
ON THE EXISTENCE AND UNIQUENESS THEOREMS OF

DIFFERENCE-DIFFERENTIAL EQUATIONS

BY SHOHEI SUGIYAMA

Introduction.

It is convenient to make use of differential equations in order to represent
physical phenomena by certain functional relations. The differential equations,
however, represent such phenomena by a relation between their present state
and its instant change. Then, it is not apparent that the influence of past
time does explicitly affect the present.

On the other hand, economic phenomena, generally speaking, have to be
dependent on the past time, for example, on the influence before one year. In
other words, we should better construct the equations by making use of the
difference in order to forecast the result of the year before. They are, of
course, to be observed in some physical phenomena *

For the sake of simplicity, we consider the following equation

F(t, x(t), x'(t), , £(m)(ί), x(t - 1), x'(t - 1), , x°l\t - 1)) = 0,

where F, t, x represent scalars.
For m>n, it is supposed to be sovable for x ( m ), i.e.,

~ =/(«, «(ί), α'OO ' , x(nι~Ό(t), x(t - 1), x'(t - 1), , x(n\t - 1)).

Putting x(t) = yί(t\ x'(t) = y«(t), •••, x°n~D~ym(t), the above equation is re-
duced to

at

at

dt
_~ Jm

If we consider
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as an m-dimensional vector, we obtain a general equation

(1) -|[-W(i, 3/(ί), y(ί-l)),

where / represents an m-dimensional vector.
For m<n, it follows by the same reason as above that

( 2 ) = f ( t f y(t), 3/(ί
at

where y and / represent ^-dimensional vectors.
For m = n, we obtain

(3)

or

(4)

ι , ,
dt \ at

or

, , ,dt \ dt

where y and / represent ^-dimensional vectors. We call (3) or (4) neutral
system.

The equations (1) and (2) are essentially different from (3) and (4). In this
paper, however, we shall mainly deal with the equations (1) and with certain
types of (3).

Now, if we consider the solutions of (1) for 0 ̂  t ̂  ίi, it happens that we
obtain a function y(t~Y) unable to define as a solution for 0^ί<l . Hence,
we have to impose on y(t — 1) some condition, for example, y(t — 1) ΞΞ φ(t) for
0 ̂  t < 1, where ψ(t) is a given function. Then, it is sufficient to consider the
ordinary differential equation

dt

for 0 5 Ξ £ < 1 with the initial condition y(Q) = yo. Here, it is to be noted that
it is essential to obtain the solutions of (1) for 0 ̂  t^ tlf where ίι is greater
than 1.

In Chapter 1, we shall discuss the existence theorem by making use of the
topological method and the method of prolongation of intervals with the ex-
amples whose solutions are not always determined uniquely. In Chapter 2, we
summarize the results concerning the uniqueness of solutions. It is fortunate
for us to be able to apply the similar methods as in the theory of ordinary
differential equations. For instance, the successive approximation method and
the comparison method, which is originally due to Perron, are applicable.
Hence, we shall just state the results without any proofs.

Throughout this paper, the independent variable may not be confined to be
real, but it may be complex, and the dependent variable may be scalar or
vector which is complex.

The author wishes to express his hearty thanks to Prof. Y. Komatu and
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Prof. T. Saito who looked over my paper and gave me a lot of valuable advice
during my investigation.

Chapter 1. Existence Theorem.

§1. Topological Method.

In this section, we shall deal with the existence of solutions of the dif-
ference-differential equation

(1.1) ^j~=f(t,x(t),x(t-l))

for 0 ̂  t ̂  to, with the conditions

(1.2) α(ί-l) = 0(ί) (0^ί<l)

and

(1.3) α(0) = xQ.

First of all, we shall prove the following fundamental

THEOREM 1. We suppose that in the equation (1.1)
( i ) f(t, x, y) is continuous for

(1.4) Orgί^ίo, \x-xo <

(ii) \f(t, x, y)\ ̂ M for the region (1.4);

(iii) φ(t) is a given function continuous for 0^£<1, \\mt^\.-^φ(t) exists,
for which we denote by 0(1 — 0),. and \ φ(t) — χQ\ ^K for 0^ί<l.

Then, there exists a continuous solution x(t) which satisfies the difference-
differential equation (1.1) for Q^t^ti with the conditions (1.2) and (1.3),
where

(1.5) ί1 = min(ί0, K/M).

In the theory of differential equations, there are a lot of methods to esta-
blish the existence of solutions. Above all, one of the most elegant method is
the one having recourse to the topology. The fundamental theorem used in the
theory is a fix-point theorem due to Tychonoίf . TychonofΓs theorem is stated
as follows (Cf. [1]):

Let R be a linear Hausdorff space which is locally convex. Let K be a
set, convex on R, for which the Borel-Lebesgue's covering theorem remains
valid. Let T be a continuous mapping of K and Tx, the image of x^K by
T, be contained in K. Then, there exists at least a point x in K such that
the equality x — Tx holds good.

By the way, if tt which is defined by (1.5) is less than 1, the problem is
reduced to that of the theory of differential equations, that is. it is sufficient
to consider the existence of differential equation
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for 0 ̂  t ̂  έi with the initial condition α (O) = &Ό, so that we suppose, in the
sequel, £ L is not less than 1. In this case, we note that tQ and K/M should
not be less than 1.

In order to obtain a solution of (1.1) with (1.2) and (1.3), it is necessary
and sufficient to prove that the integral equations which are equivalent to (1.1)
with (1.2) and (1.3),

for 0 ̂  t < 1, and

for 1 fg t ̂  t0) \vhere

) 0

have at least a solution. In the following, our purpose is to obtain a conti-
nuous solution of (1.1), so that the term ' 'continuous" may often be omitted.

Let F be a family of all functions x(t) which are continuous on 0 ̂  t ̂  ti,
where ti is defined by (1.6), and satisfy the inequality

(1.6) \x(ΐ)-x0 ^K,

where x(0) = x0 and we fix the value ,τ0 for any function x(t) belonging to F.
Then, we define a mapping T for any x(t) in F as follows:

(1.7)

f or 0 g t < 1 and

for 1^-t^tί. Then, in order to establish Theorem 1, it is necessary and suffi-
cient to prove that there exists at least a function x(t) in F such that the
equality x(t) — Tx(t) remains valid for 0 < t ̂  ti.

In order to make use of Tychonff s theorem cited before, it is sufficient to
prove five lemmas, which will be stated in the sequel.

LEMMA 1. For any x(t) in F, Tx(t) defined above is also contained in F.

Proof It follows by the definitions (1.7) and (1.8) that

for 0^ί<l ,
l)=Mt for l^t^ti.
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(1.9)

for O ^ ί ^ ί i , which satisfies (1.6). This shows that referring to the continuity
of Tx(t) proved in Lemma 5 Tx(t) is also contained in F.

The following two lemmas are obvious.

LEMMA 2. // two functions x^t) and ^(ί) am contained in F, λxι(t)
+ (l-Λ)ίc2(£) is also contained in F for any A sπc/6 tfιat 0 < / < 1 .

The lemma shows that F is convex for Q^t^tL.

LEMMA 3. Let xn(t) (n = 0, 1, 2, - - -) be a sequence chosen in F. If the
sequence converges uniformly to x(t), the limiting function x(t) is an ele-
ment of F.

LEMMA 4. Let xn(t) (n = 0, 1, 2, •••) be the elements of F converging uni-
formly to x(t). Then, Txn(t) (n — 0, 1, 2, •) converges uniformly to Tx(ί).

This lemma shows that the mapping T is continuous.

Proof. On account of the continuity of f ( t , x, y), χ(t), and φ(t\ it follows
that f(t, x(t), φ(t)) and its integral are continuous for 0 ̂  t < 1, and /(£, ft (ί),
ίc(έ — 1)) for l^t^tί is continuous with its integral. Thus, it follows by a
well-known theorem in the calculus that Lemma 4 holds good.

LEMMA 5. The family G={Tx(t)}x^F is normal, that is, in any sequence
of G there exists a sequence ivhich converges uniformly.

Proof. The necessary and sufficient conditions in order that G is a normal
family are that each element of G is bounded at any point in 0 ̂  f ̂  f i and it
is equi-continuous.

If follows from (1.9) that

+κ
for O^έ^έ i , which implies that any Tx(i) is bounded for the fixed x(> and

In order to prove that any Tx(t) is equi-continuous, it is sufficient to prove
that the inequality

\Tx(t)- Tx(t')\ ^M\t-t'\

is satisfied for any t and t! in the interval O ^ ί ^ έ i . Thus, we must consider
three cases.

( i ) The case where t and tr are contained in O g ί < l It follows by
means of the definition (1,7) that

Tx(t) - Tx(t') I ̂  Γ I f ( t , x(t), φ(t)) I dt \^M\t- t' .

( i i) The case where t and t' are contained in the interval ί^t^ti. It
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follows by the definition (1.8) that

\Tx(t)-Tx(t')\: ), x(t-l))\dt

(iii) The case where t is contained in 0^
follows by (1.7) and (1.8) that

and tr in i. It

ί, x(t},

Hence, we obtain

I Γα#) - 2fe(ί') I ^ f J/(ί, a?(ί), 0(ί)) | dί + Γ| /(*, a?(ί), »(ί - 1)) I Λ

^ AΓ(1 - ί) +AΓ(ί/ - 1) =M(ί/ - ί),

which proves the ,equi-continuity of Tx(t).

Applying five lemmas proved above, we can easily establish the funda-
mental existence theorem.

REMARK 1. (i) The approximation method by using polygonal lines is
applicable to the proof of Theorem 1.

(ii) It is to be noted that Theorem 1 does not always guarantee the uni-
queness of solutions even if f(t, x, y) is supposed to be continuous. This result
is parallel to that of the theory of differential equations. Thus, we shall illu-
strate two examples of difference-differential equations whose solutions are not
uniquely determined.

EXAMPLE 1. We consider the following difference-differential equation

(1.10) ^̂  = 2x(t -
at

with the conditions

α#-l) = l for -0) = 1, and α?(0) =

It is apparent that the function yjx is continuous for #^0 and y^
Then, we define the following functions:

and

0

ίor
for

for
for

0 ̂  t

a;ι(-0)=1

We can easily continue the function xL(t) so that it is to be continuous and
satisfies (1.10) for 0^£<oo. Hence, we obtain two solutions with the same
conditions.
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KEMARK 2. By means of the lemmas proved before, it follows that the
solutions of (1.1) with (1.2) and (1.3) are continuous for O^ί^ίi- However,
the continuity of derivatives of solutions can not always be guaranteed at t = 1
as the above example shows when ti > 1.

It will easily be expected that the discontinuity of derivatives at t — 1 is
caused by the discontinuity of the initial conditions, that is, 0(1 — 0)^^(0).

The following example shows that the solutions and its derivatives are
continuous for 0 ̂  t < oo.

EXAMPLE 2.

dt
with the conditions x(t — 1) = 0 for —1^£<0, £(—0) = 0, and #(0) = 0.

§2. Method of Prolonging Interval.

The method of prolonging the interval is applicable for (1.1). However, as
an illustration, we shall consider the difference-differential equation

/i ι ι\ dx(t) f f . ,.. f. Λ^ dx(t-l)
(1.11) - =/( t, x(t\ x(t - 1), --,_-

dt \ dt

It is necessary to impose on (1.11) the following conditions that

(1.12) x(t — 1) = φ(t) and x'(t — 1) = φf(t) (0^£<1),D α?(0) = α?o.

Since it seems to be not easy to apply for (1.11) the topological method,
that is, it is hard to find out a theorem in C1 class which plays a similar role
as that due to Tychonoff in C° class, we shall make use of the method of
prolonging the interval of existence of solutions.

Let /(£, x, y, z) satisfy the following conditions:
( i ) /(£, x, y, z) is continuous for

(1.13) 0 ̂  t ̂  to, I x — XQ \ ^ K, \ y — XQ \ ^ K, ' z! ^ M

where ί0 > 1;

(ii) \f(t,x,y,z)\£M for (1.13);

(iii) 0(ί) and φ'(t) are continuous for 0 ̂  t < 1, φ(l - 0) and 0;(1 - 0) exist,
I0ω-α;oί^^, and \φf(t)\^M.

Then, if we put

F(t, a?(ί))Ξ/(ί, α?(ί), φ(t\ φ'(t}}

for 0 ̂  t < 1, it is sufficient to consider the ordinary differential equation

(1.14) ~~~- =F(t, x(t)) (Q^t< 1),
at

1) It is sufficient to assume the existence of right and left derivatives at t = 0 and
1 respectively.
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where F(t, x) is continuous for 0^£<1 and \x — xQ\^K. It is well known
that there exists a continuous solution of (1.14) with the initial condition
α(0) = XQ for 0 ̂  t^ ti = min (1, K/M).

By the same reason as in the proof of Theorem 1, we shall consider the
present problem for K^M. We denote by Xι(t) a solution for O^ί^ l and
consider the equation

f f ,
at

for l^t^tί with the conditions

(1.12)' x(t- l) = α?ι(ί-l), x'(t - 1) = x,'(t - 1) for l^ί^2, s(l)

instead of (1.12). Then, it is sufficient to consider the ordinary differential
equation

dt

for 1 <; t ̂  2 with the initial condition x(l) = a?i(l), where

F(t, x) =f(t9 x(t), xι(t - 1), xM - 1))

is continuous for 1 ̂  t ̂  2 and | x — xϋ \ ̂
It follows by the existence theorem that there exists a continuous solution

for O^ί ^ti = min(2, K/M). The process is ceased if tι^2. Otherwise, wre
have to continue the process for 2<t^tι, and so on.

If we continue the process and obtain a continuous solution f or 0 ̂  t ̂  [£ι],
[ ] being Gauss' symbol, we denote the solution by x^M and consider the
ordinary differential equation

for Γ / i ] £ ί £ f 0, where

F(t, x) =/(ίf x, arc,l3(ί - 1), ^ '̂(ί - 1)).

Then, it f ollo\vs that there exists a continuous solution x(t) for 0 ̂  t ̂  tι
— min(ί-o, K/M). Thus, we obtain the following

THEOREM 2. In the equation (1.11) wiί/i (1.12), we suppose that f(t, x, y, z)
satisfies the conitions (i), (ii), (iii) stated above.

Then, there exists a continuous solution of (1.11) with (1.12) for Q^t^ti
ί0, K/M).

REMARK. As in the preceding section, the following example shows that
the uniquess of solutions is not always guaranteed even if the function /(ί, x,
y, z) is supposed to be continuous.

EXAMPLE.

dt
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with the conditions x(t — 1) = 1, »'(ί — 1) = 0 for 0^ί<l, and α?(0) = 0.

Chapter 2. Uniqueness of Solutions. (Summary of Results.)

As has been already seen by two examples in Chapter 1, the uniqueness of
solutions is not always guaranteed even if f(t, x, y] is continuous. For the
practical applications, however, it is useful to obtain some criteria by which
the solutions of difference-differential equations are determined uniquely. There
are a lot of methods guaranteeing the uniqueness of solutions of differential
equations. It is fortunate that some of them can be applied for the theory
of difference-differential equations, if we modify slightly. Thus, we intend,
in this chapter, to summarize the results without any proofs.

§1. Successive Approximation.

In the equation

(2.1) =f(t,x(t),x(t-l))
dt

with the conditions

(2.2) x(t - 1) = φ(t) (0 £ t < 1)

and

(2.3) α(0) = α?o,

we suppose that the following conditions are satisfied:
( i ) f(t, x, y) is continuous for

(2.4) O^ί^ίo, \x-xQ\^K, \y-xQ

(ii) |/(ί, x, y)\^Mfor (2.4);
(iii) f(t, x, y) satisfies Lipschitz condition, that is, for any Xι, x«, yίt y-

and t in (2.4):

l/(ί, «ι, Vύ ~f(t, xs, 2/2) I ^ α(ί) I x, - x, \ + b(t) \ y, - y« |,

where a(t) is continuous for 0 ̂  t ̂  tQ and b(t) for 0 ̂  t ̂  U 4- 1;
(iv) 0(έ) is a given function continuous for 0 ̂  ί < 1, 0(1 — 0) nxists. and

Then, the following theorem can be proved by a well known method of
successive approximation.

THEOREM 3. In the equation (2.1) with (2.2) and (2.3), there exists a
unique solution with (2.2) and (2.3) for Q^t^tί under the hypotheses (i), (ii),
(iii), and (iv), where

REMARK. If Lipschitz condition is satisfied by two constants LI and L2

instead of two functions a(t) and b(t) respectively, it is able to improve the
estimation for tίt that is, ti may be determined by
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, . Λ M , Λ , (
ί i = mm ί0, -7-7-7- log 1 + -^

\ LI +1/2 \ o

where !/(£, x, y)\ ^M0(^M). This corresponds to a remark due to Lindelδf.

§ 2. Comparison Method.

In order to obtain some results affirming the uniqueness of solutions, it is
useful to define the major and minor functions as in the theory of ordinary
differential equations. In [1], the case where the functions are represented
by vectors is treated by making use of the so-called "Kamke's S-f unction",
and in [2], the classical method is discussed in detail. In the following, we
shall deal with the scalar functions for the sake of simplicity. The results
obtained here, however, can be extended to vector functions.

DEFINITION. Let //(£) (i = 1, 2, 3, 4) be continuous for 0 ̂  t ^ ίi and have
the right and left derivatives. If the inequalities2'

(2.5) D+fM >/(ί, /ι(ί), /Λί - 1)), D-/«(t) >/(ί, /2(0, fz(t - D)

are satisfied for 0 ̂  t ̂  ti with the conditions that ft(t — 1) = φ(t) for 0 g t
< 1, ft(- 0) exists, and Λ(0) = x0, we call /ι(ί) and /2(ί) the right and left major
functions respectively of the difference-differential equation

(2.6) , ,
dt

with the conditions

(2.7) &(ί-l) = 0(J) (Ogί<l), and α (O) = &0,

where φ(t) is a given function continuous for 0 :g ί < 1, and </>(! — 0) exists.
If the second inequality of (2.5) is also satisfied by f ι ( t ) , we simply call

f ι ( t ) the major function of (2.G).
If the inequalities

(2.8) Z>y,(f) </(ί, /3(ί), /8(ί - 1)), β ΛCO </(ί, /4(ί)f /4(ί - D)

are satisfied for 0 ̂  t ̂  tl with the conditions that /f(ί - 1) - 0(ί) for 0 g ί < 1,
/,(— 0) exists, and /?-(0) = »τ0, we call /3(ί) and /4(ί) the right and left minor
functions respectively of (2.6) with (2.7).

If the second inequality of (2.8) is also satisfied by /3(£), we simply call
/3(ί) the minor function of (2.6) with (2.7).

Let ω(t) and «7(ί) be continuous functions for 0 ̂  t ̂  ίi such that the ine-
quality ω(t)^ω(t) holds good, and ω(0) = ω(0) = 0(1 — 0). If f(t, x, y) is defined
and continuous in the domain

(2.9) 0 ̂  t ̂  ίi, £M(0 ̂  » ̂  ω(ί), flί(t - 1) ̂  2/ ̂  ω(ί - 1),

where ω(t - 1) = ω(t - ϊ) = φ(t) (0 ̂  ί < 1) and ω(- 0) = 5J(-0) = 0(1 -0), we
extend the function f(t, x, y) into the space Q^t^tίf — °o <x<&>, — co<τ/
< oo as follows:

2) D+f(t) and D'f(t) represent the right and left derivaties of f(t) respectively.
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//(<, ω(ί), ω(t - 1)) for x > ω(t) and y>ω(t- 1),

/(£, ω(ί), l/) for a? > ω(t) and ω(έ - 1) ̂  # ̂  ω(ί - 1),

f(t, ω(ί), ω(£ ~ 1)) for x > ω(t) and y<ω(t- 1),
f(t> Xl ^(t ~ ̂  for -(ί) - ^ ~ ̂ (ί) and y>^~ V>
/(*, α?, ω(ί - 1)) for ω(ί) ̂  α ̂  ά (ί) and y<ω(t- 1),
f(t, ω(t), ω(t-l)) for a?<(y(ί) and τ/>ω(ί-l),

/(ί, fl?(ί), y) for a; < Λ>(ί) and ω(t -l)^y^ ω(t - 1),
>(ί - 1)) for α; < ί«(ί) and y<ω(t- 1),

with the conditions ω(t - 1) = m(t - 1) = 0(ί) for O g ί < l , ft)(-0) =ά>(-0)
= 0(1 — 0) = ft>(0) = άJ(0). Thus, the extended function f ( t , x, y) is continuous and
bounded for 0 ̂  ί ̂  ίi, — oo < α; < oo, — co < ?/ < co. If we make use of the
function defined above, we can prove the following

THEOREM 4. Suppose that in the equation (2.6) with (2.7), /(£, x, y) is con-
tinuous for (2.9) and monotone increasing with respect to y. Furthermore,
we suppose that ω(t) and ω(t) are the left minor and right major functions
respectively. Then, for any solution x(t) of (2.6) we have the relation

ϋi(t) ^ x(t) £ ω(t)

forQ^t^tt.
If the solutions are not uniquely determined, there exist two solutions

φ(t) and tjβ(t) of (2.6) with (2.7) such that any other solution x(t) o/(2.6) with
(2.7) lies between φ(t) and $(t\ that is, the inequality

remains valid for Q^.t^

The solutions <^(£) and ^(ί) are called the maximal and minimal solutions
of (2.6) with (2.7) respectively.

By using this theorem, we can prove the coincidence of <£(£) with <p(t), if
/(£» xt y) satisfies the Lipschitz condition, that is, the uniqueness of solutions
is established.

The following theorem is more practically applicable than that above.

THEOREM 5. We suppose that the following conditions are satisfied:
(i) f(t, x, y) is continuous for 0 ̂  t ̂  ίi, I x — XQ ^K, \y — xQ\^K;
(ii) F(t, u, v) is continuous for O^ίg ί i , Q^u^M, Q^v^M, and

Monotone increasing with respect to v,
OH) f(t, αji, yύ -f(t, x2, y2) £F(t, \ x, - x. 1, \yί9 - y» I);
(iv) there exist no solutions of

with U(t - 1) = o for 0 ̂  t ̂  1 other than u(t} = 0 for 0 ̂  ί ̂  ίl

Then, solution of (2.6) with (2.7) is uniquely determined.
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As the applications of the above theorem, we consider the special types of
F(t, u, v), which are very similar to those of differential equations (Cf . [1]

[2]).

EXAMPLE 1. F(t, u, v) =

EXPMPLE 2. F(t, u, v) =F(u\

where F(u) fulfills the following conditions:
( i ) F(u) is continuous for Q^u^K;
(ii) F(u) > 0 for 0 < u ^K, and Fφ) = 0;

r Γ^ duhm ^-—=(m)
ί - v - r ϋ j e

EXAMPLE 3. F(tt u, v) = — (L^u +Lzv).
t
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