 7) -tfPiUt^uΨtυt^fiΨtλ.

On the other hand, taking the symmetric part of (2.6) with respect to h and
ί, we obtain

= 2α(l + ̂ 2)g^ -

Transvecting the last equation with ul and using (2. 4), (2. 5) and (2. 7), we get

h) + λ*(Phλ

that is,

(l

or, using (2. 3),

(2.8)

where, the functing φ is defined by (l — λ2)ψ=vψtλ.
Defferentiating (2. 8) covariantly, we find

where aj = Pja, φj — Pjφ, from which,

(2. 9) 0 = oίjUi — ctiUj + a(PjUi — PiUj) — φjVi + φiVj + 2aφfβ.
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Transvecting (2.9) with u\ we have

0 = (1 - Λ2)αry

or, using (2. 5) and (2. 8),

(2. 10)

Similarly, transvecting (2. 9) with t>» and using (2. 1), (2. 7) and (2. 8), we find

(2. 11) (1-Λ2)^= -(α^)«/+(^tφj.

Substituting (2. 10) and (2. 11) into (2. 9), we obtain

0 = (cxtV* + φtUl)(UjVi — UiVj)
(2. 12)

from which, transvecting u3 and taking account of (2. 5) and (2. 8),

(2.13) «#* +&«'=().

Thus, (2.12) becomes

(2.14) ?&-?&,= -2φfjt

by virtue of α^O.
Adding (2. 1) and (2. 14), we find

Substituting this into (2. 6), we obtain

ffV&K = λφ

from which, transvecting with //,

~λφ(gjh-ujuh-vjvh}+a(fjh--λVjUh+λu:jvh).

or, using (2. 4) and (2. 5),

which implies that

(2.15)

Thus, we have 7^=0 because of (2.1), (2.15) and Lemma 1.2. This means
that the structure is normal. Taking account of Theorem 0. 1, we have

THEOREM 2. 1. A quasi-normal (/, g, u, v, "^-structure such that λ (1—Λ2) is
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almost everywhere non-zero and satisfies one of the following:

(1) Xugji^Zaλgji, (2) JCrtji=ϊγλgfr (3)

( 4 ) VjΌi-ViV

a, βt γ and d being non-zero functions, is normal.

Now, differentiating (2.2) covariantly, we obtain

from which, using Ricci identity and /*./*= 0,

(2. 16) α*/^+α//«+αi

Transvecting (2. 16) with uk, we find

(uf at)fjί = λdiVj -

Thus, if dimM>2, we have ^=0 because the rank of fjt is almost everywhere
maximum.

Similarly, transvecting (2.16) with vk again, we can verify that vtat=Q. From
the fact that ulat=^ and 0^=0, we see that a= const, by virtue of (2.10) and
(2.13).

Therefore, taking account of Theorem 0.2, Theorem 2.1 and α=const, we
have Theorem A, that is,

THEOREM 2. 2. Let M be a complete manifold with quasi-normal (/, g, u, v, λ)-
structure satisfying one of the following:

(1) j:nQjt=2aλgji, (2)

(3) F^-F^=2/3/>, (4)

α, β, γ and δ being non-zero functions. If λ(1—λ2) is almost everywhere non-zero
function and dimM>2, then M is isometric with an even-dimensional sphere S*n.

COROLLARY 2. 3. Let M be a complete manifold with normal (/, g, u, v, λ)-
structure satisfying F//ίΛ+F»/ft/+FΛ/yi=0 and one of (1)~(4) in Theorem 2.1. If
Λ(l— λ2) is almost everywhere non-zero and dim M>2, then M is isometric with an
even-dimensional sphere S2n.

§3. An application of main theorem.

In this section, we consider totally umbilical submanifolds of codimension 2
with quasi-normal (/, g, u, v, Λ)-structure in an almost Tachibana manifold.

Let M be a (2w-f 2)-dimensional Tachibana manifold covered by a system of
coordinate neighborhoods {0\ yκ] (K, λ, μ, u, ••• = !, 2, •••, 2wH-2), and let (F/, Gμλ} be
the almost Tachibana structure, that is, Fλ

κ is the almost complex structure;



CERTAIN (/, gr, u, V, ^-STRUCTURES 443

(3.1) F/F/=-3/,

and Gμv a Riemannian metric such that

(3.2) GaβFμ

aFvt=Gμv,

and

(3.3)

where we denote by {/J and Vμ the Christoffel symbols formed with G^ and the
operator of covariant differentiation with respect to {μ

κ

λ} respectively.
Let M be a 2^-dimensional differentiate manifold which is covered by a sys-

tem of coordinate neighborhoods {U\ xh] (h,i,j, =1, 2, •••, 2w) and which is dif-
ferentiably immersed in M as a submanifold of codimension 2 by the equations

We put

then Bi is, for each i, a local vector field of M tangent to M and the vectors Bf
are linearly independent in each coordinate neighborhood.

If we assume that we can choose two mutually orthogonal unit vectors C" and
Dκ of M normal to M in such a way that 2^+2 vectors Bi, Cκ, Dκ give the posi-
tive orientation of M, then the transforms FSBf of BS, Fλ

κCλ of Cλ and Fλ

κDλ of
Dλ by Fλ

κ can be respectively written in the forms

(3.4)

where /^ is a tensor field of type (1. 1) and uit Vi are 1-forms on M, and λ is a
function on M, which can easily verify that is globally defined on M And we
have put ui=utg

ti, vί=vtg
ti, gμ being the Riemannian metric on M induced from

that of M.
Moreover, the aggregate (/, g, u, v, λ) is a so-called (/, g, u, v, ̂ -structure, that

is, satisfies (1.1).
It is also well known [3] that, from (3. 1), (3. 2), (3. 3) and the equations of

Gauss and Weingarten;

sw-BA h \
I/ M

* \B,'Cλ = - hfBf-
μ λ]
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f * ]
3 J \μ λ\ J J

we have

(3. 6) {7jUi + 17iUj= -hjtfl

t-fufjt-2λkji + ljVi+liVj,

(3.7) F,

where hji and kμ are the second fundamental tensors of M with respect to the
normals Cκ and Dκ respectively and hf—hjtg

Hj kj

i=kjtgti and lj is the third funda-
mental tensor.

Suppose that M is a non-minimal totally umbilical submanifold, that is,

(3. 8) hji = -̂ - htg& kβ = —

(3.9) (ht

Then, we have respectively from (3.6) and (3.7)

(3. 10) VjUi + Fittj = -- kfλgji + l/Vt 4- 10,,

(3. 11) ?& + PiVj = — h^λgji-ljUi-kUj

by virtue of (3. 8).
We consider the set M1 = {x€M\λ\x) = l}. Then hf=Q and ^=0 on Mi because

of (3. 10) and (3. 11). Since M is non-minimal, Mi is a bordered set and hence
;i23pl almost everywhere in M.

From (1. 11), (3. 10) and (3. 11), we find

(3.12) ^=0, ^=0.

Substituting (3. 10) and (3. 12) into (1. 10), we obtain

-*1)̂

from which, taking the symmetric part, //&i+A^=0, which implies that /,=0.
Thus (Thus (3. 10) and (3. 11) become

kfλgμ, £vgji—-r
fl lί

Using Theorem 2. 1, we have
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THEOREM 3.1. Let M be a non-minimal totally umbilical submanifold of codi-
mension 2 in an almost Tachibana manifold. If the induced (/, g, u, v, ^-structure
on M (dimM>2) is quasi-normal and the function λ is almost everywhere non-zero,
then M is isometric with an even-dimensional sphere.
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