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ON THE EXISTENCE OF ANALYTIC MAPPINGS

By Mitsuru Ozawa AND NoBUYUKI SuiTA

1. Let R be an ultrahyperelliptic surface defined by y?=G(x) where G(x) is
an entire function having only an infinite number of simple zeros. Let S be a
similar surface defined by y*=g(x) with a similar g¢(z) as G(x). We already dis-
cussed the existence problem of non-trivial analytic mappings of R into S [4].
The following theorem is central theorem in the existence problem of non-trival
analytic mappings.

THEOREM A. Suppose that there is a non-trivial analytic mapping of R into S.
Then there ave entire h(z) and meromorphic f(2) satisfying goh(z)=f*2)G(z) and
vice versa.

Hiromi and Mutd [2] proved the following

THEOREM B. Suppose that the order of N(r, 0, G) is finite and the one of
N(r, 0, G) is finite positive and that there is a non-trivial analytic mapping of R
into S. Then the corresponding h(z) is a polynomial of degree ord N(r, 0, G)
Jord N(r, 0, g).

In this paper we shall prove the following

THEOREM 1. Suppose that the assumptions of Theovem B are satisfied and
Jurther that G is an entire periodic function of finite order. Then the existence of

a non-trivial analylic mapping of R into S gives the following relation
1,2 if ord G#2,
ord G=vord N(, 0, g) y=
1,2,3,4,6 if ordG=2.

There are examples which show the occurence of all the possible cases. In
order to prove the above theorem we need several lemmas on number theory.
We shall give an application of Theorem 1.

THEOREM 2. Besides the assumptions of Theorem 1 assume that g is also
periodic. Then every non-tvivial analytic mapping of R into S reduces to a con-
Jormal mapping of R onto S.

Our results do not depend on any representations of R and S. We can for-

Received November 15, 1972.
397



398 MITSURU OZAWA AND NOBUYUKI SUITA

mulate them in an intrinsic manner. There are lots of related results. If G(x) is
(@ —)(e”™® —§) with a polynomial H(z) and 76(y—6)+0, then 0<ord g<co and
the existence of non-trivial analytic mappings of R into S imply ord G=vordyg,
v=1 or 2 [5]. Rényi [6] proved that gok(z) with periodic G(z) and a polynomial
A(z) implies deg =1 or 2. In this tendency we can extend the Rényi’s result.

THEOREM 3. Let G(2) be an entive periodic function, g(z) a non-constant entire
Sunction and p(2), Q(z) polynomials. If goP(2)=Q(2)G(2), then deg P=2.

THEORE 4. Let G(2) be an entire periodic function of finite order and with
only simple zeros. Let g(z) be an entire function of non-zero finite order and with
only simple zeros. Let f(z) be an entire function of order less than G. If goP(z)
= f(2)?G(z) with entire P(2), then P(z) is a polynomial of degree less than 3.

2. Lemmas on number theory

LEMMA 1. The cyclotomic equation is irreducible over the rational number field.

LeMMA 2. The degree of the cyclotomic equation, which corresponds to the pri-
mitive n'™ voots of unity, is larger than 2, unless n=1,2,3,4,6.

Lemma 2 is very easy to prove by using the so-called Euler’s function ¢().
See [3], [7] for Lemmas 1 and 2.

LEmMMA 3. Let » be exp (2ri/n). If n+1,2,3,4,6, then there are infinitely many
triples of integers p, q, v such that

0<L | p+an+m?|<e
for any given ¢>0.

Proof of Lemma 3. Assume that

p+an+ry?=0.
Then
2r q _
0057——2’,, p=r.

Since » and 7 are »'" primitive roots of unity,

2% — (p=+7)x + 97 =x*—2x cos —2—5 +1
=+ Lp41
r

should be a factor of the cyclotomic equation. By Lemmas 1 and 2 » should be
1,2,3,4,6 in this case. Hence for #+1,2,3,4,6

p+ap+rp*+0
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for any non-zero triple (p,q, 7). Since cos (2z/n) is irrational for n#1,2,3,4,6,
we have
. .2
gsin ~2—73+21'cos 2z sin —ni<i
n n n, 2

0<

for an infinite number of pairs (g, #). Take p=7. Then
2r 4x &
0< [p+q cos 7+rcos > ’<§.

Thus for an infinite number of triples (p, g, 7), p=7

0<lp+gn+m?|<e.

3. Proof of Theorem 1. We may start from

goh(2)=r*(2)G(2).

Here we may take g as the canonical product of its zeros. By Hiromi-Muto’s
theorem B /4(z) is a polynomial of degree » such that

ord N(#, 0, G)=n ord N(7, 0, g).

Further since G and ¢ have only simple zeros f(z) is entire and has a finite
number of zeros. We may assume that

h@)=2"+ay?++an  ay#0, 1=p=n—2.

Let ¢ be the period of G. The assumption ,+#0 leads us to a contradiction. This
is our first aim. Let z, be the j* roots of A(z)=w. If w is sufficiently large,
then z,#2; for j#k. Further

ap 1 Ap-1 1

1
g =lyplim _ _
=W n @Gy Ty e pGD e/ +O< wn—pin/m )

Let #(z:) be z, and ¢~*(2;)=2z,. Consider

¢ g(pH(P(z1+ 1)+ 7)— 1) —7)=L(21).
Then with p=exp (2ni/n)

2=¢(21)
_ ap n—7P | ap1 p—7? 1
_1]21+~n- Zp + " P +0 Znpi )
21=¢7(22)
N bk A SR W i/ A SR |
= - n 7]p+2 zzn—p—l n 7]11+1 zzn-—p zzn_pH

and
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pPH . N e G R T M G R
7 (z1+7)" Pzt +o/p)n Pt

Liz)=zn+22 1~
n

T /R VY = i T /)i i < 1 )
7 7 U 2" PN (zy 4 o/p)" P} 2P+ )

Assume z,=z,+kr is a zero of G(z). Then L(z,) is also a zero of G(z) satisfying

-1 1 1
2l 1 22 +0(—grr )

ITI"L—P—l kr-p Br-p+1

|L(z1)— 21| =

Hence L(z,) is a zero of G(2) being very close to z,. Hence around z, there is an
infinite number of zeros of G. In order to prove this we make L(z,+k?7), p=1, 2,
and reduce them around z, by subtracting k?z. Then they are different and are
close to z,. This is a contradiction. Hence @, must be zero and hence

h(z)=2z"+a,.

We next prove #=1,2,3,4,6. Let z be a zero of G. Then {z+kz}, k=0, +1,
- is a set of zeros of G(z2). Further ¢(¢~'(2)+4r)=2z+¢yr and @*(g~*(2)+mr)=2
+4y*c are also sets of zeros of G(z). Therefore there are three vectors 7, 5z, p’c
such that z+4pr+gnr+ryc indicates a set of zeros of G for any triple of integers
g r. If n+1,2,3,4,6, then Lemma 3 gives a cluster point of zeros of G, which
is a contradiction. Thus we have #=1,2, 3,4, 6.
Next we prove that if #=3,4 or 6 then

ord N(r, 0, G)=2.

In order to do it we pick up a zero z of G. Then we have zeros of G by z+£&r
with integral coefficient 4, Further ¢(z)=»z is a zero of G and hence {pz+£kiz} is
a set of zeros of G. Then returning back to z by ¢-'(z) we have a set {z+y~'kiz}
of zeros of G. Repeat this process for 7?, p=1,2, .-, z—1. Then wve have a set
of zeros of G, whose form is {z+4#Pkyc}. This set with p=0, 1, -, n—1; k,=0,
+1, £2, .- is called the zero point lattice _[(z) attached to z. We construct lat-
tices for all zeros of G. _L(zn) may coincide with _(z,) for m+¢. This occurs if
and only if z,€_L(z,). If there are infinitely many different lattices, then in any
fundamental parallelogram P with vertices a, a+7~'c, a+7~'c+7, @+ there appear
infinitely many zeros of G. Of course we consider P as a torus. This is a con-
tradiction. Each _L(z,) has A,7? points in |z|=7 with a positive constant A, if
r=7,. Thus N(r,0, G)~Ar* with a positive constant A. Therefore ord N(z, 0, G)=2.

We prove ord N(7, 0, G)=A. ord G=2 is trivial. Assume that ord G>A. Then
by ord G<oo G(z) has the form

BzeHD 11 E(z, an),

where E(z, an) is the Weierstrass prime factor
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z z 1/ z\? 1/ 2z\? _
O v v R o N
and II is taken over all zeros of G excepting @»=0, v=0 or 1. Since ordII
=ord N(z, 0, G)=2,
deg H=[]4+1>4.

We put Hz)=a,z"+a,12"'+--+a12, @,#0, p=[A1+1. Then the asymptotic be-
havior of e#® around z=co is well known. It has

R aprtet?T1+0a/m).

Thus on putting a,=|a,|e¥»
€0S (9,+2pr)

controlls the asymptotic behavior of eZ®. If cos (f,+2ur)>0, then e#®—co as

IeH(z)} Nelal-rcos(ﬂ,,+2px)’ ¥ —> oo,

If it is negative, then e#® —0 as

|eH®@)| ~elaplr cos @u+2pm) 77— oo,

G is uniformly bounded for the z-direction, that is, G is bounded along any curve
z=2y+tr, t>0, t—>co0 and |z2/=M. On the other hand |II|=e”", ¢>0 for r=7,.
Further we can use the the following estimation [1, p. 73]: For every (>0, £¢>0
there is a K(p, {, £) such that

log [I(re*)| > —K(p, C, E)A V()

for {R=7r=R, except perhaps in circles the sum of whose radii is at most &R,
provided that R>Ry(, &). Here A is a constant and V(#)=r*" with the Lindel6f
proximate order o(#) of II. Of course p(r)<A+e for every ¢>0 if r=7. Hence in
any sector in which e# ->c0 G is not bounded. Further in any sector in which
eZ—(0 G tends to zero as z—oo. But G does not tend to zero for the z-direction.
Thus the z-direction should be a direction defined by cos (6,+2ur)=0. Since p=[2]
+1, there are 77”’4'1, y"/4z-directions such that 5”4 +1, /= +1 and G—0 uniformly
as z—oco along these two directions. These directions along which G—0 as z—co
are equally spaced around z=0. Hence we may take them so that 7z, »”*z lie in
the opposite side with respect to the r-direction. Hence G(2) is bounded in any
half period strip by the periodicity of G and so in the plane. This is a contradic-
tion. Thus we have

ord G=ord N(7, 0, G).

This completes the proof of Theorem 1.

4. We shall show that theorem 1 is best possible. For v=1, it is trivial. For
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y=2, take g=cosyw, #=2? f=1 and G=cosz. For v=3 set

o~ coS 2n(z+nw)
¢@)= I <1_ cos dnnw

—oco

>’ 0= e2x1/3.

It is easy to verify the convergence of the infinite product in the right hand side.
Let M(R) be max;.|-r|¢(z)]. Since ¢(z) has period 1, M(R) is taken by ¢ at a
point on the arc |z|=R, |Rz|=<1/2. Further ¢ is even. So we evaluate |¢(2)| for
z=x+1y, |x|=1/2, y>0. We have

e2x|n| V3 —g—2a|n| V3

ol nz V3 —(naV3
|¢(z){§]l—00327rz|]—['<1+e pvke ”’”)

and
eZny + e~ 2xy

2

|1—cos2zz| =1+ =e?,

where II’ indicates the product omitting #=0. Hence for large y

ex(n V3 +2y) 4 g—a(n V3 +2y) \ 2
e2an V3 —g—2mn V3

a1 =e T] (1+

and

w(nv'3 —a(n V3 +2y
oglg@l=zm+2( T+ T Yiog (14 SO ket

y>2an V3  y=2mV3 e2anV3 —g—2mn V3

—v_
= P (2ry+log 2)+ Ky.

Since y~R for large y, we have ord ¢=2. On the other hand ¢ has double zeros
at z=3nw and simple zeros at z=(3n+1)w, (3n+2)w. Considering the periodicity
of ¢, we see that the convergence exponent of its zeros is equal to 2. Hence
ord ¢=2. We define G as

G =((@g(z+w)h(z+20) .

Let a, be the images of the points n+mw under w=23 Set

s (2]

v

and
=2%FP®,

Thus a solution is constructed.
For v=6 we put
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G(o)= W22t 0))(22+20)) "
(P(R)d(z+ @)¢(2+2w))"*

and replace the a, by the images of zeros of G under w=2z% Set

e (1)

a,

and

—_— eP(z)
Thus a solution is constructed.
For v=4 set
= cos 2rn(z+1(2n—1)/2) )
92)= _EL (1 + cosh 4zn
and

G(2)=(g(2)p(z+1)¢p(z+20))"*.

By taking @, in the expression of g as the images of zeros of G under w=2z* and
h=z* we get a solution.

5. Proof of Theorem 2. By Theorem 1
1,2 if ord Gx2,

ord G=vord N(, 0, g), y= {
1,2,3,4,6 if ord G=2.

Every periodic function is of order =1. Hence ord g=1. Further ord g=ord N(z, 0, g)
by the proof of Theorem 1, since ¢ has a zero and hence co>ord N(7,0, g)=1 by
its periodicity. If ord G=2, then v should be 1 or 2. Hence in any case v should
be 1 or 2. If v=1, then we have the desired result. Assume v=2, that is the
degree of /(2) is equal to 2. Then we put

w=h(z)=A(z—a)*+ B, A=x0.
We have

P i

A

Since g(w) is periodic with period s and f(z) has only a finite number of zeros,
25=ai«/——wo+ff_3, DP=Do

are two zeros of G(z) if g(w,)=0. Hence
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s 1 1
zr  —zi= _s_—+0<—_)’
P A 2/p o

2y —2p = —E%+O<}71—5—).

By the periodicity of G(z) we have a cluster point of zeros of G, which is a con-
tradiction. Thus we have the desired result.

6. Proof of Theorem 3. In order to prove Theorem 3 we again need the
following fact: Let = be the period of G. The +r directions divide the plane into
two sides. If G(z) is bounded in a half period strip, then this is true in a half
plane lying in one side which contains the half period strip.

Let v be the degree of P(z). We may assume that

P(z)=2"4p,-22"" 2+ -+ +po.

Consider the equation P(2)=P(z,+kz), k: integer >0. If % is sufficiently large,
then there are v solutions z,,%, £=0,1, -, v—1, 2p,x=2,+kz. Then

z,,k=(zo+kf)ez,w,<1 +0< ?12“ ))
Then

Q(20,%)
Q(Zz.k)

14+0(1/k?
='e(—2nt(:z/'{—)q—)G(Zo), g=deg Q.

G(zp8)=

G(Zo. k)

This means that G(z) is bounded uniformly for a direction

Te2xi4 /v

If v=3, then ¢=1 and ¢=v—1 give two directions which are not parallel to =+
and lie in the opposite side with respect to the z-direction. Hence G(z) is bounded
in both of half period strips. This is a contradiction.

7. Proof of Theorem 4. Evidently f(z) has a finite number of zeros. If f(2)
is a polynomial, then theorem 2 gives the result. Hence f%2)=Q(2)e#®, deg H
<ordG. Q is a polynomial. Let H(z) be

hya¥ 4+ Mz,
g=deg Q. Then

o
1+0(1/k) en %o, K1+0a/k) Glan.

Glze)= 25162/ ethg{kez«zzN/u(1+0(1/k)) G(

If v=3, then
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log G(z,,,k)=0<h1vz$‘,’k(1 +O(%>)>

Thus by the periodicity of G(z) in any direction

log G(z)=0(z") uniformly.
Hence
m(z, G)=0(r").

Since N<ord G, this implies a contradiction.
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