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HAUSDORFF DIMENSION OF SETS ARISING
IN DIOPHANTINE APPROXIMATION

TAKANORI HINOKUMA AND HIROO SHIGA

Abstract

Let g(g) be a nonnegative function on the set of positive integers. We
studied the Hausdorff dimension of a set

b

Er——{xe[o, 1]: x—§~<g(q) for infinitely many ?} .

We prove a generalization of a result of I. Borosh and A.S. Fraenkel.

1. Introduction

It was shown by Jarnik and Besicovitch that the Hausdorff dimension,
denoted by dimy, of the set of real numbers for which there exist infinitely
many rationals p/q satisfying

is min{2/8, 1}. In 1972 Borosh and Fraenkel extended the above result in the
following way. Let .£ be a subset of positive integers having infinitely many
elements and set

EI={xe[O, 1]: lx—§~<—ql—ﬁ- for infinitely many g with qe.f}.

THEOREM B-F ([1]). Let v, be a real number satisfying the following two
conditions :

(i) XDgerq™ is divergent,
(i1) gerq "¢ is convergent for every e>0.

Then dimy E ;=min{(14+v,)/B, 1}.

The purpose of the present paper is to study the Hausdorff dimension of a
set
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E,={xe[0, 11: ‘x—§|<g(q) for infinitely many %}

where g is a nonnegative function on the set of positive integers. We set

C.(N)=the cardinality of the set {g<N: g(q)gqia}

and

= Cu N
y(a)zsup{rzll\}ir; Z\ET ) >O}».

Then we shall prove the following result:

THEOREM 1.1.
dimH Eg:min{saugl:l) 5(6!), 1} ,
where
l+y@) ... B
5(&): a Zf thaoo Ca(N)— >0
0 otherwise.

Let f(g) be a function on the set of positive integers with the values 0 or
1. We consider the case
f@)
ge -
In this case, C,(N) is equal to the cardinality of the set {¢<N: f(¢)=1} if
aza, and C,(N)=0 if a<a,. Then d(a)=14+7r(ay)/a if a=a, and d(a)=0 if
a<a, In this situation, we denote E /0 by E, for simplicity and set y,=
y(a,). Then Theorem 1.1 reduces to the following

g(g)=

PROPOSITION 1.2.

dimg E,=min{l—atri, 1} .
0

Set f(¢)=1if g=.£ and f(¢)=0 if g& L. Then Theorem B-F can be obtained
from Proposition 1.2 by proving

Vo:TO .

We prove Proposition 1.2 and y,=7, in §2. A proof of Theorem 1.1 is
given in §3. In §4, some examples are given.

2. Proof of Proposition 1.2

In this section, we give the proof of the Proposition 1.2. We first show
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the inequality dimgz(E;)<(1+7y,)/a,. For each positive integer g, we set

_ N 2PN .
Fq-{xe[o, 17: ‘x p ‘<——qa0 for some integer p}.
Then F, consists of ¢—1 intervals of length 2f(¢)/¢* and two end intervals of
length f(g)/q*. Clearly, E,C\Uz-: F, for each positive integer %, so taking
the intervals of F, for g=% as a cover of E; gives that

: < 2f(@) \¢
HXEn= 2 (Q—I-l)("?r‘f)

If 2/k* <0, where 4§(E) is the infimum of 3)7.,|U,|® over all countable d-covers
{U;} of E. The right hand of the above inequality is smaller than

&h gtao?

Hence if the series Xg.: f(g)/¢°*°"! converges, then the Hausdorff s-dimensional
measure H*(E;)=lims., X §(E;)=0.

Fix a positive real number y with y>7,. Let C;(N) be the cardinality
of the set {g:¢=N and f(¢)=1}. Note that C (N)=C,(N). Then, for
lim ye C,(N'7)/N=limy_., C;(N)/N7=0, there exists an integer N, such that if
N=N, then C N'")<XN. We define M, by CM,)=kN, (k=1, ---). Since
C((EN)YTY<kNy=C ;(M}), we have

(RN)UVT< M, .
Set
Me={q: f()=1 and M, ,<q<M,}

then #%,=N, from the definition of M,. Now we have

o o 1 o ,
5 LD -8 2 < Dt B

qsao—l 20 0efy,, q o3, = ((kNo)uT)sao—x

1 > 1
<N,+ N§s@o=b77 ’12 ?Ea'ov-—lﬁf'

=1

a=1

If s>(147)/a,, then 2%, 1/k¢*~/7 is convergent. Hence if s>(1+y)/a, we
have 4*(E;)=0 and therefore dimy(E;)<(147)/a, for any y>7y,. This implies
that dimgz(E )< (1470)/ao.

We need some lemmas to prove converse inequality. Let C;(N, M) be the
cardinality of the set {g: N<¢<M and f(¢)=1}. We set

—— C4(N, 2N

LEMMA 2.1.
71=7o-
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Proof. It is clear that 0<y,<y,. Hence it is sufficient to show that y,=7o.
We can assume that y,>>0. Let e be a positive number with y,—e>0 and {n,}
be a sequence of positive integers such that

Cy(ny) ¢
(10g2 nj)n;o n] o (] OO)

It is possible to choose such a sequence as above by definition of y,. We divide
the interval [1, n,] into k-small intervals

n n n n
(150 (5 gete) o [ m].

where k is the greatest integer satisfying 2<log,n,. Let m be the number such
that C;(n;/2™*, n;/2™) is the greatest among C (n;/2'*, n;/2%), (=0, 1, ---, k.

Let M,=n;/2™ Then M;— o if j—co. Because if M;<K for some con-
stant K, then we have

C/(K)Y=zC (M)
> Cy(ny)
~ log.n,

Cr(ny)

— IV me.ploTE | —s
(Tog,myur MM U e

This is a contradiction.
Now for y,—e>0,
Cyny) _ (ogsny)Cy(M;/2, M,)
njome = M7J’.o‘5 '
Since C(n,)/(log,n;)nj °—oco (j— o) we have
Mo~

Hence y=y,—¢. Since ¢ can be taken arbitrary small, it follows that 7,>y,. ®

(J— o).

Let P(N)=N7/C((N, 2N). Then by Lemma 2.1
lim N*P(N)=+oc and lim N"*P(N)=0
N-oo

N-oo

for any ¢>0. So, for each ¢>0, we choose a sequence of positive integers
{N,} such that N,>2N,_, and

}imN}P(Nj):‘l-OO and }imN;EP(N,-)zo.
First we consider the case a,>1+47y,. Set L,={N,<q¢<2N,: f(g)=1} and

l,=#L,=CNN,, 2N,). Then~ I;P(N;)/NP=1. Let L,={q, -~-,qu} with N,<
:<¢:< - <q;=2N,. Let G,, be the set of reduced fractions p/¢; in the



HAUSDORFF DIMENSION 369

interval [0, 1] whose numerators p are prime numbers. Let quzéql and let
G4,C Gy, be the set of reduced fractions /¢, in the interval [0, 1], whose
numerators are prime numbers, satisfying

ty 1 | P(N;)

(b 7. a0 |7 Nito(log N,y

for any element #,/g, of G,,.

LEMMA 2.2.

~ 8N170P(N,)
#CuGs gy

Proof. 1f t,/q, satisfies the inequality
AN T0P(N;)
(log N,)?

for any #/q:€G,, it satisfies (1) for any #,/q,€G,. So we count up the
number of fractions #,/¢, which satisfies
AN} T P(N;)

(log N,)®

for some t,/g:&€G,,. Since the number of solutions (t,, t,) of the equation

|teq1—t1q2] >

(2) |2, —t1g2] <

|taqy—t1g:| =k (k is a positive integer)

in the range 0<¢,<¢,, 0<t,<¢, is at most two, the number of reduced fractions
ts/q, which satisfies (2) for some t,/q,=G, is at most 8N} 70P(N,)/(logN;).
Hence we have the lemma. n

Now we inductively define qucéqk. Let G,, be a set of reduced fractions

tx/q, with prime numerators which satisfies
’_tf__i >ﬂf)_,.

ae  q Nj*ro(log N ;)
for all t/ge\ %21 G,,. Then by the similar argument as the proof of Lemma 2.2,
we have
8(k—1)N;7°P(N;)

(log N;)?

Set H;=U£’=lek and ﬁ,:u,ﬁi1 5qk. Then we get

#(éQk_qu)g

LEMMA 2.3.
4/;N,

#(ﬁj_ Hjy)< —(log Ny
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Proof. By the preceeding discussion, we have

oL L §(k—L)NITP(N))
#(H]_HJ)_ kgl #(GQk_qu)é Izgl (log Nj)2

Therefore we have

41,(L;—1)N; 0 P(N,)
(log N,)?

AN,  LPINy

(log N;)* N3

__ALN,

" (log N2’

Since le(Nj)/N?;O:l, n

#(H—H)<

Now we complete the proof of Proposition 1.2. For any two different
elements p,/r, and p,/r, of H,, we have

D1 Pe P(N;)
I8t Yo N;+70(10g Nj)? :
Set
. p|_ f@)
Ip/q{xE[O, 1] : ‘X——q—l <—q—“0—}
and
K=, \J, T

Then the distance between two different intervals /,,, and I,/ is at least

PIN) 2 PO
NiTlog N N5o~ 2Ny Tu(log N)*

for sufficiently large N,, since 1+7,<a,.

Let E,=[0, 1] and E, the set of intervals of K, which are completely con-
tained in some of E, ;. Then the intervals of E, are separated by gaps of at
least

- P(N;) . 1
7T 2Njro(log Ny)* ~ 2Nl (log Nj)* *

Let I=[a, b]C[0, 1] be an interval with |/|>3/N,. We count the number of
intervals of K, in 1.

LEMMA 2.4. The number of intervals of K, contained in I is at least
(b—a)Nyi,
16logN, ’
for sufficiently large N,.



HAUSDORFF DIMENSION 371

Proof. The number of rationals in / whose denominators are ¢, and
numerators are prime is equal to the number of primes in the interval [aqg, bgx].

By prime number theorem there are at least
1( bq: aqs >

2 log bg, logagq:

Then we have

primes in [agq;, bg.].

L/ bge _ﬁijk_A)>_ _1.
2\logbg, logagq; 4 loggq: 4 loggqs
1 NI

>—8_ logN, -~

1 (0—a)ge _1 qlll

Then by Lemma 2.3,
#(INH)=#(INH)—#INH—H,)

1 NIl 4N,

>

=8 logN, (logN,?
:l-( N, 1| _ 4N, >
‘\8logN, (logN,)*
Ny

>1610gN,'

Hence at least N,/,|1|/16 log N, intervals of K, are contained in / for sufficiently
|

large N,.
We can take the sequence {N,} to satisfy the inequality
2 64

As the length of each interval in F,_, is at least 2/(2N,_,)*, by Lemma 2.4,

E,_, contains at least
. Nabi@N, )70 _ eNGN,ZE
7 16logN, ~ logN,
intervals of K,, where ¢=167*-2"% and we set m;=1. By choosing a subsequence

of N,, we can assume that log N,>;log N, ;. Then clearly ¢,>¢,,, for sufficiently
By Example 4.6 (p. 58) in [2], we have
N 2 . log(ml s m]—-l)
> =1
dlmH(;Q E’>:}1~_r2 —log(m;e,)

log[ ¢’ *Ny*(Ny -+ N, _o)'"%0(ly -+ [,_p)(log N -

—lngcN;fIO(log N,_)™%]

large j.

B IOgN]—z)_ll]-lN]—l:l

=lim
pee

The numerator can be rewritten as following :
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(J—2)log c—a, log Ni+(1+7,—ao)(log No+ -+ +1log N, _,)

—(log log No+ -+ +log log N,_»)

—(log P(Ny)+ -+ +log P(N,_2))+(1+70) log N,_,—log P(N,_,).
Since logN,>jlogN,_; we have

log N;+ --- +log N, _, < 2
logN,_, 7—1"

We may assume that N5P(N;)>1 and N;*P(N;)<1 for all ;. Then N7*<P(N,)

< Nj and hence

' logN

Hence we have

log P(Ny)+ -+ +log P(N,_ z)
logN,_,

(logNo—i— -+logN,_s)
logN,_,

i1

Thus the principal term of the numerator is (1+47,)logN,_,—log P(N,_;)>
(1+7,—¢)log N,_;, and that of denominator is a,logN,_,. Hence we get

. 2 1+7,—e
dlmH J_QE_,)gT

If x€E, for all j, then x lies in infinitely many of the F, and so xeE;.
Therefore

dlmH(Ef)>dlmH( ﬂ E )>m’__

Since ¢>0 is arbitrary, we have dimyz(E;)=(1+470)/ .
Finally we consider the case a,<1+47,. It is clear that
EltroteC ES
for any positive number ¢. Then we have from our preceeding results

1+To

LY A H 20
1‘|"7‘o+$ =d1mHEf gl

for any ¢>0. Hence we get
dimgE}'=

We now show a lemma to obtain the Theorem B-F from Proposition 1.2.
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LEMMA 2.5. The critical exponent v, of

1

ger ¢¥

is equal to yo=sup{y:limy..C(N)/N7>0}, where C(N)=#{¢<N:qge.L}.

Proof. Let yv<y,, We can choose a sequence {N;} with N;—oco (i— )
such that C(N,)>2N:. We also choose a subsequence {L;} of {N;} such that

L,>C(L, )L, .
Then we have
Co(L)—Cr(L,-)>Lj.

We set L,={¢=sL: L, ,<g<L;}. Then

2 1 :i 2 _1_> {j C.E(Lj)_C.E(LJ—l)

@er ¢* =1 ¢éIL, ¢¢ T = Ly

> i l=co.
7=1

When »>7,, we can show that the series >l,c-1/¢” is convergent by the
same way used in the proof of the inequality dimg E ;< (1470)/a,. n

3. Proof of Theorem 1.1

In this section, we prove the Theorem 1.1. Let g be a nonnegative function
defined on the set of all natural numbers. Let

Egz{xE[O, 17: ,x——g|<g(q) for infinitely many q}.

Set

= Co(N
r(a):sup{y:}lvlin 1\(77 )>0}

for a=1, where C,(N) is the cardinality of the set {<N: g(g)=1/¢*}. We
define a function d(a) as follows

I+7(@) ., ..
L if limMyoe Co(N)=
)= p 1my (N)=o0
0 otherwise.

Then we have

THEOREM 1.1.

dimy Egzmin{satg a), 1} .
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Proof. Set

E={xE[O, 1]: ‘x—§'<g(q) for infinitely many q},

E,,,={xe[0, 1]: ‘x~§‘<g((}) and g(q)gzlj for infinitely many q}

and
b 1 e s

Fa::{xe[O, 17: ‘x—;l<g(q) and g(q)<F for infinitely many q}.

Set F.=[\az1 F. then it is clear that
E— \ZJIE,XCFM.
We can show that dimy F..=0 as follows. Let
- =2l X for infini
Ga {xe[O, 1]: Ix P ‘< T for infinitely many q}.

Then we have
F.CF,CG,

for a=1. Hence dimy F..<dim G,=2/a. Since a is arbitrary large, dimy F..=0.
Therefore dimz(E—\U.:1 E«)=0 and hence dimy E=dim \U,»; E.
First we show the inequality dimy E=min{sup,;.0(a), 1}. Set

Haz{xE[O, 1]: ‘x—§l<x‘%q) for infinitely many q},

where A,={gEN: g(g)=1/9°} and X4, is the characteristic function of A,.
Then by the Proposition 1.2, we have

dimy Ha=min{1—+&, 1}
a
if A, is an infinite set and dimy H,=0 if A, finite. Hence dimy H,=min {é(a), 1}.

Since E,DH,,
dimy E,2dimy H,=min{d(a), 1}.

Therefore
dimgy E=dimg UlEagsup dimg4 E,
az azl

gsalg) min {0(a), 1}
=mm{sag;1) ola), 1}.

Next, we show the converse inequality dimy E<min{sup,.,d(a), 1}. For
positive real numbers a, 8 such that a>pB, we set
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Eﬁ:{xe[o, 1]: lx———g}<g(q) and —qlg>g(q)>% for infinitely many q}
and
b . _£ XAa(q) . .
HE=1{x<[0,1]: |x P <7— for infinitely many ¢;.

It is clear that EECHE. So we have, by using Proposition 1.2 again,
dlmHE£§dlmHH£

=min{l—+£@, l}

if A, is infinite and dimy E£=0 if A, finite. Hence

=min{

dim Eﬁgmin{ﬁ(a)-%, 1} .

Fix an ¢>0 arbitrary. Define the sequence {a,}%-, by setting a=1+ne.
Then it is easily seen that

Y E=( Ba)VE

=1

If E, is not empty, then the set {g:g(¢)=1/¢g} is infinite. Hence o(1)=
(14y(1)/1=1. Therefore min{sup,.:0(a), 1}=1 and hence the inequality is
obvious. So we may assume that E, is empty. For a countable family of sets
{X,}%-;, the Hausdorff dimension has the following property :

dimg Coj X,=sup dimy X,,.
n=1 nz1l

So we have
dimH E=dimH Ul Ea
az

o
'—:dim]{ U Egr-t
n=1

=sup dimy E;2*
n21

Sgup min{dan)- o 1}

. 1
=min{ap 30-+ne) 772 1)

gmin{s&g o(a)- afy_s ' 1}



376 TAKANORI HINOKUMA AND HIROO SHIGA
. 1
§m1n«{-————sup oa), l}.
1—¢ az1
Since ¢>0 is arbitrary, we have the desired conclusion. [ ]

4. Examples

For a function g(¢) defined on N, we set

log g(g) .
——==2M/ i >0
ty= log ¢ g(q)
0o if g(g)=0.

Then we see
1
{geN: a,<a} :{qu: g(q)>—qT}

for ac R. Hence the Hausdorff dimension of E is determined by the distribution
of the sequence {a,}.

PROPOSITION 4.1. If the cardinality of the set {q=N: a,<a} is finite for
any a<R, then dimy E=0.

Proof. By the assumption we have limy..C.,(N)=#{geEN: q,<a}<co.
Hence from Theorem 4.1, dimy E=0. ]
We may apply Proposition 4.1 for following functions

1) D=r ; :
( BO=" Tlogg ¢™=¢" T(loggyoes’

etc.

1

(2) I4 (Q)ZW ’

where ¢(g) is the Euler function.
1

(3) g(q>=7,

where a is a constant with a>1.

1
(4) g(Q)'—E!—‘
By Theorem 1.1, we have

PROPOSITION 4.2. If the sequence {a;} is distributed in an interval [s, t]
(2<s<t) in such a way that the limit
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#{¢<N: a,E[s, al}

N N7
exists and its value is positive for any s<a, where y is a constant 0<y=<1, then
. 1
dimg E= +T.

S

We can apply Proposition 4.2 for following cases:
(1) {ag} is uniformly distributed in [s, ¢J. Then y=1 and dimgz E=2/s.
(2) a,=s+|sing]|.

The sequence {¢/z} is uniformely distributed in [0, 1] mod 1. Hence {a}
satisfies the condition of Proposition 4.2 for y=1 and dimy E=2/s.

Example 4.3. We set a,=s+£k if g=Fk (mod n), where n is a fixed natural
number and s (=2) is also fixed. Then if s+k<a<s+k+1,

Cat=s{gsN: —>}

=#{g=N:¢=0, 1, ---, k—1 (mod n)}
~EN.
n
Hence y(a)=1 and we have

. 2
dimy E=sup ="
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