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HOLOMORPHIC GEODESIC TRANSFORMATIONS
EDUARDO GARCiA-Rio! AND LIEVEN VANHECKE

Abstract

We treat holomorphic geodesic transformations with respect to points and
(holomorphic) submanifolds in an almost Hermitian manifold. We derive necessary
and sufficient conditions for the existence and study how it influences the geometry of
the submanifold. Furthermore, we use these transformations to characterize locally
Hermitian symmetric spaces and complex space forms. Also, we determine all
holomorphic geodesic transformations in such space forms.

1. Introduction

Roughly speaking, geodesic transformations with respect to points or sub-
manifolds P in a Riemannian manifold M are local diffeomorphisms which
transform a tubular hypersurface about P into another tubular hypersurface by
moving points along normal geodesics of P and leaving the points of P
fixed. These transformations are extensions of geodesic symmetries and local
reflections with respect to submanifolds. They have been introduced in [5],
[13] (see also [3]). In [5]-[8], we studied conformal and divergence-preserving
geodesic transformations and used them to characterize real, complex and
quaternionic space forms and harmonic spaces as well as special classes of
submanifolds. Isoparametric hypersurfaces in real space forms or Hopf hy-
persurfaces with constant principal curvatures in complex space forms are typical
examples.

For an almost Hermitian manifold M, isometric, symplectic and holomorphic
geodesic symmetries and reflections with respect to submanifolds have been
treated in [2], [12] (see also [14]). As has been shown in [5], [7], an isometric
or symplectic geodesic transformation reduces automatically to the identity map
or a local reflection. For that reason, we focus here on the study of holomorphic
geodesic transformations. In Section 2, we begin by collecting some useful
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material about the geometry of tubular neighborhoods of a submanifold and
derive the first results. More precisely, we prove that the submanifold P is
necessarily holomorphic. Furthermore, we study the initial conditions in order
to be able to detect the identity map and a local reflection. In Section 3, we
derive the necessary and sufficient conditions for holomorphicity and focus on
necessary conditions for the extrinsic geometry of P, in particular when the
ambient space is a Kéhler manifold. Furthermore, in Section 4, we determine a
characterization of manifolds which are locally isometric to a Hermitian sym-
metric space and of complex space forms by using holomorphic geodesic trans-
formations with respect to points. Moreover, and when the ambient space M is
such a space form, we determine all the holomorphic geodesic transformations
with respect to points and submanifolds.

2. Holomorphic geodesic transformations. Preliminaries and first results

Let (M,g) be a connected Riemannian manifold and V its Levi Civita
connection. R denotes its Riemann curvature tensor taken with the sign con-
vention Ryxy = Vix,y] — [Vx, Vy] for all smooth vector fields X, Y. Furthermore,
we put Ryyzw = R(X,Y,Z, W) =g(R(X,Y)Z,W). Next, let P be a topolog-
ically embedded submanifold. In what follows (M,g,J) denotes an almost
Hermitian manifold. For simplicity, we assume that all the considered data are
analytic although at some places smoothness is sufficient to obtain the required
result. It will be clear from the proofs where this weaker condition can be used.

Let exp, denote the exponential map of the normal bundle v of P. A
geodesic transformation gp with respect to P is a map defined by

21) 9p : p = exp,(ru) — ¢p(p) = exp,(s(r)u)

which leaves P invariant (that is, s(0) = 0). Here, « is an arbitrary unit normal
vector of P. Moreover, r and s are supposed to be sufficiently small such that
@p is a local difffomorphism. In the rest of the paper we shall assume that s is
analytic in a neighborhood of r=0.

The geodesic transformation ¢, on (M,g,J) is said to be holomorphic if

(2.2) pp,oJ =Jogp.

To describe analytically the map ¢p defined in (2.1) and the condition (2.2)
we use Fermi coordinates. We briefly recall the definition and refer to [9], [10]
for more details and further references. For a point m of P, let {Ei,...,E,},
n=dim M, be a local orthonormal frame field of (M,g) defined along P in a
neighborhood of m. We specialize this field such that E,...,E;, g =dimP,
are tangent to P. For a system of coordinates (3',...,»7) of P in a neighbor-
hood of m such that (8/dy')(m) = E;(m), i=1,...,q, the Fermi coordinates
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(x!,...,x") with respect to m, (y',...,)9) and {E,...,E,} are defined by

n
x* (expv (Et“Ea)) =y, i=1,...,q,
g+1

n
x“(expv<2t“Ea>)=t“, a=q+1,...,n

gq+1

in a neighborhood of the zero section of P in v, taken sufficiently small to have
a diffeomorphic exp, on that neighborhood. For a point P, these Fermi co-
ordinates are the usual normal coordinates.

Now, put s(r) = p(r)r where r denotes the normal distance function to
P. We have r =37 1(x%)?. Then ¢p is described as follows:

op: (X x9 X ) e (XL X p(n)x T L p(r)X™).

Clearly, we have

@p i=i i=1,...,q

(2'3) * axl ax,7 b 9 )
0 d , or @

PP 53 =P oxa TP xa oy

Next, we specialize the frame field {E,...,E,} such that E,(m)=u for
p =exp,(ru). The following proposition is an immediate consequence of (2.3)
and (2.2).

PROPOSITION 2.1.  The geodesic transformation ¢p in (M,g,J) is holomorphic
if and only if with J(8/0x*) = JB(8/0xP),a,p = 1,...,n, we have

(2.4a) J!(p) =T (0p(p)), (2.4b)  Jb(p) = TE(ep(p)),

(2.52) p(r)J2(p) =Jt(ep(p)),  (2.5b) Ji(p) = p(r)T(vp(P)),
(2.6a) s'(n)J7(p) =T (9p(p)),  (2.6b) s'(r)Jz(p) = p(r)T;(9p(P)),
(2.72) Ji(p) =5 (NTi(ep(p)),  (27b) p(r)JE(p) =5 ()T} (pe(P))
for i,je{l,...,q} and a,be{q+1,...,n—1}.

To prove some of our results, we will need power series expansions for the
components J? along a normal geodesic y:r~>exp,(ru). We now recall a
method to obtain these expansions. (See [9], [10], [14] for more details.) We
start from the frame field {E), ..., E,} chosen above and consider the frame field
{Fi,...,F,} obtained from {E;(m),...,E,(m)} by parallel translation along the
geodesic y through m = y(0). Furthermore, let Y,,a=1,...,n—1 denote the
Jacobi vector fields along y satisfying the initial conditions
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(2 8) { Yl(o) = Ei(m)) Yxl(o) = (V)" a—i_f)(m)’ i=1,...,q
' Ya(0) =0, Y!(0) = Ea(m), a=q+1,...n—1

where the prime denotes covariant differentiation along y. Then we have

Vi) = 200D, Yal) = r 2 0.

Next, put

Yy(r) = Dyu(r)Fo(y(r)), a=1,...,n—1.
Then the Jacobi equation yields
(2.9 D)+RoD,=0

where R(r)X = R,yxy'(r). To obtain the initial conditions for the endo-
morphism field D,, we use the following Gauss and Weingarten equations for P:

VY =VyY +TxY,
Vxé = T(E)X + Vi&

where X, Y are tangent to P and where ¢ is a (local) normal vector field of P. V
denotes the Levi Civita connection of the induced metric on P, T is the second
fundamental form, T'(¢) the shape operator with respect to & and V* the normal
connection. T and T'(&) are related by g(T(&)X,Y) = —g(TxY,¢) for all X, Y
tangent to P. Using the initial conditions (2.8), we then obtain

(2.10) D,(0) = (ﬁ’ 3) D,(0) = (_j;l(lgl) 1,,:_1)

where
T(u)ij = g(T(u)En E}) (m),

J-(u)ia = g(LgEq, En)(m)
and where | is an operator defined in [10] which satisfies (Lx(N))(m)=

(VEN)(m). .
Now, using the generalized Gauss lemma (see [9], [10]), we obtain
(2.11) gm(Pp) =1, gwm(p)=0, a=1,...,n-1,

and moreover, from the formulas given above, we get

g9ii(p) = (tDuDu)ij("L
(2.12) 9ia(p) = %(‘DuDu)ia(r),

9ar(p) =5 (DuD)o (")
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fori,j=1,...,q;a,b=q+1,...,n—1. Note that we often identify the spaces
{¥'(r)}* along y by means of the parallel basis {Fj,...,F,}. Using (2.9)-(2.12)
one may obtain power series expansions for the components g,z of the metric
tensor and hence also for the components g of the inverse g~! of g. More
precisely, we have [4], [14]

( 9(P) = g(E;, Ej)(m) + 2rg(T (u) E;, Ey)(m)
+r{—g(RW)E,, E)) + (T (4)E,, T(u) E))
+ g(’J.(u)Ei,' L(u)E;}(m) + 0(r3),

]

6a(p) = ~rg( LWE, Ex)(m) 3 °0(R(E, E)(m) + O(")

| g0s(p) = (e, B)om) — 5770 (R () Eay By )m) + O(7)

where p = exp,(ru).
For an almost Hermitian manifold (M, g,J) we denote by Q its Kihler form
defined by Q(X,Y) =g(X,JY) for tangent vector fields X,Y. Then we have

Jf - _ Qayg"ﬁ

and the desired power series expansions for J# can be determined from the ones
for g” and Q,,. The expansions for Q,, may be obtained in a similar way as
those of g,3. Note that an alternative method is given in [10]. We shall write
down the needed expansions at the places where we use them explicitly.

We end this section with three results. First, we derive an important con-
sequence of the existence of a holomorphic geodesic transformation ¢, on the
geometry of the submanifold P. It extends a result of [2] where it is proved that
if a local reflection with respect to P (that is, s(r) = —r) is holomorphic, then P
must be holomorphic.

THEOREM 2.1. Let ¢p be a non-trivial holomorphic geodesic transformation
with respect to P. Then P is a holomorphic submanifold.

Proof. With the notations as above we consider the unit speed geodesic
y :r—>exp,(ru) and adapt the frame field {Ei,...,E,} such that

(2.13) Jy'(0) = (dE; + cEg1)(m), cr+d*=1.
Using this and (2.3) at m = y(0), we get at once
5'(0)(dEg + cEgy1)(m) = dE,(m) + p(0)cEgy1(m).

This holds if and only if d(s'(0) —1) = 0. In the next lemma, we shall show
that s/(0) = 1 implies that ¢p is the identity map. Hence, the hypothesis of
non-triviality implies d =0 and this proves that P is a holomorphic
submanifold. O
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LeMMA 2.1.  The identity map is the only holomorphic geodesic transformation
which satisfies the initial condition s'(0) = 1.

Proof. We consider the same notations as in Theorem 2.1. Furthermore,
we put

(2.14) Jg(expv(ru)) = Z (B, 0)r.

t=0

First, we consider the case ¢ # 0. Since s'(0) = 1, from (2.6b) and (2.14) we
get

o0(q-+ 1,1) + {35 Osa(a-+ 1,n) + aa + 1m) }r+ 00

=og(g+ 1,n) + {s"(0)ao(q + 1,n) + 01 (g + 1,n)}r + O(r?)

and hence, we have s”(0)ao(q + 1,n) = 0. Furthermore, ag(q + 1,n) = J7,(m) =
—9(E4+1,JE,)(m) = —c # 0 and hence, 5”(0) =0. Next, put

s(r) =1+ B r® + 0(rF?)

where .,k >2, is the second non-zero coefficient in the expansion of s(r).
Using this in (2.6b), we obtain

k-1
(g +1,m)r" + {Br100(q + 1,n) + a(q + 1,n)}r* + O(r**1)
t=0
k-1
= alg+ 1L, + {(k+ 1D)Bryi%(g + 1,n) + ax(g + 1,m)}r*
=0
+ o(r*+h).

Considering the coefficients of r* in both members, we get

koo(g+ 1,n)k =0

and so, f;,; =0. The result s(r) =r now follows by induction.
Secondly, put ¢ =0. Then, by a similar procedure using (2.6a) for Jg, we
obtain the same conclusion. O

The above lemma shows that we can detect the identity map in the class
of holomorphic geodesic transformations by means of the initial condition
s'(0) =1. Now, we show that we can also detect the reflection s(r) = —r by
means of the condition s'(0) = —1.

LEMMA 2.2. The holomorphic geodesic transformation ¢p is a local reflection
if and only if 5'(0) = —1.
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Proof. We only have to prove the “if” part. We proceed as in the proof
of Lemma 2.1 taking into account that P is a holomorphic submanifold. So, we
put Egp1(m) =Ju=Jy'(0). Then (2.6b) yields

1+ {u(g+1,n) - %S"(O)}r +0(r?) =1 —{a1(g+ 1,n) + 5" (0)}r + O(?)
from which we get
(2.15) s"(0) = —4ay (g + 1,n) := —doy (Ju,u).

Now, we replace u by ucosf + Jusinf. Then we get from (2.15) by taking the
limit for 6 — =:

(2.16) s"(0) = —4ay (—Ju, —u).
The formula for the power series expansion for Jz,, yields that
(2.17) ay (—Ju, —u) = —ay (Ju, u)

and hence, from (2.16)—(2.17) we obtain that s”(0) =0. Next, put
s'(r) = =1 4 B r* 4+ O(r*+?)

where f;,, is the second non-zero coefficient, k > 2. Then, considering again
(2.6b), we get

k-1
Y (=1 (g + L) + {(-1)*a(g + 1,1) = Bry120(g + 1,m)}r* + O(r*+!)
t=0
k-1
=Y aulg+1,m)r + {a(g+ 1,n) — (k+ DBeo0(g + 1,m)}r* + OF).
t=0

Since og(g + 1,n) = —1, this yields

kBierr = {(=1)* — 1}a(g + 1,n).

So, for an even k, we get f;,; =0. When k is odd, we proceed as above and
replace u by ucosf+ Jusinf. This gives

kBt = —20e(~Ju, —u)

and since oy (—Ju, —u) = —ax(Ju,u) = —ox(q + 1,n), we obtain B, =0. Then
s(r) = —r follows by an induction procedure. O

3. Necessary and sufficient conditions. Extrinsic geometry and the
Kiihler case

We begin this section by determining the necessary and sufficient conditions
for a geodesic transformation to be holomorphic and firstly consider the case of a
reflection, that is, s(r) = —r. From Proposition 2.1 we get at once
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THEOREM 3.1. A local reflection gp with respect to a (holomorphic) sub-
manifold P is holomorphic if and only if

(3-1a) T/ (exp,(ru)) = J/ (exp,(—ru)),
(3-1b) Ja(exp,(ru) = J; (exp, (—ru)),
(3.22) T} (exp, (ru)) = ~J; (exp,(~ru)),
(3.2b) Ji(exp,(ru)) = —J;(exp,(—ru))

for i,je{l,...,q} and a,be{q+1,...,n}.

Secondly, we consider the case of a geodesic transformation which is not a
geodesic reflection. It will turn out that in this case the conditions are more
restrictive. We use the conventions made at the end of Section 2, that is, we
take a frame field {E, ..., E,} such that E,(m) = u, E;,(m) = Ju. Then we have

THEOREM 3.2. Let @p be a non-trivial geodesic transformation, different from
a local reflection, with respect to a holomorphic submanifold P. Then ¢p is
holomorphic if and only if the components J(exp,(ru)) are radial functions which
are independent of m e P and moreover,

(a) the components J}(exp,(ru)) are constant functions along normal geodesics
except possibly Jy,,(exp,(ru)) and J4* (exp, (ru));

(b) (S T3+ (exp, (ru) = 1.

Proof. First, suppose that these conditions hold. Then the conditions
(2.4)~(2.7) in Proposition 2.1 reduce to (2.6b) and (2.7b) and because of the
hypothesis (b) we are left with one single differential equation. This proves the
sufficiency.

Next, we prove the necessity by taking into account that s’ (0)2 #1. We
rewrite the conditions given in Proposition 2.1 by means of power series ex-
pansions and take in all the cases i,je{l,...,q} and a,be{g+1,...,n—1}.
Then (2.4a)-(2.7b) yield, respectively:

k-1 .
(33) (1= 5'(0) ) (i, j) = > (i) ( E By -ﬂp,> ;
=0 prtpi=k

k—~1
(3.4) (1 - 5'(0))ou(a,b) = Y ai(a, b)( 3 B ,gp,>,

=0 n++pi=k
335 SO0 Dax(i,b) == Y Bauli,b)

t+l=k+1
©>1

k-1
+2a,(i,b)( > ﬂpl--ﬁ,,,),

1=0 pr+-+pi=k
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k=1
(36) (1 - s,(o)k-H)ak(a’j) = ﬁl Zal(a’j) ( Z ﬂpl o 'ﬂp,)

=0 Pr+-+pi=k
+ Z ﬂt (Z al(a’j) Z ﬁpl o 'ﬂp,) )
t+1;:lf+1 1>0 p1+4pr=v
37 SOA-5SO ulim) == Y tBaui,n)
t+1;l§+l
k=1
+ Z oq(i,n)( Z By, "'ﬂm)’
1=0 pit+-+o=k
(3.8) (01 -5 (0o (a,n) = — Z tB,0y(a,n)
t+1;/§+l
k-1
+ B Z oc,(a,n)( Z B,, "'ﬂm>
=0 pr+tpi=k
+ Z ﬂt (Z oc;(a, n) Z ﬂpl o 'ﬂpl),
t+l;§lf+l 1>0 P1t+-+pI=v

k=1
(39)  (1=50"Nu(n,j) =8 Zoq(n,j)( Z By, "'ﬂm)

I=0 p1+tpi=k
- 3 w(Tawh T )
t+v=llc+l 120 P+ tpr=v

>

(3.10) S(0)(1 -5 (0 )aw(mb) == > B(n,b)

t+1=k+1
>1
k-1
+ﬂ12a1(n,b)< > ﬂpx'"ﬁp,)
=0 pr+-+pi=k
+ Z tﬂ,(Zal(n,b) Z Bpl"'ﬂpz)
t+‘;:llc+1 120 P+ =y

where J](exp,(ru)) = 35 o %(8,7)r* and s(r) = 32, | Bir'.
Now, using (3.3)—(3.10), an induction procedure yields that the ax(d,y) are
independent of m and u. Moreover, the same formulas show that each co-
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efficient oy is completely determined by the coefficients a; for / < k and by the
coefficients B, Hence, if « vanishes, then J(exp,(ru)) =0. Moreover, for
d,7e{l,...,q} or {g+1,...,n—1}, (3.3) and (3.4) yield «; = 0 and then, using
again an induction procedure, we obtain o, =0 for all £ > 1. This shows that
Jg.1(exp,(ru)) and J?*1(exp,(ru)) are constant along normal geodesics. This
proves statement (a).

Finally, ¢p must satisfy (2.6b) and (2.7b). From this, we get

F(r)=F(s)
for F(r) = (J; 1741 (exp,(ru)). Since F(0) =—1 and proceeding as before,
we get F(r) = —1. This proves statement (b). O

Next, we focus on some consequences concerning the extrinsic geometry of
the holomorphic submanifold P. In what follows we only consider non-trivial
geodesic transformations without mentioning it explicitly.

THEOREM 3.3. Let gp be a holomorphic geodesic transformation with respect
to P. Then we have

(3.11) T(JX,JY) - T(X,Y)=0

for X, Y € TP and moreover, (V,J)X is normal and (V,JJ)V tangent to P for all u,
VeT'P and X € TP.

Proof. Using the method described in Section 2, we get
—J] (exp,(ru)) = g(E,, JE,)(m) + r{g(E,, (NJ)E)) + 9(T (u) E,, JE))
+ 9(E,, JT(u)E)) + 2g(T (u)JE;, E))}(m) + O(r?).

Proceeding as in [2, Theorem 10], we get (3.11).
Moreover, since g(E,, (V,J)E;) must vanish for all i,j € {1,...,q}, we get that
(WJ)X must be normal to P for all X e TP. Finally, since

—~J3 (exp,(ru)) = g(Ea, JE3)(m) + rg(Eq, (uJ ) Ep)(m) + O(r?),

we have g(E,, (VuJ)Epy) =0 which shows that (V,J)V is tangent to P for all
VeTtP. O

Furthermore, concerning the normal component of (V,J)X, X e TP, we have

THEOREM 3.4. Let gp be a holomorphic geodesic transformation which is not
a local reflection. Then we have

(3.12) (VD)X = ('L(w) =* L@)I)X
for all X € TP and ue T+P.
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Proof. Using again the method described in Section 2, we get
Qu(exp, (ru)) = g(E,, JEr)(m) + r{g((VJ) Ex, E) + 9(T (u) E;, JEx)
— 9(T(u)Ex, JE))}(m) + O(r?),

Qic(exp,(ru)) = r{g((VW))Ee, ) — 9(' L(W)E;, JE) } (m) + O(r?)

for i,je{l,...,q} and ce {g+1,...,n}. Hence, we obtain
—J} (exp,(ru)) = r{g(Es,J* L(u)E;) — g(Ep," L(u)JE))
~ 9(Ep, (%l )E)}m) + O(r?).

So, this and Theorem 3.2 yield the required formula (3.12) since (V,J)E, is
normal to P (Theorem 3.3). O

Now, we restrict to Kédhler geometry and derive some consequences from the
above results.

THEOREM 3.5. Let (M,g,J) be a Kihler manifold and P a holomorphic
submanifold such that ¢p is a non-isometric holomorphic geodesic transforma-
tion. Then P is totally geodesic and the normal connection satisfies VigxJY +
V3Y =0 for all Xe TP and Y € T*P.

Proof. For a Kihler manifold we have, since P is holomorphic,

T(X,Y)+ T(JX,JY)=0

and hence, from this and (3.11), we obtain 7 =0, that is, P is totally geodesic.
Moreover, since ¢p is non-isometric, it is neither the identity map nor a local
reflection (see Remark 4.1). Hence, from (3.12) we get

L(u)oJ =Jo L(u).
Using the definition of L, this implies
VixY =JVyY
for all X e TP and Y € T*P. From this the result follows at once. O
THEOREM 3.6. Let (M,g,J) be a Kihler manifold and ¢p a holomorphic
geodesic transformation with respect to P. Then R(u,Ju)u is normal to P for all

ue TLP. Moreover, if pp is not a local reflection, then R(u,Ju)u is proportional
to Ju.

Proof. Since (M,g,J) is Kéhlerian, it follows from the proof of Theorem
3.5 that P is totally geodesic. Then we get

—J"(exp,(ru)) = rg(‘ L(w)E,, JE,)(m) — %rzR(u, Ju,u, E,)(m) + O(r?).
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Now, it follows from Theorem 3.1 and Theorem 3.2 that R(u,Ju,u, E,) must
vanish and hence R(u,Ju)u is normal to P. Furthermore, we have

I (exp, (ru)) = g(Ea, JEy)(m) — %rzR(u,Ju, u, Ea)(m) + O(*).

Now, if gp is not a local reflection, then Theorem 3.2 yields that J7 is constant
along a normal geodesic for ae {g+2,...,n—1} where Eg(m)=Ju. So,
R(u,Ju,u,E;) =0 and this implies the result

4. Holomorphic geodesic transformations and complex space forms

We begin with a characterization of manifolds which are locally isometric to
a Hermitian symmetric space and of complex space forms.

THEOREM 4.1. Let (M,g,J) be an almost Hermitian manifold. Then it is
locally isometric to a Hermitian symmetric space if and only if there exists a
holomorphic geodesic transformation ¢, with respect to each point m of M.
Furthermore, it is a complex space form if there also exists a holomorphic geodesic
transformation, which is not a local reflection, for some point me M.

Proof. When P reduces to a point m of M, the Fermi coordinates are the
usual normal coordinates and then we have

—J 2 (exp,u(ru)) = (6°°Quac) (M) + r(9”Viuc) (m)
1 1 1
+ rz{ Egc”Vquac - ggd’(Ruach - Ruqua) + §Rucubgac} (m)

+ 73{ vaiu ac — _gd, Z uautV th + RutucV Qat)

1
127

#33 Rucw ke [ ) + 00,

(V Ruach V. Ruqua) + = 6 Z \% Rucuanc

Now, we use Theorem 3.1 and Theorem 3.2. It follows that the coefficient
of r must vanish and hence VJ/ =0. So, (M,g,J) is a Kihler manifold.
Furthermore, the vanishing of the coefficient of r3 then yields

VuRuauJb - VuRubuJa + 2VuRuJaub =0.

By substituting E,(m) by u and Ep(m) by Ju in this relation, we get V,Rujuuu =0
and this implies that (M, g,J) is locally isometric to a Hermitian symmetric space
(see, for example, [12]).

The converse is well-known.
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Finally, suppose now that for some point me M, ¢, is not a local re-
flection. Then it follows from Theorem 3.6 and [11] that (M, g,J) is a complex
space form. O

The characterization of complex space forms follows from this theorem and
the following classification theorem.

THEOREM 4.2. Let M(c) be a complex space form of constant holomorphic
sectional curvature c. Then we have the following holomorphic geodesic trans-
formations:

(1) @, is a local reflection (or equivalently, ¢, is an isometry);

(2) @, is given by s(r)=Cr,CeR and C?> #0,1, if c=0;

(3) @, is determined by

Ve Ve

tans ~- = Ctanr—z—, CeR, C*#0,1,

if ¢>0;
4) ¢,, is determined by

tanh s V2’0= Ctanhr————vz_c, CeR, C*#0,1,

if ¢<0.

Proof. First, for a complex space form, every local reflection with respect to
a point is isometric and holomorphic.

Next, we determine the non-isometric ¢, for an M(c). We consider the
case where c is positive. The two other cases are similar. Using the technique
given in Section 2, a straightforward computation yields

e 000 = (1 sinre ) B0,

rye
a’fﬁ ((r) = (72\/_-2 sin r\/E) Fa(y(r))

for F; =JF, and ae{2,...,n—1}. From this we get
JE=0, Jl=0, J2=0, J'=0,

RO0) = 77z sinr e

-1
R0 = (7 sinrve)
P00)) = 90F B (7)) = 9w By).

Hence, the conditions given in Theorem 3.2 are satisfied. Moreover, the defining
differential equation (2.6b) (or equivalently, (2.7b))
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' rs' (NJ7 (r(r)) = s(r)J7 ((s))
1S

dar ds
sinry/c  sinsy/c’
Hence, we have
tans\/TE=Ctanr\/72. O

Remark 4.1. A.- It has been proved in [4] that a local reflection is harmonic
if and only if it is an isometry. Furthermore, as is well-known, any holomorphic
map in a Kdhler manifold is harmonic (see [4] for references). Hence, it follows
that the transformations given in (2), (3) and (4) of Theorem 4.2 are non-isometric
harmonic maps.

B.- Note that the defining relations in (2), (3) and (4) also define conformal
geodesic transformations in real space forms [5].

We finish this section with the consideration of holomorphic geodesic
transformations with respect to submanifolds P of dimension >1 in complex
space forms. Then the situation is quite different. We have

THEOREM 4.3. Let M(c) be a complex space form and ¢p a non-trivial
holomorphic geodesic transformation with respect to a holomorphic submanifold
P. Then we have

(i) @p is isometric and hence a local reflection with respect to a totally
geodesic P, or

(i) M(c) is locally flat, P totally geodesic and pp is determined by s(r) = Cr,
C2#£0, 1
and conversely.

Proof. 1If gp is an isometry, then P is totally geodesic and moreover, ¢p is
a local reflection [8]. Conversely, if ¢p is a local reflection with respect to a
holomorphic totally geodesic P, then ¢p is an isometry [2, Corollary 4] and it is
also holomorphic [2, Corollary 20].

Next, let ¢p be non-isometric. Then Theorem 3.5 implies that P is totally
geodesic. Using the Ricci equation (see [1]) and the condition for the normal
connection given in Theorem 3.5, it then follows that RY(X,JX,Y,JY)=
(¢/2)9(X,X)g(Y,Y) =0 for X € TP, Y € T*P and hence, ¢ =0.

Conversely, if (M,g) is locally flat, we get with the usual choice of Fermi
coordinates as before:

0 0 0

7 PO = FEOW), w5 () = JE(O((1), 52 (1) = Fa(y(r))
where ie{l,...,q} and ae{q+1,...,n—1}. Then the result follows from
Theorem 3.2 by proceeding as in the proof of Theorem 4.2. O

Remark 4.2. For Kihler manifolds which are not complex space forms, the
situation is different. For example, an explicit calculation as in Theorem 4.2 or
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Theorem 4.3 shows that the relations given in Theorem 4.2 (2), (3), (4) determine
holomorphic geodesic transformations with respect to an almost Hermitian
manifold P where P is considered as a totally geodesic holomorphic submanifold
in the product P x M(c).

REFERENCES

[1] B.Y.CHeN, Geometry of Submanifolds, Pure Appl. Math., 22, Marcel Dekker, New York,
1973.

[2] B. Y. CHEN AND L. VANHECKE, Isometric, holomorphic and symplectic reflections, Geom.
Dedicata, 29 (1989), 259-277.

[3] J. E. D’ATR1, Geodesic conformal transformations and symmetric spaces, Kddai Math. Sem.
Rep., 26 (1975), 201-203.

[4] S. DonnmNi, G. GIGANTE AND L. VANHECKE, Harmonic reflections with respect to submani-
folds, Illinois J. Math., 34 (1990), 78-86.

[5] E. Garcia-Rio aAND L. VANHECKE, Geodesic transformations and space forms, Math. J.
Toyama Univ., 20 (1997), 57-77.

[6] E. Garcia-Rio AND L. VANHECKE, Geodesic transformations and harmonic spaces, to appear
in Rend. Circ. Mat. Palermo.

[7] E. Garcia-Rio AND L. VANHECKE, Divergence-preserving geodesic transformations, to appear
in Proc. Roy. Soc. Edinburgh

[8] E. Garcia-Rio AND L. VaNHECKE, Conformal geodesic transformations, to appear in Arab J.
Math. Sci.

[9] A. Gray, Tubes, Addition-Wesley Publ. Co., Redwood, 1990.

[10] A. GrAY AND L. VANHECKE, The volumes of tubes in a Riemannian manifold, Rend. Sem.
Mat. Univ. Politec. Torino, 39 (1981), 1-50.

[11] K. Nomizu, Conditions for the constancy of the holomorphic sectional curvature, J. Dif-
ferential Geom., 8 (1973), 335-339.

[12] K. SEKiGAwA AND L. VANHECKE, Symplectic geodesic symmetries on Kéhler manifolds, Quart.
J. Math. Oxford, 37 (1986), 95-103.

[13] S. TacHiBANA, On Riemannian spaces admitting geodesic conformal transformations, Tensor
N. S, 25 (1972), 323-331.

[14] L. VANHECKE, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ.
Cagliari, 58 (1988), suppl., 73-176.

FACULTADE DE MATEMATICAS

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
15706 SANTIAGO DE COMPOSTELA, SPAIN
e-mail: eduardo@zmat.usc.es

DEPARTMENT OF MATHEMATICS

KATHOLIEKE UNIVERSITEIT LEUVEN
CELESTUNENLAAN 200B, 3001 LEUVEN, BELGIUM
e-mail: lieven.vanhecke@wis.kuleuven.ac.be





