POSITIVE HARMONIC FUNCTIONS ON AN END

By MiTsURU OZAWA

It is well known that the Martin theory on positive harmonic functions
plays an important role in the theory of open Riemann surfaces. Its whole
theory depends upon the potential theory and the so-called Martin compacti-
fication of the given surface. In the present paper we shall give a proof of it,
especially the representation theorem on positive harmonic functions on an end,
which seems extremely simple. In our proof we shall introduce a suggestive
functional and make use of a variational method.

Let W be an open Riemann surface and {W,} be its exhaustion in the
usual sense. Let HP(W—W,) be a class of positive harmonic functions on
W —W,. vanishing continuously on 0W,. Evidently HP(W—W,) is a posi-
tively linear space.

LEMMA 1. The space HP(W —W.,) is a metric space with the metric

_ 0 4,
o(u, v)—jawm on lu—v|ds.

LEMMA 2. The wumniform convergence in the wider sense in W—W.,
in the class HP(W—Wn.) is equivalent to the p-convergence in the space
HP(W—-W,).

LEMMA 3. The unit sphere Up in the space HP(W—W.,) is a p-com-
pact convex set.

Proof. Let v=Up, then

0 _
me agv(p) ds=1.

Let wy(p) be the harmonic measure «(p, 8W,, W,—W,) and M =max v(p),
d=minv(p) on 8W,. Then we have dw,(p)=<v(p) on W,—W, and hence
on 0W,

0
on
Let I denote the value of the integral

S ﬂwq@) ds,
aw,, 0N

i wp) < “a%‘”(p)'
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then we have an inequality dl <1. By this inequality and the Harnack ine-
quality, we have M < kd <kl~!, where & depends solely upon the configuration
of 0W,. Therefore v(p) in Up is uniformly bounded on W, —W ,, which implies
that we can select a subsequence converging uniformly in W,—W,. Since q
is arbitrary, this remains valid in W—W, in the wider sense. The limit
function V thus obtained satisfies the normalization Ve Up. Let v, converge
uniformly to V in the wider sense, then 6v,/0n converges uniformly to 0V/on
on 0W,. Thus we have

lim o(v,, V) = limj Dy, —Vids=0,

v>00 W @’}’l,

v >0

which implies that U is p-compact. Convexity is obvious.

Existence of Martin’s minimal positive harmonic function and the possibility
of approximation of any element in HP(W—W,) by a positively linear com-
bination of minimals can be obtained by the following two facts: (1) Any ex-
treme point of Up coincides with a suitable minimal positive harmonic function
in Martin’s sense up to a positive constant factor and vice versa, and (2) there
is at least one extreme point on Up and the p-closed convex hull spanned by
all the extreme points coincides with the original sphere Up. The last state-
ment is nothing but the so-called Krein-Mil’man theorem on the existence of
extreme point on compact convex set. The former fact (1) is easy to prove.
However, we shall avoid to use these two facts.

LEMMA 4. Any structure of the positively linear space HP(W —W,)
with p-metric depends solely upon the ideal boundary of W, that is, there
exist two positively linear mappings Tn and S, between HP(W—W,) and
HP(W —W,):

— Sm —
HP(W—-W,) == HP(W—-Wn)

such that both T, and S, are one-to-one onto and TnS,=S,T,=the iden-
tity mapping. These mappings are commutative to the p-convergency in two
respective spaces. However, in gemeral, p-metric is not tnvariant under T
and Sp.

It is not difficult to prove the Lemma 4. See [1] or [2]. We should re-
mark that, if p-metric is invariant under the mappings T, and S., W& Oq
and vice versa.

Let K, be the class of harmonic functions u, on W,—W, such that
U (P) =0 on OW, and =f on 0W,, where f is a sufficiently smooth function
on 0W,. Let K™ be the class of limit funections lim#,. Evidently this limit
exists uniformly in the wider sense in W—W,. For later use, we remark that

v(p) =Twv(P) + bu(p), vEHP(W—-W,), Twv € HP(W—-W,)
and b,(p) €K™ equals v(p) on 0W,. Let (M) belong to K such that
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oM)=1 on 0W;. Let G.(p, M) be the Green function on W, — W, and
G(p, M) its limit limmsco Gu(p, M). Let g(p, M) be a normalized harmonic
function defined by
_ G, M)
g(p, M) = 2ra(M)’

satisfying the normalization condition

0
-~ g(p, M)ds=1.
LWI on 9(p, M)ds

If there exists a limit function limn,.g(p, M,) uniformly in W—W, in the
wider sense along a suitable sequence {M,} tending to the ideal boundary, then
we say that {M,} determines an ideal boundary point M and is a fundamental
sequence. The limit function is denoted by g(p, M). We say that two funda-
mental sequences {M,} and {M,’} are mutually equivalent if

lim g(p, M) = lim g(p, M)

for any pe W —W,. Let 4 be the set of these equivalence classes and ® be
W—-Wi+d. In D we introduce a metric by the integral

oM, M) = LW g; |9, M) — g(p, M")|ds,

1

which is evidently bounded for any M, M’ in D®, that is, p(M, M')<2. We
can easily prove that ® —W, is compact, W—W, is open, 4 is bounded, o-closed
and p-compact and 0D =4+ 9W; with respect to the p-topology and that the
relative topology in W—W; induced by the p-metric is equivalent to the
original topology there. Further we see that the funection g(p, M), for a fixed
p, is p-continuous as a function of M on D —W,, except at M=p, especially
on 4. The notion of the p-Borel set can thus be introduced in ®—W,, espe-
cially in 4 and the theory of Radon-Stieltjes-Lebesgue type integrals over 4
can now be developed.

Let Hg(W —W,) be a positively linear space each member of which has a
form

Lg(:o, M)dao(M)

with a suitable non-negative mass-distribution ¢ on 4 and its unit sphere by
the p-metric be denoied by Ug. It is obvious that any element of Hg(W —W;)
belongs to HP(W —W ) and hence Ug is a subset of Up.

LEMMA 5. Uy s p-closed in Up and hence p-compact.

Proof. Let v, be a sequence belonging to Ug and lims,e 0(vs, v) =0 for a
suitable v e HP(W —W ), then we have

D) = L*"(’” M)do(M), de(M) =1, dou(M) 20.
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We can then select a subsequence of mass-distributions {s, (M)} converging
weakly to a suitable mass-distribution o(M) on 4 satisfying

de«M) =1 and do(M)20,
that is,
lim [ Q) dor (M) = | FO0)do()
for any continuous function f on 4. Since g(p, M) is p-continuous on J,
V@)= oo, M)do(d)
belongs to Ug and
| oo, 0 do, a0~ { o, )dat00) | <

holds uniformly on W,— W, for any sufficiently large v. Therefore we have

7 — ¥aﬁ —
p(vnw v ) - SGIVI 8% I,vnv v 'ds
Al |
=[.. 5u ] o Mo ~{ o0, M) do) | ds
owy ON | ) 4 4

= Do ow, w-Woas
oWy on

where w(p, 0 W, We —W ) is the harmonic measure. By the triangular inequa-
lity we have

o, v') = p(vs,, ') + 0(Vn,, v) = Me
and hence p(v, v) =0. Therefore we have v Ug. From this fact it follows
that Uy is p-closed in Up and hence p-compact by that of Us.

Let u belong to K and u[v] be the integral

ulv] = LW u(p)b%v(p) ds.
1

Let L,(M) be a limiting value

. u(M,)

lim -\ #a)

n];% a)(Mn)
along a fundamental sequence {M,} tending to an ideal boundary point M in
4. Let veUyg, then we have

upel= [ wo) o ds= [ uw2-( o, mdoanis

8

=j 5 u(p)—}g(p, M)dsdav<M>=j Lo(M) doy(M).
4Jawy n 4
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Let v=Up, then we have

ulv] = LW u(p)%v(p) ds = gaw u(p)% T.v(p)d
1 v m

7]

and
0

aw, 0N

1= o] = j o(p)ds = g w(p)a% T,0(p) ds.

oW

m

Now we can select an exhaustion {W,} in such a way that any connected
component (0W,,), of dW,, is a dividing cycle of the surface W. Let 0., be
the integral

0
my = —‘Tm d ’
Oy j(an)]w(p) on v(p)ds

then we have

v(m)
Zamjzly UmJZO.
J=1

Further we have
"I U(Prj) -

ulv]=73]

J=1 w(Pm]) "

for a suitable set of points P, € (@W,),. If (0W,), is homologous to 2=, (0 W)
on W,—W, and if o, corresponds to (3 W), then o, =3 oy; indeed we can
easily prove that Ty =T,,T,v for any v € HP(W —W,), where T, is a T map
defined on HP(W —W ) such that T, HP(W —W,) =HP(W —W),). If the above
topological condition on (0 W,), and (0 W,); holds, then we say that any such

(@ W)r is a successor of (0W,),. If a sequence of the dividing cycles (0 W.),,

@Wauiiy ++y (@Waip), « - satisfies successively the condition of successor, then
we can select an ideal boundary point M,,, =4 from a corresponding sequence
Pryy Prit,is %y Prsp,ty **+y Prs € (@W,);. Many such M,, may exist. Now we

select any My, say M,,°, and attach a value L, ;(My,°) = u(Pn;)/w(Pn;) and
a mass opn, at the point M,,°. Then we can write

v(m)
ulv] = Z‘le]-(Mmﬁ)amJ.

On the other hand we can consider o, as a mass attached at the M;° 4.
Then there is a sequence {o,} of mass-distributions on 4,,, a part of 4 homo-
logous to (0Wn),. Evidently Z,’Llam:amj and 0,,=0. Thus we can select a
subsequence converging weakly to a non-negative mass-distribution o,(M) on
4y, such that

j doo(M) = o,
Amj

Simultaneously we can select the limit distribution o¢,(M) or a set of ideal
boundary points {M}, M €d,, such that L, (M,,°)—L.(M). This procedure can
be done for all the 4,,. Resulting mass-distribution is denoted by o.(M).
Evidently the total mass of o,(M) is equal to 1 and do,(M)=0. Now we
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should remark here that M may depend upon the given u(p) =K. Then
we have

v(m)
ufv] =3 Lmj(Mmﬁ)j doy(M)
= A”l'
v(m) !
=3 j
J=1]J4

where L,(M,°) is equal to L,;(M,,°) on the jth 4,, and M,° is a generic
point of {M,,°} on 4. Since L,(M,°) is uniformly bounded and the total mass
is equal to 1, we have

limSALm(M,,f) doo(M) = X (M) dor (0D,

Ly (M) dor (M) = j Lo, dor(B),

mnj

Mmoo

Thus we have the following
LEMMA 6. {ulvlhevp = {ulv1}oerv,.

Next step is our main part. Let E(v) be a functional defined by the integral

Bo—| 7 0V,
on

aw, Om

for a VeUp and any v Uyg. Suppose that Upr DUg but Upz Ug, then there
exists a member V in Up which is not in Ug. Evidently E(v) is p-continuous
on Ug. By Lemma 5 Uy is p-compact, therefore there is at least one mini-
mum value Ey=FE(vy), voUg. Then we have

oV
on | ov
1 9% | 0V
0v | on ds>0
ow, on

for any v €Ug. This implies the inequality E(v) >1 for any v €Ug. Let ¢ be
any sufficiently small positive number, then (1 — &)v, + ev € Ug is for any v € Ug
a competing function and hence

E(o) = E((1—¢&)vo+ ev)

()
on <_@1 %)ds

(%)2 on  om
Jow \ On

<QK>“’ (@2_%)2/(%)2
0 on/ \on on//\on d
B T o 22 0m) (00 i’

w, on on~ on)/ on

:-‘E(Uo)—'é‘

Since the last term is dominated by
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vy
&2 on|, om OV, . ,
1—¢ %\ % andS—O(S),
awy O on
we have
(o)
on /) (0v _ vy <
%>2< on  on >d8=0’
aw, (d n
that is,
()
Ewyz| S0m0 0 45— N

(@@)2 on
awi \ On

for any veUg. By Lemma 6 there exists at least one member v; €Ug such
that

v
_\ _on 0w
E(vo) = v, om ds,
aw, On
considering
av jov
on/ on

as function of K or more precisely as the boundary value of a function of
K®, Therefore we see that

0 <N(vy) <E(v5) < N(wp)2 S %ds = N2

oW,

by Schwarz’ inequality. Hence we have E(v) =<1. The discrepancy between
E(v) =<1 and E(ve) >1 shows that the assumption U = Uy is untenable. Hence
we get the following

THEOREM 1. Up=Ug and hence HP(W —W,) =Hg(W —W)).
By this theorem any v(p) € HP(W—W,) can be written as follows:
o) = | oo, M)do ).
However, this mass-distribution ¢,(M) is, in general, not unique.
Martin’s other theorems remain valid with some modifications and the

method of proofs for them is quite similar to the original one. So we shall
only state the Martin’s main theorem:
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For any veHP(W —W,), there exists a unique mass-distribution o, on
Ay A such that

v= j 9(p, M)doy(M),
dm

where A, is a subset of 4 comsisting of the minimal points M for which
g(p, M) is minimal in Martin’s sense in HP(W —W).

Heins’ theorem 11.2 in [1] can be extended in our case, that is, if there
is only one value L.(M) for any u €K, then dim HP(W —W ) =1 and hence
W has only one ideal boundary component and vice versa. If further there is
one u €K® such that u(M)>0, M4, then WeOs and hence W—W, is a
Heins’ end and its Heins’ harmonic dimension equals one.
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