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ON CERTAIN (f, g, u, v, )-STRUCTURES
By U-Hanc K1 anp JiIN Suk Pak

§0. Introduction.

Yano and Okumura introduced what they call an (f, g, %, v, 2)-structure, where
f is a tensor field of type (1,1), ¢ a Riemannian metric, # and » 1-forms and 2 is
function satisfying

[i=—I+uQ@U+vQV,
uof=2v, vof=—Au,
fU==2V, fV=2y,
wU)=1-28, o(V)=1-2,

w(V)=0, v(U)=0
and
9(f X, fY)=9(X, V) —u(X)u(Y )—v(X)(Y)

for arbitrary vector fields X and Y, where U and V are vector fields associated
with 1-forms # and v respectively.
Submanifolds of codimension 2 in an almost Hermitian manifold or hypersur-
faces in an almost contact metric manifold admit an (f, g, #, v, A)-structure ([3], [2]).
If an (f, g, #, v, 2)-structure satisfies S=0, where S is a tensor field of type (1,2)
defined by

SX, Y)=[f, FIX Y)+@u)X, Y)U+ (@)X, V)V

for arbitrary vector fields X and Y, [f, f] being the Nijenhuis tensor formed with
f, the structure is said to be normal ([3]). We put

T'(X,Y,Z)=98(X, Y), 2).
If
T(X, Y, Z)—{(dw)fX, Y, Z)—(dw)SY, X, Z)=0,

w being a tensor field of type (0,2) defined by w(X, Y)=g(fX, Y) for arbitrary
vector fields X, Y and Z, then we say that the (f, g, %, v, A)-structure is quasi-normal
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A typical example of a differentiable manifold with a normal (or quasi-normal)
(f, g, u, v, 2)-structure is an even-dimensional sphere S?*. Yano and one of the pre-
sent authors proved the following two theorems from this point of view.

TueoreM 0.1. In a manifold with (f,g,u, v, 2)-structure such that the function
A(1—2%) is almost everywhere non-zevo, the conditions

Lvg=—2alg and dv=2aw

are equivalent, where Ly denotes the operator of Lie differentiation with respect to
the vector field U and « is a function. In particular, if a is non-zero constant,
then the structure is normal.

THEOREM 0.2. Let M be a complete normal (or quasi-normal) (f,g, %, v, 2)-
Structure satisfying

Lvg=—2clg or dv=2cw,

¢ being a non-zero constant. If 2A(1—2A2) is almost everywhere non-zero function and
dim M>2, then M is isometric with an even-dimensional sphere S*".

The main purpose of the present paper is to prove the following

THEOREM A. Let M be a complete quasi-normal (f, g, u, v, A)-structure satisfy-
ing one of the following conditions:

0.1) Lug=2alg,
0.2) du=2pw,
0.3) Lvg=2r2g,
(0.4) dv=2w,

a, B, 7 and & being mnon-zevo functions. If A(1—2%) is almost everywhere non-zero
Sunction and dim M>2, then M is isometvic with an even-dimensional spheve S*".

In the sequel, we assume that the function A(1—22%) is almost everywhere non-
zero and use the index notation.

In section 1, we prove that a quasi-normal (f, g, %, v, A)-structure satisfying (0.1)
and (0. 3) implies dw=0.

In section 2, we prove theorem A and its corollary.

In the last section 3, as an application of theorem A, we study a totally um-
bilical submanifold of codimension 2 with a quasinormal (f, g, %, v, A)-structure in
almost Tachibana manifold.

§1. Quasi-normal (f, g, u, v, 4)-structure.

We consider a C= differentiable manifold M with an (f, g, %, v, 2)-structure,
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that is, a Riemannian manifold with metric tensor ¢ which admits a tensor field f
of type (1,1), two 1-forms # and v (or two vector fields associated with them), and
a function 2 satisfying

Fifir=—0,"tuu"+op"
I 0= 50— uui—00;,
1.1) u.ft=Aav; or flul=-—2wr,
v fil=—2u; or firv'=2iu",
wu'=1-22, v'=1-23,  wup'=0,
1.2) fir=guf

being skew-symmetric. Such an M is even-, say, 2x-dimensional.
We put

1.3) St =f Ve fi*—F 0 f =i [l =V f 5 f
+uju 400",
where
wuji=Vus—Viu,, vy =Vp;—Vp,,

and F, denotes the operator differentiation with respect to the Riemannian connection.
If the tensonsor S;* vanishes, the (f, g, %, v, A)-structure is said to be normal.
If the condition

(1- 4) Sﬁh"‘(f/ftth —fzftjh)=0:
where
Sjin=gwS;i{ and fn=V,fin+Vofri+ VoS

is satisfied, then we say that the (f, g, #, v, A)-structure is quasi-normal ([2]).
Yano and one of the present authors derived the following general formulas in
a manifold with an (f, g, %, v, )-structure

VS =0ji—f 1 00— A S S thri— S e )

(1.5
—(fytui— flu)Vd+ (2w — (Fid)o ),
Sjin—f 3 fein—IFif tjx)
(1.6)
= —(f,tVn fro—FitPn fes) + 2 5(Vitan) — (Vo) +0 (Vivn) — vi(P o),
w[Sjin— (S frin—Fitfin)]
1.7

= _Lugin— st LuGen+ A" Login— % — AfL +0:0")05n,
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VI[Ssin— (f s frin—Iife3n)]
(1.8

= _Loin— 00" Logen—A fot Lugen— A20in + (A [t — w0t )ttsn,
where £, and _[, denote Lie differentiation with respect to #* and »" respectively.

LemmA 1.1. In a manifold with quasi-normal (f, g, u, v, A)-structure such that
the function A(1—2%) is almost everywhere non-zero, we have [2]

1.9 A1 =22 uji=ui f,"u' Logs— {2+ (L= 22)f} Log 1,
(1.10) AL =220 50=—0: [,V Lugss— {Avst8" — (L= 2B} Lug jis
and consequently
.11) (Lugs)wvi=0,  (Log)u'vi=0.

We now prove

LemMmA 1.2. A quasi-normal (f, g, u, v, A)-structure such that A(1—2%) is almost
everywhere non-zero and satisfies

(1.12) Lug j:= 2029 1,
(1.13) Log7=2p29i,

a and B being functions implies fj=0.

Proof. Substituting (1.4), (1.12) and (1.13) into (1.7) and (1.8), we have re-
spectively

vi=—2afp  U;=2ffj
from which, using (1.12) and (1.13),
(1.14) Vivi=PAgji—af i,
(1.15) Viui=alg s+ Bf s
Differentiating #.»*=1—24% covariantly and taking account of (1.15), we find
(1.16) Vid=—au;—pv;.
Using (1.4), (1.14) and (1.15), we get from (1.6)
FiPnfru—FfiVnfis
=uj{adgin~+ Bfin) —uiadgn+ Bfin)
+(BAgin— afin) —vi(BAg jn— af n),

or equivalently,
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Vel f#fts) +2fiVn f1e
=aw;+ pvs)gin— Aaws+ Bi)g s+ (B — av)fin— (Btts— avi)f sn,
from which, using (1.1), (1.14) and (1.15),
(1.17) Ji'Vn fie=—Aan;+ Bvs)gin+ (Bt — avi)f jx.
Transvecting (1.17) with f3’ and using (1.1), we find
=V fir+ wxtdVn fis+0x0'Vn fie
=2%(Bur,— avr)gin + (Bthi— av;)(— Gren + Ukthn +Vi0n),
or, using (1.1) again
—Vh fie+ un(@iFnd+ AVptts — 200 00e) — (06 Vp A+ AVt + . Pp0y)
=22(But— av)gin + (Bths — a0;)(— gin + Uty + Vi)
Substituting (1.14), (1.15) and (1.16) into the last equation, we find
Vn fix=— gni( Btr— avx) + gin(Bres — avy),

from which, frix=0. This completes the proof of the lemma.

§2. Quasi-normal (£, g, u, v, 2)-structure satisfying _L.g;:=2alg .

In this section, we assume that the (f, g, %, v, 2)-structure is quasi-normal and
satisfies

2.1 Lugji=2alg;i,

where « is a non-zero function.
By Theorem 0.1, (2.1) is equivalent to

2.2) V= —2afji.
Substituting (1.4), (2.1) and (2.2) into (1.5), we have
V(S fse— i Foge)
=2aA(u0;— ;) — 2[5 Vsrws — 2} Vsu — 202 £ 1)
—(fitui—flupVd+ AV 2o — (Fid)v;).

Transvecting this equation with »/»* and taking account of the skew-symmetry
of fjih and Uji, WE find

0=2a2(1—2%)%+22(1— 2)*%'V,2,
that is,



440 U-HANG KI AND JIN SUK PAK
2.3) w VA= —a(l—22).

Moreover, differentiating »2'=1—24* covariantly and using (2.2), we find
V'(Vw;—2af )= —2V;, that is,

(2.4) vV, = —aV;A—2au,.
Similarly we can prove from #‘=1-—2% and (2.1) that
(2.5) w'Ve, =2V ; 2+ 200u,.

Substituting (2.1) and (2.2) into (1.7) and taking account of (1.4), we have
S Login= A, OF,
SH@Vwn+vne) =M Lugin—2Vn2s),

or, using (2.1) and (2. 2) again,
(2 6) Zth, +f@tl7tl)n =a’(1 +12)gih—a(uzuh+vivh).
Transvecting (2.6) with »* and using (2.1), we have

W — Vi + 20491:) — 2 [t Vid =2a2%0;,
that is,

@.7) — 0 Witty = Vi, =f LA,

On the other hand, taking the symmetric part of (2.6) with respect to # and
i, we obtain

AVnts 4 Viten) + 13 Vion + 1o Vi
=2a(1+2%)gin— 20(sst6n, +Vi0s).
Transvecting the last equation with #* and using (2.4), (2.5) and (2.7), we get

— 227;;] + Zz(Vnﬂ + 2&%};) + 12(‘7;,,2 + 2.’1%;,,) +fntf;sVsl =4a2uh,
that is,
A —=22)Ph2= Vs )un+ @° V)0,

or, using (2. 3),
(2. 8) le=—auj+¢v],

where, the functing ¢ is defined by (1—2%)¢=0v'F,A.
Defferentiating (2.8) covariantly, we find

Vqu,Z= —ajui-—anui+¢jvi+¢Vjv¢,
where a,=V;a, ¢,=V;p, from which,

2.9 0=arjsts— i+ (Vs — Vi) — § jvi+ pav s+ 208 ji.
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Transvecting (2.9) with #*, we have
0=1—2%a;— (awue ) ;+ a(Vjou,— Vioe j)oe* + (pere)v s+ 2020,

or, using (2.5) and (2.8),
(2.10) A =23)a, = (aw)u;— ()0,

Similarly, transvecting (2.9) with »* and using (2.1), (2.7) and (2.8), we find
(2.11) (1—2%¢ ;= —(aw*)u;+ ($:0")0,.

Substituting (2.10) and (2.11) into (2.9), we obtain

0=(a@’'+ ") (u0;—uw;)
2.12)
+ (1= 22a(V 0 — Ve 4+ 261 1),

from which, transvecting #’ and taking account of (2.5) and (2.8),
(2.13) a'+¢u' =0.

Thus, (2.12) becomes
(2.14) Vi — Wiy = —20f j:

by virtue of a=0.
Adding (2.1) and (2.14), we find

Viui=algji—of i
Substituting this into (2.6), we obtain
[itVion=2¢f ni+ a(gin— t6ithr,— Viv1).
from which, transvecting with £,
—Von+ w0V, +v 070,
=2¢(g jn— 1 jun—V V1) + a( f jn— A0 0+ A% 0p).
or, using (2.4) and (2.5),
Vivi=—209;—af jis
which implies that
(2.15) Loggi=—22pg js.

Thus, we have fj;,=0 because of (2.1), (2.15) and Lemma 1.2. This means
that the structure is normal. Taking account of Theorem 0.1, we have

THEOREM 2.1. A quasi-normal (f, g, u, v, A)-structure such that 2 (1—2%) is
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almost everywhere non-zevo and satisfies one of the following:

(1) Lugjs=2a2g;;, (2) Lwgii=2729;, (3) Vus—Viuw;=2pf js,
(4) Vwi—Vw,=25f .

a, B,y and 0 being non-zero functions, is normal.
Now, differentiating (2.2) covariantly, we obtain
Vol i — VeV, = — 2(ax fji+aVi f12),
from which, using Ricci identity and f;;=0,
(2.16) arfii+aific+aifi,;=0.
Transvecting (2.16) with «*, we find
(W'ar)f js= Ao j— Aa 0.

Thus, if dim M>2, we have #'a;=0 because the rank of f;; is almost everywhere
maximum.

Similarly, transvecting (2.16) with »* again, we can verify that v‘a;=0. From
the fact that #‘a;=0 and v'a;=0, we see that a=const. by virtue of (2.10) and
(2.13).

Therefore, taking account of Theorem 0.2, Theorem 2.1 and a=const., we
have Theorem A, that is,

THEOREM 2.2. Let M be a complete manifold with quasi-normal (f, g, , v, 2)-
structure satisfying one of the following:

(1) Lugj=2algy, (2) Lw9ii=2r29,
(3) Vjes—Virn;=20f s, (4) Vpi—Vw;=20f,

a, B, v and & being non-zero functions. If 2(1—2%) is almost everywhere mnon-zero
Sunction and dim M>2, then M is isometric with an even-dimensional spherve S".

COROLLARY 2.3. Let M be a complete manifold with normal (f, g, u, v, 2)-
structure satisfying V;fin+Vfrj+Vnf7=0 and one of (1)~(4) in Theorem 2.1. If
A1—22) is almost everywhere non-zero and dim M>2, then M is isometric with an
even-dimensional sphere S*.

§3. An application of main theorem.

In this section, we consider totally umbilical submanifolds of codimension 2
with quasi-normal (f, g, %, v, 2)-structure in an almost Tachibana manifold.

Let M be a (2n+2)-dimensional Tachibana manifold covered by a system of
coordinate neighborhoods {ﬁ; ¥} (& A gy v, -=1,2,---,2rn+2), and let (F5, G,;) be
the almost Tachibana structure, that is, F;" is the almost complex structure;
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3.1) FSFf=—0,

and G,, a Riemannian metric such that

3.2) GuF, Ff=G,,
and
3.3) V.F+VF, =0,

where we denote by {,°;} and F, the Christoffel symbols formed with G,; and the
operator of covariant differentiation with respect to {,°;} respectively.

Let M be a 2n-dimensional differentiable manifold which is covered by a sys-
tem of coordinate neighborhoods {U; x"} (4,4, 7, - =1,2, ---,2n) and which is dif-
ferentiably immersed in M as a submanifold of codimension 2 by the equations

y =y ().
We put
Bf=0y"  (0;=0d/0x?),

then B is, for each i, a local vector field of M tangent to M and the vectors B;
are linearly independent in each coordinate neighborhood.

If we assume that we can choose two mutually orthogonal unit vectors C* and
D* of M normal to M in such a way that 2%z+2 vectors B;, C*, D* give the posi-
tive orientation of 1\71, then the transforms F;"B;* of B, F"C* of C* and F,"D* of
D?* by F" can be respectively written in the forms

FiBi=fi"By +u +v. D",
3.4 FfC*=—uw'B+D",
FfD*=—vB;"— (",

where fi* is a tensor field of type (1.1) and #; v; are 1-forms on M, and 2 is a
function on M, which can easily verify that is globally defined on M. And we
have put #i=uwug", vi=vg%, g;; being the Riemannian metric on M induced from
that of M.

Moreover, the aggregate (f, g, %, v, ) is a so-called (f, g, %, v, )-structure, that
is, satisfies (1.1).

It is also well known [3] that, from (3.1), (3.2), (3.3) and the equations of
Gauss and Weingarten;

£ L x K h
VJB,, =a]B7, +‘# Z}B]ﬂle"'Bh {‘7 i }
=hﬂC‘+kﬂD‘,

VCr=a,C"+ {# xz}BJ#C/Z: —hBi*—1;DF,
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ViD*=0;D"+ [/t ' Z}BJ”U: —ki B =1,C5,

we have

(3.5) V, fr+V f = —2hut + hui+ hituj— 2k 0" + R v+ ki,
(3.6) Vit Viey= — by fof — fuo /o — 22k i+ 05+ Liw,,

3.7 Vvt Vv, = —kjo fuf — Raf )t + 22— Ljui— L ju,,

where 4; and kj; are the second fundamental tensors of M with respect to the
normals C° and D respectively and Aj=h;g", kj=Fkug" and /; is the third funda-
mental tensor.

Suppose that M is a non-minimal totally umbilical submanifold, that is,

1

1
(3.8) By = hilgp, k= o kg,
3.9 ()2 +(kH)?~0.
Then, we have respectively from (3.6) and (3.7)
(3.10) Vs + Vit = —71{ Eitag it L1,
(3.11) Vit Vo, =% Ietag i—Lus— L,

by virtue of (3.38).

We consider the set Mi={xeM|2*(x)=1}. Then £!=0 and k=0 on M, because
of (3.10) and (3.11). Since M is non-minimal, M; is a bordered set and hence
A%x1 almost everywhere in M.

From (1.11), (3.10) and (3.11), we find

(3.12) L' =0, lv'=0.
Substituting (3.10) and (3.12) into (1.10), we obtain
AAL=22)(F0s—Fw;)

=% kAL =23 fo+ (=220, fili—vif 1) — 21— 22) jus,

from which, taking the symmetric part, /;;+/,=0, which implies that /,=0.
Thus (Thus (3.10) and (3.11) become

Lugsi= -% kit2g ji, L vgﬁ=—}l— hiag ji.

Using Theorem 2.1, we have
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THEOREM 3.1. Let M be a non-minimal totally umbilical submanifold of codi-
mension 2 in an almost Tachibana manifold. If the induced (f, g, u, v, 2)-structure
on M (dim M>2) is quasi-normal and the function A is almost everywhere non-zero,
then M is isometric with an even-dimensional sphere.
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