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A PINCHING PROBLEM ON SUBMANIFOLDS WITH PARALLEL

MEAN CURVATURE VECTOR FIELD IN A SPHERE

ZHONG HUA HOU

Abstract

Let Mn be a closed oriented submanifold with nonzero parallel mean curvature
vector field immersed into a unit sphere Sn+P. Denote by S the square of the length of
the second fundamental form. We consider a pinching problem on S. We give a
pinching constant C on S which depends only on n and p. It is better than one given
by Xu [12]. When p = 1,2 or n > 8, we show that it is the best possible among this
kind of pinching constants. We also characterize those Mn with S = C.

1. Introduction

Let Mn be a closed oriented submanifold of dimension n with parallel mean
curvature vector field immersed into an (n +p) -dimensional unit sphere *Sπ+/\ De-
note by H the mean curvature and by S the square of the length of the second
fundamental form. We propose to consider the pinching problem on S, that is,
finding a constant C such that, if S < C on Mn, then Mn is totally umbilical. The
constant C so obtained is called the pinching constant of S. Moreover, for any
ε > 0, if there exists an Mn in 5"+/7 such that Mn is not totally umbilical and
C < S < C 4- ε, we say that C is the best possible pinching constant. It is known
that, for a closed oriented submanifold of dimension n with parallel mean
curvature vector field immersed into an (n +/?)-dimensional unit sphere Sn+P, it is
totally umbilical if and only if it is an w-sphere in Sn+P.

When Mn is minimal, Simons [11] obtained a pinching constant n/{2 - \/p)
of S and showed that it can be attained. Chern-do Carmo-Kobayashi [3] and
Lawson [6] classified those minimal submanifolds with S = n/{2- \/p) in Sn+P.
When p > 2, Li's [7] improved Simons' pinching constant to 2«/3, and showed
that it can be attained only by Veronese surface in a totally geodesic S4 of Sn+P.

The pinching problem on S for submanifolds with parallel mean curvature
vector field immersed into a sphere was firstly studied by Okumura [8, 9]. Up to
now, there are many remarkable results obtained. The pinching constant de-
pending on H was firstly obtained by Okumura and improved by Alencar-do
Carmo [1] (for p = 1) and by Xu [13] (for p > 1). Since H is a geometric
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invariant depending on a specific immersion, it is meaningful to give a pinching
constant independent of any specific immersions.

The pinching constant depending only on n and p was firstly obtained by
Yau [14]. He proved that, for a closed submanifold Mn with parallel mean
curvature vector field immersed into Sn+P, p > 1, if S < n/{3 + y/n- \/{p - 1)},
then Mn lies in a totally geodesic Sn+ι of 5n+/?. This result was improved by
Xu [12], who showed that, under the same assumptions as above, if S <
min{2«/(l + y/n),n/{2 - l/(p - 1)}}, then Mn lies in a totally geodesic Sn+1 of
Sn+P. Furthermore, under additional assumptions, Xu [12] proved that Mn is
totally umbilical.

Among all the possible pinching constants depending only on n and p, it is
significant to find the best possible one. The author [5] showed that 2y/n— 1 is
the best possible pinching constant depending on n for p = 1. In this paper, we
will give a pinching constant C of S depending on n and p. It is better than the
one given by Xu [12]. When p — 1,2 or n > 8, we assert that it is the best possible
one among this kind of pinching constants. We also characterize those Mn with
S=C.

Precisely, we propose to prove the following theorems. Denote by Sn(r) the
standard n-dimensional sphere of radius r and define C by

(*) C = min< 2\Jn- 1,-—,. * . — \
W 1 Ί + (l/2)sgn(/7-2)J
where sgn( ) is the standard sign function. Then we have:

THEOREM 1. Let Mn be an oriented closed submanifold immersed into the
unit sphere Sn+P, with nonzero parallel mean curvature vector field, IfS<C, then
S is constant and Mn is a small sphere Sn(l/^l +S/ri) in Sn+P.

THEOREM 2. Let Mn be an oriented closed submanifold immersed into the
unit sphere Sn+P, with nonzero parallel mean curvature vector field. Suppose n > 2
and S=C. Then:

(i) If p = 1,2 or n > 8, then C = 2y/n- 1 and Mn is either a small sphere
Sn(r0) in Sn+P or a torus Sι(r) x Sn~ι(s) in a totally geodesic sphere Sn+ι ofSn+p,
where r\ = n/(n + 2Vn~^ϊ)} r2 = 1/(1 + y/ή^\) and s2 = Vn^

(ii) Ifp > 2 and n<7, then C = 2Λ/3 and Mn is a small n-sphere
in Sn+p.

THEOREM 3. (i) Let M2 be an oriented closed surface immersed into the unit
sphere S2+p, with nonzero parallel mean curvature vector field. Ifp > 1 and S = C,
then M2 is a small sphere 52(l/\/2) (j> = 2) or S2{yJTβ) (p > 3) in S2+p.

(ii) For any ε > 0, there exists a pseudo-umbilical surface M2 in S2+p such
that:

(a) M2 is not totally umbilical;

(b) M2 is one with nonzero parallel mean curvature vector field;
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(c) C < Sε < C -f ε, where Sε is the square of the length of the second
fundamental form of Me

2.

COROLLARY 2. Above theorems show that, when p = 1,2, n — 2 or n > 8, C is
the best possible pinching constant of S depending only on n and p.

We also get a result concerning Erbacher's problem discussed in [3].
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2. Formulas of Simons' type

Let Mn be a closed oriented submanifold with nonzero parallel mean
curvature vector field immersed into the unit sphere Sn+P. From now on, we
identify Mn with its immersed image and agree on the following index ranges:

q<A,B,C,... <n+p.

Take a local orthonormal frame {eAY/J!ι in F(Sn+p) on M such that {ei]n

ι=ι

lies in the tangent bundle &"(M) and {e<xKU£+i in the normal bundle Jί{M). Let

{COAYAII be the dual coframe of {CAYAIV L e t (ωAB)n^B=ι denote the Riemannian

connection matrix associated with {COAY^I Then (ω,y)",=1 defines a Riemannian

connection in &~(M) and (ωα^)"^= / I + 1 defines a normal connection in Jf(M).
It follows that the second fundamental form of M can be expressed as

where ωi(X = Σn\ h*jωi a n c * A? = A» for all α = n + 1,... ,n+p and i,j = 1,...,«.

Denote Lα = (A^)nXΛ and i/α = (1/n) ̂ ω K for α = « + 1,... ,Λ +/>. Then

the mean curvature vector field £ is expressed as ξ = J ^ i7αeα. We denote by

^Γ the length of ξ and by S the square of the length of the second fundamental

form, i.e., H = \\ξ\\ and S = Σ(α,i,y) W/)2 The Riemannian curvature tensor

{ R } and the normal curvature tensor {Ruβki} are expressed as

j , - δaδjk) + /&/#

Define the first and the second covariant derivatives of {hy}9 say {hyk} and

} b
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(1) VA? = A« kωk = dh%

(2) VA?.Λ = ha

ijklωι = Λ« t

It follows from Ricci's identity that

(3) Ay* = ASy. ^Jkl-^Jlk = j j

The Laplacian of A?- is defined by ΔA? = J ^ h1Jkk. Using (3), we have

where we denote Sgψ = Σίίj) ^ o ^ ^0Γ α»^ = n + 1? ?w + P
Define iV(^4) = Σ(, j) α^ for a matrix 4̂ = (α//)"J=1 and denote 5 α = S α α for

all α. Then we have, for every fixed α,

(4) ^jA^^S.-n'H^nY^HβΊriLl^-Sl,^ ]Γ 5^
(U) (β) (β>n+l)

-N(LαLn+ι-Ln+ιLα)-

Choose en+\ to have the same direction as ξ such that ξ = Hen+\. Then we
have

(5) Hn+ι=H; Hα = 0, α = n + 2,...,«+/?.

Since ξ is nonzero and parallel, we have that H Φ 0 is constant and en+\ is
parallel. It follows that LΛ+iLα = LαLn+ι. From (4), we obtain

(6)

(7)

We recall that a submanifold is said to be pseudo-umbilical if the mean
curvature vector field is nonzero and lies in an umbilical direction of the



PINCHING PROBLEM

fundamental form. Define Sn+\ by

(**) Sn+

It is easy to get the following

39

(U)

LEMMA 1. Let Sn+\ be defined as in (**). Then Sn+\ = Sn+\ - nH2 > 0 and

the equality holds if and only if Mn is pseudo-umbilical.

We denote / = Tr(Ln+i) 3 and 5/ = Σ(/?>*+i) sβ- X t follows from (6) that

(Sn+ιβ)
2.(8) Σ ^ Δ λ f 1 =nSn+ι+nHf -n2H2 - S2

n+λ-

Using the same arguments as in [5], we have

(9) Σ hpιAhpι > Sn + 1 j * - (5n + 1 - nH2) - ^

It follows from (5) that

Σ (S^β)2 = Σ
(β>n+l) {β>n+\) \ (ij)

By applying Schwarz's inequality to the right hand-side of (10), we have

(11)

Substituting (11) into (9), we have

(12) ψψ {n - {Sn+λ - nH2) - Sj -

= Sn+ι\n- S + nH2 -ΛZ^
{ Vn - 1

>Sn+Jn-S + nH2- H~2 H\fn§\,
I Vn - 1 J

where S = Sn+\ + S> = S - nH2.
Using the same arguments as in [5] to the last term of (12), we obtain

(ij)
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It follows that

1 ^_^ „ ^ ^ / n \
ίΛ1\ A C \ ^ /Ί,W+1\2 i \ ^ LΠ+l A I.W+1 -^ c I *. C I

(ίJΛ) (z"j) ~~

Taking integrations on both sides of (13) on M n , we obtain

(14) 0 > I Sn+ι (n - 2J—j- s ) .

If 5 < 2Λ/Λ~—T, we have from (13), (14) and Hopf's Lemma that Sn+\ is constant
and

It follows from Lemma that Sn+\ is also a constant. Therefore we obtain the
following

PROPOSITION 1. Let Mn be a closed submanifold immersed into a unit sphere
Sn+P, with nonzero parallel mean curvature vector field. If S < 2\/n — 1, then we
have:

(i) S = 2Vn- 1; or
(ii) Sn+\ = 0 and Mn is pseudo-umbilical.

If Mn is not pseudo-umbilical, we have from (12) that Si = 0. It follows
that Mn lies in a totally geodesic sphere 5 Λ + 1 of Sn+P. From a result in [5], we
get the following

COROLLARY 1. Under the same assumptions as in Proposition 1, we have:
(i) Suppose n > 2. If Mn is not pseudo-umbilical and S < 2\/n — 1, then

S = 2Vn- 1 and Mn is a torus Sx(r) x Sn~ι(s) in a totally geodesic sphere Sn+ι

of Sn+P, where r2 = 1/(1 + Vn^ϊ) and s2 = y/n=Ί/(l + Vn~^Ί);
(ii) Suppose n — 2. If S < 2, then M2 is pseudo-umbilical.

Sketch of the proof of Corollary 1. (i) is obvious from [5]. To prove (ii),
we need only to consider the case 5 = 2. Supposing that M2 is not umbilical,
we have that M2 can be immersed as a flat torus Sι(r) x Sι(s) into a totally
geodesic sphere S3 in Sp+2. But the only flat torus with S = 2 in S3 is the
Clifford torus, which is minimal. This contradicts the assumption H Φ 0. We
complete the proof. Q.E.D.

From now on, we suppose that Mn is pseudo-umbilical and p > 2. In
this case, we know that Mn can be minimally immersed into a hypersphere

ι / of
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Chen [2] proved the following classification result (see also Santos [10, pp.
411]): Let Mn be a compact pseudo-umbilical submanifold of Sn+P,p > 2, with
parallel mean curvature vector field. If S < n(\ +H2)/{2 - \/{p - 1)}, then
either (i) S = 0 and Mn is totally umbilical; or (ii) S = n{\ + H2)/{2 - \/{p - 1)}
and Mn is a minimal Clifford hypersurface in Sn+ι(l/Vl + H2)<-^Sn+2 or M2 is

a Veronese surface in S4(l/Vl + # 2 ) -̂> S 5 .
We propose to give an improvement to this result.
Since Ln+\ = HIn in this case, we have, from (10),

(15)
(β>n+ϊ)

It follows from (7) and (15) that

(16)

(Sn+lβΫ=0.

CM2" Σ
) (ot,β>n+l)

N{LβLa-ULβ).

We have to estimate the sum of the last two terms in the right-hand side of (16).
Li's [7] proved the following

LEMMA 2. Let A\,A2,... ,Aq be symmetric (n x n)-matrices, where q>2.
We denote Saβ = ΎrAξAβ,Sa = Sα α = N{Aa) and S = S\+ - + Sq. Then

(17) Σ'
(«,β)

ΣN(AβAx-.

and the equality holds if and only if one of the following conditions holds:
(i) Aι = ' = Aq = 0;
(ii) only two of the matrices A\,A2,...,Aq are different from zero. Moreover,

assuming A\ ΦO^AiΦO and A3 = = Aq = 0, we have S\ = S2 and there exists
an orthogonal (n x n)-matrix U such that

UA2U
τ = x m 1

0

1

0

1

0
0

V
Together with the case q = 1, we obtain

(18) Slβ + Σ N(AβA« ~

Replacing ^4α's in (18) by L/s with β > n+ 1, we have

Σ
(θL,β<n-\-l)

Σ
(aL,β>n+\)
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Substituting above inequality into (16), we obtain

Λ«ΔΛJ :> S>{n(l + H2) - [1 + (1/2)sgn(/r - 2)]S,}.
ι+l)

It follows that

(19) 2

> Sj{n(l + H2) - [1 + (1/2) sgn(/r -

Using (19), we can improve Chen's result as follows:

PROPOSITION 2. Let Mn be a closed pseudo-umbilical submanifold
with nonzero parallel mean curvature vector field immersed into a unit sphere
Sn+P with p > 2. Then Mn can be minimally immersed into a hypersphere
S^P-^l/VΪTH1) mSn+P. Furthermore, if Si < n ( l + / / 2 ) / [ l + (l/2)sgn(/>-2)],
we have:

(i) 5/ = 0 and Mn is a small sphere Sn(l/Vl+H2) in Sn+P;

(ii) Si = n(\+H2) and Mn is a Clifford torus Sk(r) x Sn~k(s) in a hyper-

sphere Sn+λ{l/Vl +H2) in a totally geodesic sphere Sn+2 of Sn+P\

(iii) Si = (4/3) (1 + H2) and M2 is the Veronese surface in a hypersphere

SΛ(l/y/l+H2) in a totally geodesic sphere S5 of Sn+P.

Proof It is clear that Mn can be minimally immersed into a hypersphere
Sn+P-ι(\/y/\+H2) in Sn+p. Let us prove assertions (i)-(iii).

First, we have to show that (19) works on the reduced immersion.
Recall that the normal connection matrix of Mn in Sn+P is (a>tf)n^=n+\>

Hence the normal connection matrix of Mn in Sn+P~ι (1/VΊ +H2) can be
expressed as {co^)n^J=n+2

 a n ( l the square of the length of the second fundamental
form of Mn in Sn+P~\\/\/\ + H2) is the same as the Sτ of Mn in Sn+P. On the
other hand, we have ωΛ+iα = 0, α = Λ + 1,...,«+/?, since the mean curvature
vector field ζ = Hen+\ is parallel in the normal bundle Jί{M). Hence the
covariant derivatives of {/*?} in Sn+p-{(l/Vl +H2) are the same as that of {A?}
in Sn+p. And so is the Laplacian of {A?}.

Therefore (19) can also be considered as being computed on the minimal
immersion from Mn into Sn+P~ι(l/Vl + H2) of constant curvature (l+H2).

Taking integration on both-sides of (19) on Mn, we have

(190 0 > f S7{ιι(l + H2) - [1 + (1/2) sgn(/> - 2)]5/}.

From (19r) and the assumption, we have Sj = 0 or Si = «(1 +H2)/
[1 + (l/2)sgn(/?-2)], on Mn. Assertion (i) follows directly from S> = 0. If
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p — 2, then Si = «(1 +H2). Assertion (ii) follows from the result of Chern-
do Carmo-Kobayashi [3]. If p > 3, then Si = (4/3)(1 + // 2 ) . Following the
same arguments as in Li's [7], we obtain assertion (in). This completes the
proof. Q.E.D.

Remark 1. From (19'), we can immediately get

(20) 0 > f Sj{n - [1 + (1/2) sgn(/7 - 2)]S},

which will be used in next section.

3. Proof of the theorems

Let C be defined as in (*). It is easy to see that

Therefore we have

p = 2 or 8 < w,

2n/3, /> > 2 and 2<n<l.

If 5 < C, then S < 2y/n- 1. From Proposition 1, we have that MΛ is
pseudo-umbilical. In this case, it follows from (20) that Si s 0. Hence S =
Si + nH2 = nH2. Using Proposition 2, we can see that Mn is a small sphere
Sn(l/y/l+S/n) in £"+*.

Therefore we obtain the following

THEOREM 1. Let Mn be an oriented closed submanifold immersed into the
unit sphere Sn+P, with nonzero parallel mean curvature vector field. IfS<C, then
S is constant and Mn is a small sphere Sn(l/y/l +S/n) in Sn+P.

Now let us consider the case that Mn is one with S = C.

Case 1. Suppose n>2. If p = 2 or n > 8, then C = 2y/n - 1 < n/
[1 + 1/2 sgn(p - 2)]. From (20) we have Si = 0. If Mn is not pseudo-umbilical,
it follows from Corollary 1 that Mn is a torus Sι(r) x Sn~ι(s) in a totally geodesic
sphere Sn+ι of Sn+P where r2 = 1/(1 + y/n^Ί) and s2 = Vn^ϊ/{\ + Vn^ΐ).
If Mn is pseudo-umbilical, it follows from Proposition 2 that Mn is a small

sphere Sn(r0) in Sn+P where r% = n/(n + 2Vn- 1).
If /? > 2 and n < 7, we have C = «/[l + l/2sgn(/? - 2)] < 2y/n - 1. There-

fore Mπ is pseudo-umbilical. In this case Si < S = 2n/3 < n{\ + i/ 2)/
[1 + l/2sgn(/? - 2)]. It follows from Proposition 2 that Si = 0 and Mπ is a
small sphere Sn(^/3/5) in S"**.
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From the above discussions plus the case p = l, we obtain the following

THEOREM 2. Let Mn be an oriented closed submanifold immersed into the
unit sphere Sn+P, with nonzero parallel mean curvature vector field. Suppose n > 2
and S=C. Then:

(i) If p = 1?2 or n > 8, then C = 2y/n — 1 and Mn is either a small sphere
Sn(r0) in Sn+P or a torus Sι(r) x Sn~ι(s) in a totally geodesic sphere Sn+ι ofSn+p,
where r\ = n/(n + 2y/n - 1), r2 = 1/(1 + Vn - 1) and s2 = Vn- 1/(1 + Vn- 1);

(ii) Ifp > 2 and n < 7, then C = 2«/3 and Mn is a small n-sphere Sn(-y/3j5)
in Sn+P.

Case 2. Suppose n = 2 andp > 2. Ifp = 2, then C = 2 < 2(1 +H2). From
(i) of Proposition 2 we have that M2 is a sphere S2(l/V2).

If p > 2, then C = 4/3 < 2. It follows from Corollary 1 that the M2 with
S — C is pseudo-umbilical. Thus M 2 can be minimally immersed into a hy-
persphere S ' + 1 ( l / v Ί + # 2 ) of 5^+2. Note that S} < 5 = 4/3 < 4(1 + # 2 ) / 3 .
From (i) of Proposition 2 we have that M2 is a sphere S2(τ/3j5).

For an arbitrary ε > 0, we can choose Hε small enough such that

Then we have

C<Sε = Sj + 2H! = 2(l+H^/^+^S&i(p-2^+2H^<

From (ii) of Proposition 2, we can see that the only minimal surface with
5/ = 2(1 + H2), in a hypersphere S*(l/y/l +H2) of a totally geodesic sphere S 4

of S 2 + ' , is the Clifford torus Sι(\/y/2{\+H})) x Sι(\/yj2(\ +H2)). From
(iii) of Proposition 2, we can see that the only minimal surface with Si =
4(1 + H2)/3, in a hypersphere S4(l/\/l +H2) of a totally geodesic sphere S5 of
52+/?, is the Veronese surface.

Therefore we obtain the following.

THEOREM 3. (i) Let M2 be an oriented closed surface immersed into the unit
sphere S2+p, with nonzero parallel mean curvature vector field. Ifp > 1 and S = C,
then M2 is a small sphere S2{l/V2) {p = 2) or S2{Λ/Ϊ/5) {p > 3) in S2+p.

(ii) For any ε>0, there exists a pseudo-umbilical surface M2 in S2+p such
that:

(a) M2 is not totally umbilical;

(b) M2 is one with nonzero parallel mean curvature vector field;
(c) C < Sε < C + ε, where Sε is the square of the length of the second

fundamental form of M2.

Therefore we can claim our desired conclusion:
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COROLLARY 2. Above theorems show that, when p = 1, 2, n = 2 or n > 8,
C is the best possible pinching constant of S depending only on n and p.

Erbacher [4] suggested the following problem:
When can we reduce the codimension of an isometric immersion into a space

form of constant curvature?
and got a result under an assumption on the first normal space of the isometric
immersion.

From Theorems 1-3, we can get the following

PROPOSITION 3. Let Mn be a closed submanifold immersed into the unit
sphere Sn+P with nonzero parallel mean curvature vector field. If S < C, then the
codimension p of Mn can be reduced to one.
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