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1. In 1932 Paley [5] conjectured that
an entire function ¢g(z) of order 2 satisfies

A 1
- <
lim IOg M(?’, 9) - sin 7d <2: 2 >’

= g ()

This conjecture was proved by Valiron [7] for 1<1/2. The first complete proof
was given by Govorov [2]. A little later Petrenko [6] proved this conjecture for
meromorphic functions of finite lower order. And D. F. Shea (cf. [1]) gave an im-
provement of Petrenko’s theorem.

The purpose of this paper is to extend Shea’s theorem to #-valued algebroid
functions of finite lower order. Let f(z) be an #-valued algebroid function, f;(z) the
j-th determination of f(z) and 7(7, f) the characteristic function of f(z). We set

M(r, a, f)=max max a+ oo,

1
lzl=r 1=jsn |fj(z)“a| ’
M(?’, f)=M(7’, o0, f)=max max Ifj(z)l
lzl=r 15)5n

and

iy 108 M(r, @, f)
‘B(d’ f)=71%11_}_ T(i’, f) M

We shall prove the following extension of Shea’s theorem :

THEOREM 1. Let f(2) be an n-valued transcendental algebroid function of finite
lower order p and d(c0)=4 the Valiron deficiency of f(z) at co. Then we have

B(oo, f)=nmp{d2—4)}*
if #z1/2 or p<1/2 and sin (zp/2)=(4/2)'?, and
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386 KIYOSHI NIINO
B(co, f)=nzp{d cot rp+tan (zp/2)}
if p<1/2 and sin (zp/2)<(4/2)*.

As an immediate consequence of Theorem 1, we have the following extension
of Petrenko’s theorem :

THEOREM 2. If f(2) is an n-valued transcendental algebroid function of finite
lower order p, then for arbitrary complex a we have

nap < <L>
sinwp H=35)

nrp <y>—;—>.

Bla, /=

Finally we shall obtain

THEOREM 3. For every fixed complex number a, every fixed numbers p and 2
such that 112< p=i=oco and every fixed integer n such that 2=n=5, there is an n-
valued algebroid function f,,: «(2) of lower ovder p and ovder A such that

.B(as fy. l.a.) =nry.

2. Preliminaries. Let f(z) be an #»-valued transcendental algebroid function
defined by an irreducible equation

A"+ AR+ -+ Ani(2)f+ An(2)=0,

where A,, ---, A, are entire functions without common zeros. Let f;(z) be the j-th
determination of f(z). We put

_ _ 1 (" w0
A@y=max [A(), A= g SO log A(rei®)d

and
FH@)=max |f(2).
1=ssn

Then Valiron [8, p. 21, 22] showed that

@1 T, £)=plr, A)+O0(L)
and
n + A(Z)
1 (2)|=1 .
(2.2) Loglsials og| 29 |+ow
Since

+ n +
log f*(z)= ¥ log | f5(2)],
=1

we have from (2.2)
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2.3) log M, f)= max log *2)=log M(r, ;14 >+O(1)
Therefore is follows from (2.1) and (2.3) that

+
. log M(r, f) .. log M(r, AlA,)
2.4 Bloo, f)= i_T T ) <lim A7, A) .

r—00

3. Proof of Theorem 1. Now we shall give a proof of Theorem 1 along Fuch'’s
idea [1, pp. 23-32], borrowing his several estimates. In the first place we start
from the following lemma, which is derived from Petrenko’s formula;

LemMMA. ([1, p. 26]) Let ¢(2) be a meromorphic function and {b;} its poles. Then
we have, for y>1 and 2S<u< R|2,

) R glyr-1 d £743 1 N
Og]g(u)|< S W TS_F/T og|g(re®)]
T
log —'f’i',iﬁ;—erK[(S) TS, g)+< ) T(R, g)]
ss1bjisR 11551 |

where K is an absolute constant.

In the sequel K denote an absolute constant, not always the same at each

occurence.
Applying Lemma to meromorphic functions A;(z)/A.(2) and using 7(r, A;/A,)
=np(r, A)+0(1), we have for 1=j=n

»Ti SR u?’rf—l Sz/r
< 2r S (MT+77)2 ar -n/rlo

"t rKni{—) x2S, A — ) w(R, A)t,
S§1b1I§Rlog 154" —a'| Frini\y ) # g )R A

As(w)
Ao(%)

Ay (re'?)

Ao(re??) db

log

where b, are zeros of A(z). We increase the right-hand side by replacing

L 9 b
2—71'5-—7:/;‘ ° v m( AO)

and take the maximum over j in the left-hand side. Then we obtain

Ajy(re®)
Ao(re®)

A(u)

R w'rm(r, Al Ao)

(uT +rr)2

log Lﬂ‘rﬁ Kn‘ (%)’mzs, A+ (%) "W(R, A)}.

ssiise 051"

By applying this formula to A(e*®z)/A«(e**z) (a:real) we see that log | A(u)/Ao(u))
may be replaced by log M(u, A]A,):



388 KIYOSHI NIINO

B v 'm(r, AlAo)

4 2
og M1, <) <r SSWW
3.1
[b;1"+u" {(E)r (_11)7 }
S=ivjl=R 6" —u| +rKn u ,u(ZS,A)-J,- R #(RrA) .

We now choose y>max (1,2x). By the reasoning [1, pp. 27-29] we deduce
from (3.1) that

B/2 A
S u="-!log M<u, -——)du
28 A

/2 A
e )
-2 < sin(zufr) Jas wem g, du

R/2
+ mp tan —%’;—S u "N <u, L)du
28

+7Kn{S-*(2S, A)+ R-"u(2R, A)}.

Note also that we have

A 1 2x1 +

’”(“’ 2:)—‘2‘;30 o8
_i 2r A(ueiﬁ)

T 2n So log Ao(uei*)

A(uet?)

Aucty| ©

3.3) do

2r 73
=—1—S log | A(ue™)|do— igz log | As(ue™®)|db
2r 0 2r 0

=np(n, A)— Nu, 1/A)+0(1)
and by the definition of Valiron deficiency

-—1—>>(1—A(oo)—a)ny(u,A) for % >Sy(e).

3.4) N(u, i

By our choice of 7, np/r<=/2, so that

Therefore it follows from (3.2), (3.3) and (3.4) that

R/2 A
S w1 log M (u, —) du
A,

28

R/2
8.5) < nn:/.t{(d(oo)+e) cot zr—#+tan ;—f] st w = u(u, A)du
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+7En{S-*u(2S, A)+R-*p(2R, A)}.

Hence applying to (3. 5) the reasoning of [1, pp. 30-32] and taking (2. 4) into account,
we can see that the statement of Theorem 1 is true.
Thus the proof of Theorem 1 is complete.

4. Proof of Theorem 3. Let 4, .(z) be an entire function of order A and of
lower order p defined in the following manner:
h,.. (2) is the Mittag-Leffler function

oo zﬂ 1
E@=L FonD (“‘z‘)

if 2=p>1/2, is the entire function E, ,(z) constructed by Petrenko [6, pp. 409-412]
if 1/2<pu<2A=co, and is expexp z if p=2=co. Then it is known that

4.1) B(c0, hy, )=mp
(cf. [6, pp. 408-413)).
For a moment we assume that an equation
4.2) I+ R ()" +1=0
is irreducible. Let f, :(2) be an entire algebroid function defined by (4.2). Then

we have

T £+ 00) =4, A=\ " log max {1, |y, sre)))ds
4.3)

|-

T, hy, ).

Hence the order of f, .(z) is 2 and its lower order is . We denote by f,(2) the
j-th determination of f, .(2) and put f*(z)=max{|f(2)]: 1=j=n}. Since %, (2)
=—73 fiz), we have |k, (2)|=nf*(z) and consequently

+
@ 4) log Mz, h,. ) <log M(#, f,..)+log .

Therefore it follows from (4.1), (4.3) and (4.4) that

+ +
— i 108 M7, Ay i) gy 1og M(r, fur) _ 1
T ) AT, fy) o P00 )

and consequently
.B(OO; f#- 1) ; nn',u

On the other hand Theorem 2 implies §(co, fu,:)=#zp. Thus we obtain

.B(OO: fp. 1) = nﬂﬂ:
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which is the desired.
For asco0, we consider the following algebroid function:

1
fp,z.a(z)—m‘i'%
Then it is clearly deduced that

ﬁ(a’ f/,c. 2, a)=nn'/,l.

Now, in order to complete our proof of Theorem 3 we have to show that for
n=2 to 5 the equations (4.2) are irreducible. We first have

LemMMA. A function f, (2) satisfying the equation (4.2) is neither single-valued
nor n-1-valued.

Proof. Suppose, to the contrary, that a function f,, :(z) satisfying (4. 2) is single-
valued or #-1-valued. Then the equation (4.2) is reducible and we have the follow-
ing factorization:

Frt by P 1= +e)(f "+ anof 2+ -+ +aif +e79),

where ¢ and @, (7=1, :-, n—2) are suitable entire functions. By factorization theorm
we have
h#- J(Z) — e—(n—l)y(z) {env(z) + ( — 1)7L}

=e§l(z) + ( _1)ne-(n-l)0(z).

(4.5)

Let G(z) be the function in the right-hand side. If ¢g(z) is transcendental, then G(z)
is of infinite order and of regular growth. Hence by the definition of %, ; we have
k. (2)=expexp z, which has no zero. However G(z) has zeros (cf. [4, p. 103]),
which is a contradiction. If ¢(z) is a polynomial, then G(z) is of finite order and
of regular growth. Hence 4%, :(2) is the Mittag-Leffler function E;(z), which is
bounded for z/22< |arg z| <=z (cf. [3, p. 19]). However G(z) is unbounded there. In
fact we put g(2)=ap2°+ - (ap#0) and a,=|a,|e*, z=re®. Then we have for every
fixed @ satisfying cos (p6+¢)+0

Re g(z)=|ap|?? cos (p0+¢){1+0(1)}  (r—oc0).
Therefore for every fixed 0 satisfying cos (p6+¢)>0 we have
|G(z)| Zefed® —g=("-DRU® 00 (y—00)
and for every fixed ¢ satisfying cos (pf+¢)<0
|G(2)| z e~ n-DReIE) _gRIED 500 (r—00),

Thus we have a contradiction. Q.E.D.
We continue the proof of Theorem 3. It follows from this Lemma that for
n=2,3 the equations (4.2) are irreducible.
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Assume that for =4 the equation (4.2) is reducible. Then by Lemma we
have that

S+l P +1=(*taf +e°)(f*+bf +e ),
where a, b and ¢ are suitable entire functions. It follows from this identity that
b=—ae™ ¥, a*=e*(1+e %) and h,.,=a+b.

Since the function 1+4e¢-2» has simple zeros if g(z)#const. (cf. [4, p. 103]), we ob-
tain g(z)=const., and consequently #4,,;=const., which is a contradiction.

Next assume that for »=5 the equation (4.2) is reducible. Then by Lemma
we have

b 1=+ af + )P+ bof2+bif +e79),
where @, b, and ¢ are suitable entire functions. This identity yields that
bhi=—ae ™, by=a%—e ¥, a*~2¢%a+e“=0 and h,=a+b,.

Hence the function «@(z) has no zero. Since a(z) is single-valued, we have a(z)=e#®
with a suitable entire function H(z). Therefore it follows that

e3H () _QpH () g9(2) + et (@ = 0,

that is,
ezH(z)—O(z) + eso(z)-H(z) = 2’

which is unable if 2H{(z)—g(z)#const. or 3¢(z)— H{z)#const.. Hence we have H(z)
=const., g(z)=const. and consequently #,,:(z)=const., which is a contradiction.
Thus the proof of Theorem 3 is complete.
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