T. HINOKUMA AND H. SHIGA KODAI MATH. J. 19 (1996), 365-377

HAUSDORFF DIMENSION OF SETS ARISING IN DIOPHANTINE APPROXIMATION

TAKANORI HINOKUMA AND HIROO SHIGA

Abstract

Let g(q) be a nonnegative function on the set of positive integers. We studied the Hausdorff dimension of a set

$$E_{g} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ for infinitely many } \frac{p}{q} \right\}.$$

We prove a generalization of a result of I. Borosh and A.S. Fraenkel.

1. Introduction

It was shown by Jarník and Besicovitch that the Hausdorff dimension, denoted by \dim_H , of the set of real numbers for which there exist infinitely many rationals p/q satisfying

$$\left|x - \frac{p}{q}\right| < \frac{1}{q^{\beta}}$$

is min $\{2/\beta, 1\}$. In 1972 Borosh and Fraenkel extended the above result in the following way. Let \mathcal{L} be a subset of positive integers having infinitely many elements and set

$$E_{\mathcal{L}} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < \frac{1}{q^{\beta}} \text{ for infinitely many } \frac{p}{q} \text{ with } q \in \mathcal{L} \right\}.$$

THEOREM B-F ([1]). Let ν_0 be a real number satisfying the following two conditions:

- (i) $\sum_{q \in \mathcal{L}} q^{-\nu_0}$ is divergent,
- (ii) $\sum_{q \in \mathcal{L}} q^{-\nu_0 \varepsilon}$ is convergent for every $\varepsilon > 0$.

Then $\dim_H E_{\mathcal{L}} = \min\{(1+\nu_0)/\beta, 1\}$.

The purpose of the present paper is to study the Hausdorff dimension of a set

¹⁹⁹¹ Mathematics Subject Classification. 11J83, 28A78. Received October 24, 1995; revised June 5, 1996.

$$E_{g} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ for infinitely many } \frac{p}{q} \right\},$$

where g is a nonnegative function on the set of positive integers. We set

$$C_{\alpha}(N)$$
=the cardinality of the set $\left\{q \leq N : g(q) \geq \frac{1}{q^{\alpha}}\right\}$

and

$$\gamma(\alpha) = \sup \left\{ \gamma : \lim_{N \to \infty} \frac{C_{\alpha}(N)}{N^{\gamma}} > 0 \right\}.$$

Then we shall prove the following result:

THEOREM 1.1.

$$\dim_H E_g = \min\left\{\sup_{\alpha \ge 1} \delta(\alpha), 1\right\},\,$$

where

$$\delta(\alpha) = \begin{cases} \frac{1+\gamma(\alpha)}{\alpha} & \text{if } \lim_{N \to \infty} C_{\alpha}(N) = \infty \\ 0 & \text{otherwise.} \end{cases}$$

Let f(q) be a function on the set of positive integers with the values 0 or 1. We consider the case

$$g(q) = \frac{f(q)}{q^{\alpha_0}}.$$

In this case, $C_{\alpha}(N)$ is equal to the cardinality of the set $\{q \leq N : f(q)=1\}$ if $\alpha \geq \alpha_0$ and $C_{\alpha}(N)=0$ if $\alpha < \alpha_0$. Then $\delta(\alpha)=(1+\gamma(\alpha_0))/\alpha$ if $\alpha \geq \alpha_0$ and $\delta(\alpha)=0$ if $\alpha < \alpha_0$. In this situation, we denote $E_{f/q}\alpha_0$ by E_f for simplicity and set $\gamma_0=\gamma(\alpha_0)$. Then Theorem 1.1 reduces to the following

PROPOSITION 1.2.

$$\dim_H E_f = \min\left\{\frac{1+\gamma_0}{\alpha_0}, 1\right\}.$$

Set f(q)=1 if $q \in \mathcal{L}$ and f(q)=0 if $q \notin \mathcal{L}$. Then Theorem B-F can be obtained from Proposition 1.2 by proving

 $\nu_0 = \gamma_0$.

We prove Proposition 1.2 and $\nu_0 = \gamma_0$ in §2. A proof of Theorem 1.1 is given in §3. In §4, some examples are given.

2. Proof of Proposition 1.2

In this section, we give the proof of the Proposition 1.2. We first show

the inequality $\dim_H(E_f) \leq (1+\gamma_0)/\alpha_0$. For each positive integer q, we set

$$F_q = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < \frac{f(q)}{q^{\alpha_0}} \text{ for some integer } p \right\}$$

Then F_q consists of q-1 intervals of length $2f(q)/q^{\alpha_0}$ and two end intervals of length $f(q)/q^{\alpha_0}$. Clearly, $E_f \subset \bigcup_{q=k}^{\infty} F_q$ for each positive integer k, so taking the intervals of F_q for $q \ge k$ as a cover of E_f gives that

$$\mathcal{H}^{s}_{\delta}(E_{f}) \leq \sum_{q=k}^{\infty} (q+1) \left(\frac{2f(q)}{q^{\alpha_{0}}}\right)^{s}$$

If $2/k^{\alpha_0} \leq \delta$, where $\mathscr{H}^{\mathfrak{s}}_{\delta}(E)$ is the infimum of $\sum_{i=1}^{\infty} |U_i|^{\mathfrak{s}}$ over all countable δ -covers $\{U_i\}$ of E. The right hand of the above inequality is smaller than

$$\sum_{q=k}^{\infty} 2q \left(\frac{2f(q)}{q^{\alpha_0}}\right)^s = 2^{s+1} \sum_{q=k}^{\infty} \frac{f(q)}{q^{s\alpha_0-1}}.$$

Hence if the series $\sum_{q=k}^{\infty} f(q)/q^{s\alpha_0-1}$ converges, then the Hausdorff *s*-dimensional measure $\mathcal{H}^{s}(E_f) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(E_f) = 0$.

Fix a positive real number γ with $\gamma > \gamma_0$. Let $C_f(N)$ be the cardinality of the set $\{q: q \le N \text{ and } f(q)=1\}$. Note that $C_f(N)=C_{\alpha_0}(N)$. Then, for $\lim_{N\to\infty} C_f(N^{1/\gamma})/N=\lim_{N\to\infty} C_f(N)/N^{\gamma}=0$, there exists an integer N_0 such that if $N\ge N_0$ then $C_f(N^{1/\gamma})\le N$. We define M_k by $C_f(M_k)=kN_0$ $(k=1, \cdots)$. Since $C_f((kN_0)^{1/\gamma})< kN_0=C_f(M_k)$, we have

$$(kN_0)^{1/\gamma} < M_k$$

Set

$$\mathcal{M}_k = \{q: f(q) = 1 \text{ and } M_{k-1} < q \leq M_k\}$$

then $\#\mathcal{M}_k = N_0$ from the definition of M_k . Now we have

$$\begin{split} \sum_{q=1}^{\infty} \frac{f(q)}{q^{s_{\alpha_0-1}}} &= \sum_{k=0}^{\infty} \sum_{q \in \mathcal{M}_{k+1}} \frac{1}{q^{s_{\alpha_0-1}}} < \sum_{q \in \mathcal{M}_1} \frac{1}{q^{\beta}} + \sum_{k=1}^{\infty} \frac{N_0}{((kN_0)^{1/\gamma})^{s_{\alpha_0-1}}} \\ &< N_0 + \frac{1}{N_0^{(s_{\alpha_0-1})/\gamma}} \sum_{k=1}^{\infty} \frac{1}{k^{(s_{\alpha_0-1})/\gamma}} \,. \end{split}$$

If $s > (1+\gamma)/\alpha_0$, then $\sum_{k=1}^{\infty} 1/k^{(s\alpha_0-1)/\gamma}$ is convergent. Hence if $s > (1+\gamma)/\alpha_0$ we have $\mathscr{K}^s(E_f) = 0$ and therefore $\dim_H(E_f) \leq (1+\gamma)/\alpha_0$ for any $\gamma > \gamma_0$. This implies that $\dim_H(E_f) \leq (1+\gamma_0)/\alpha_0$.

We need some lemmas to prove converse inequality. Let $C_f(N, M)$ be the cardinality of the set $\{q: N \leq q \leq M \text{ and } f(q)=1\}$. We set

$$\gamma_1 = \sup \left\{ \gamma : \lim_{N \to \infty} \frac{C_f(N, 2N)}{N^r} > 0 \right\}.$$

Lemma 2.1.

$$\gamma_1 = \gamma_0$$

Proof. It is clear that $0 \leq \gamma_1 \leq \gamma_0$. Hence it is sufficient to show that $\gamma_1 \geq \gamma_0$. We can assume that $\gamma_0 > 0$. Let ε be a positive number with $\gamma_0 - \varepsilon > 0$ and $\{n_j\}$ be a sequence of positive integers such that

$$\frac{C_{f}(n_{j})}{(\log_{2} n_{j})n_{j}^{\gamma_{0}}} \cdot n_{j}^{\varepsilon} \to \infty \quad (j \to \infty).$$

It is possible to choose such a sequence as above by definition of γ_0 . We divide the interval [1, n_1] into k-small intervals

$$\left[1, \frac{n_j}{2^k}\right), \left[\frac{n_j}{2^k}, \frac{n_j}{2^{k-1}}\right), \cdots, \left[\frac{n_j}{2}, n_j\right],$$

where k is the greatest integer satisfying $k < \log_2 n_j$. Let m be the number such that $C_f(n_j/2^{m+1}, n_j/2^m)$ is the greatest among $C_f(n_j/2^{l+1}, n_j/2^l)$, $l=0, 1, \dots, k$.

Let $M_j = n_j/2^m$. Then $M_j \to \infty$ if $j \to \infty$. Because if $M_j < K$ for some constant K, then we have

$$C_{f}(K) \ge C_{f}(M_{j})$$

$$\ge \frac{C_{f}(n_{j})}{\log_{2} n_{j}}$$

$$= \frac{C_{f}(n_{j})}{(\log_{2} n_{j})n_{j}^{\gamma_{0}}} \cdot n_{j}^{\varepsilon} \cdot n_{j}^{\gamma_{0}-\varepsilon} \to \infty \quad (j \to \infty).$$

This is a contradiction.

Now for $\gamma_0 - \varepsilon > 0$,

$$\frac{C_f(n_j)}{n_j^{r_j \circ -\varepsilon}} \leq \frac{(\log_2 n_j) C_f(M_j/2, M_j)}{M_j^{r_j \circ -\varepsilon}}.$$

Since $C_f(n_j)/(\log_2 n_j)n_j^{\gamma_0-s} \rightarrow \infty \ (j \rightarrow \infty)$ we have

$$\frac{C_f(M_j/2, M_j)}{M_j^{r_0-\varepsilon}} \to \infty \quad (j \to \infty).$$

Hence $\gamma_1 \ge \gamma_0 - \varepsilon$. Since ε can be taken arbitrary small, it follows that $\gamma_1 \ge \gamma_0$.

Let $P(N) = N_{f_0}/C_f(N, 2N)$. Then by Lemma 2.1

$$\lim_{N \to \infty} N^{\epsilon} P(N) \!=\! + \! \infty \quad \text{and} \quad \lim_{N \to \infty} N^{-\epsilon} P(N) \!=\! 0$$

for any $\varepsilon > 0$. So, for each $\varepsilon > 0$, we choose a sequence of positive integers $\{N_j\}$ such that $N_j > 2N_{j-1}$ and

$$\lim_{j\to\infty} N_j^{\varepsilon} P(N_j) = +\infty \quad \text{and} \quad \lim_{j\to\infty} N_j^{-\varepsilon} P(N_j) = 0.$$

First we consider the case $\alpha_0 > 1 + \gamma_0$. Set $L_j = \{N_j \le q \le 2N_j : f(q) = 1\}$ and $l_j = \#L_j = C_f(N_j, 2N_j)$. Then $l_j P(N_j) / N_j^{\gamma_0} = 1$. Let $L_j = \{q_1, \dots, q_{l_j}\}$ with $N_j \le q_1 < q_2 < \dots < q_{l_j} \le 2N_j$. Let \tilde{G}_{q_k} be the set of reduced fractions p/q_k in the

interval [0, 1] whose numerators p are prime numbers. Let $G_{q_1} = \tilde{G}_{q_1}$ and let $G_{q_2} \subset \tilde{G}_{q_2}$ be the set of reduced fractions t_2/q_2 in the interval [0, 1], whose numerators are prime numbers, satisfying

(1)
$$\left|\frac{t_2}{q_2} - \frac{t_1}{q_1}\right| > \frac{P(N_j)}{N_j^{1+\gamma_0} (\log N_j)^2}$$

for any element t_1/q_1 of G_{q_1} .

Lemma 2.2.

$$\#(\tilde{G}_{q_2} - G_{q_2}) \leq \frac{8N_{j}^{1-r_0}P(N_{j})}{(\log N_{j})^2}.$$

Proof. If t_2/q_2 satisfies the inequality

$$|t_2q_1-t_1q_2| > \frac{4N_j^{1-r_0}P(N_j)}{(\log N_j)^2}$$

for any $t_1/q_1 \in G_{q_1}$, it satisfies (1) for any $t_1/q_1 \in G_{q_1}$. So we count up the number of fractions t_2/q_2 which satisfies

(2)
$$|t_2q_1-t_1q_2| \leq \frac{4N_j^{1-r_0}P(N_j)}{(\log N_j)^2}$$

for some $t_1/q_1 \in G_{q_1}$. Since the number of solutions (t_1, t_2) of the equation

 $|t_2q_1-t_1q_2| = k$ (k is a positive integer)

in the range $0 \le t_1 \le q_1$, $0 \le t_2 \le q_2$ is at most two, the number of reduced fractions t_2/q_2 which satisfies (2) for some $t_1/q_1 \in G_{q_1}$ is at most $8N_j^{1-\gamma_0}P(N_j)/(\log N_j)^2$. Hence we have the lemma.

Now we inductively define $G_{q_k} \subset \tilde{G}_{q_k}$. Let G_{q_k} be a set of reduced fractions t_k/q_k with prime numerators which satisfies

$$\left|\frac{t_k}{q_k} - \frac{t}{q}\right| > \frac{P(N_j)}{N_j^{1+\gamma_0} (\log N_j)^2}$$

for all $t/q \in \bigcup_{i=1}^{k-1} G_{q_i}$. Then by the similar argument as the proof of Lemma 2.2, we have

$$\#(\tilde{G}_{q_k} - G_{q_k}) \leq \frac{8(k-1)N_j^{1-\gamma_0}P(N_j)}{(\log N_j)^2}.$$

Set $H_j = \bigcup_{k=1}^{l_j} G_{q_k}$ and $\widetilde{H}_j = \bigcup_{k=1}^{l_j} \widetilde{G}_{q_k}$. Then we get

Lemma 2.3.

$$\#(\widetilde{H}_j - H_j) < \frac{4l_j N_j}{(\log N_j)^2}.$$

Proof. By the preceeding discussion, we have

$$\#(\widetilde{H}_{j}-H_{j}) = \sum_{k=1}^{l_{j}} \#(\widetilde{G}_{q_{k}}-G_{q_{k}}) \leq \sum_{k=1}^{l_{j}} \frac{8(k-1)N_{j}^{1-r_{0}}P(N_{j})}{(\log N_{j})^{2}}.$$

Therefore we have

$$\begin{split} \#(\widetilde{H}_{j} - H_{j}) &\leq \frac{4l_{j}(l_{j} - 1)N_{j}^{1-r_{0}}P(N_{j})}{(\log N_{j})^{2}} \\ &< \frac{4l_{j}N_{j}}{(\log N_{j})^{2}} \cdot \frac{l_{j}P(N_{j})}{N_{j}^{r_{0}}} \\ &= \frac{4l_{j}N_{j}}{(\log N_{j})^{2}}, \end{split}$$

since $l_j P(N_j) / N_j^{\gamma_0} = 1$.

Now we complete the proof of Proposition 1.2. For any two different elements p_1/r_1 and p_2/r_2 of H_j , we have

$$\left|\frac{p_1}{r_1} - \frac{p_2}{r_2}\right| > \frac{P(N_j)}{N_j^{1+\gamma_0}(\log N_j)^2}.$$

Set

$$I_{p/q}\left\{x \in [0, 1]: \left|x - \frac{p}{q}\right| < \frac{f(q)}{q^{\alpha_0}}\right\}$$

and

$$K_{j} = \bigcup_{p/q \in H_{j}} I_{p/q}.$$

Then the distance between two different intervals $I_{p/q}$ and $I_{p'/q'}$ is at least

$$\frac{P(N_j)}{N_j^{1+\gamma_0}(\log N_j)^2} - \frac{2}{N_j^{\alpha_0}} > \frac{P(N_j)}{2N_j^{1+\gamma_0}(\log N_j)^2}$$

for sufficiently large N_{j} , since $1+\gamma_{0} < \alpha_{0}$.

Let $E_0 = [0, 1]$ and E_j the set of intervals of K_j which are completely contained in some of E_{j-1} . Then the intervals of E_j are separated by gaps of at least

$$\varepsilon_j = \frac{P(N_j)}{2N_j^{1+\gamma_0}(\log N_j)^2} = \frac{1}{2N_j l_j (\log N_j)^2}$$

Let $I = [a, b] \subset [0, 1]$ be an interval with $|I| > 3/N_j$. We count the number of intervals of K_j in I.

LEMMA 2.4. The number of intervals of K_{j} contained in I is at least

$$\frac{(b-a)N_jl_j}{16\log N_j},$$

for sufficiently large N_{j} .

Proof. The number of rationals in I whose denominators are q_k and numerators are prime is equal to the number of primes in the interval $[aq_k, bq_k]$. By prime number theorem there are at least

$$\frac{1}{2} \left(\frac{bq_k}{\log bq_k} - \frac{aq_k}{\log aq_k} \right)$$

primes in $[aq_k, bq_k]$. Then we have

$$\frac{\frac{1}{2}\left(\frac{bq_{k}}{\log bq_{k}}-\frac{aq_{k}}{\log aq_{k}}\right)>\frac{1}{4}\cdot\frac{(b-a)q_{k}}{\log q_{k}}=\frac{1}{4}\cdot\frac{q_{k}|I|}{\log q_{k}}}{>\frac{1}{8}\cdot\frac{N_{j}|I|}{\log N_{j}}}.$$

Then by Lemma 2.3,

$$\begin{split} \#(I \cap H_{j}) &= \#(I \cap \widetilde{H}_{j}) - \#(I \cap (\widetilde{H}_{j} - H_{j})) \\ &\geq \frac{1}{8} \cdot \frac{N_{j} l_{j} |I|}{\log N_{j}} - \frac{4 l_{j} N_{j}}{(\log N_{j})^{2}} \\ &= l_{j} \Big(\frac{N_{j} |I|}{8 \log N_{j}} - \frac{4 N_{j}}{(\log N_{j})^{2}} \Big) \\ &> \frac{N_{j} l_{j} |I|}{16 \log N_{j}}. \end{split}$$

Hence at least $N_j l_j |I|/16 \log N_j$ intervals of K_j are contained in I for sufficiently large N_j .

We can take the sequence $\{N_j\}$ to satisfy the inequality

$$\frac{2}{(2N_{j-1})^{\alpha_0}} > \frac{64}{\log N_j}$$

As the length of each interval in E_{j-1} is at least $2/(2N_{j-1})^{\alpha_0}$, by Lemma 2.4, E_{j-1} contains at least

$$m_{j} = \frac{N_{j}l_{j}(2N_{j-1})^{-\alpha_{0}}}{16\log N_{j}} = \frac{cN_{j}l_{j}N_{j-1}^{-\alpha_{0}}}{\log N_{j}}$$

intervals of K_j , where $c=16^{-1} \cdot 2^{-\alpha_0}$ and we set $m_1=1$. By choosing a subsequence of N_j , we can assume that $\log N_j > j \log N_{j-1}$. Then clearly $\varepsilon_j > \varepsilon_{j+1}$ for sufficiently large j. By Example 4.6 (p. 58) in [2], we have

$$\dim_{H}\left(\bigcap_{j=1}^{\infty} E_{j}\right) \geq \lim_{j \to \infty} \frac{\log(m_{1} \cdots m_{j-1})}{-\log(m_{j}\varepsilon_{j})}$$
$$= \lim_{j \to \infty} \frac{\log[c^{j^{-2}}N_{1}^{-\alpha_{0}}(N_{2} \cdots N_{j-2})^{1-\alpha_{0}}(l_{2} \cdots l_{j-2})(\log N_{2} \cdots \log N_{j-2})^{-1}l_{j-1}N_{j-1}]}{-\log[cN_{j-1}^{-\alpha_{0}}(\log N_{j-1})^{-3}]}$$

The numerator can be rewritten as following:

$$\begin{split} &-(\log \log c - \alpha_0 \log N_1 + (1 + \gamma_0 - \alpha_0) (\log N_2 + \dots + \log N_{j-2}) \\ &-(\log \log N_2 + \dots + \log \log N_{j-2}) \\ &-(\log P(N_2) + \dots + \log P(N_{j-2})) + (1 + \gamma_0) \log N_{j-1} - \log P(N_{j-1}). \end{split}$$

Since $\log N_j > j \log N_{j-1}$ we have

$$\frac{\log N_2 + \dots + \log N_{j-2}}{\log N_{j-1}} < \frac{2}{j-1}$$

We may assume that $N_j^{\epsilon}P(N_j)>1$ and $N_j^{-\epsilon}P(N_j)<1$ for all j. Then $N_j^{-\epsilon}< P(N_j)<N_j^{\epsilon}$ and hence

$$\left|\frac{\log P(N_j)}{\log N_j}\right| < \varepsilon$$

Hence we have

$$\left|\frac{\log P(N_2) + \dots + \log P(N_{j-2})}{\log N_{j-1}}\right| \leq \varepsilon \frac{(\log N_2 + \dots + \log N_{j-2})}{\log N_{j-1}}$$
$$< \frac{2\varepsilon}{j-1}.$$

Thus the principal term of the numerator is $(1+\gamma_0)\log N_{j-1} - \log P(N_{j-1}) > (1+\gamma_0-\varepsilon)\log N_{j-1}$, and that of denominator is $\alpha_0\log N_{j-1}$. Hence we get

$$\dim_{H}\left(\bigcap_{j=1}^{\infty}E_{j}\right)\geq\frac{1+\gamma_{0}-\varepsilon}{\alpha_{0}}.$$

If $x \in E_j$ for all j, then x lies in infinitely many of the F_q and so $x \in E_j$. Therefore

$$\dim_{H}(E_{f}) \geq \dim_{H}\left(\bigcap_{j=1}^{\infty} E_{j}\right) \geq \frac{1+\gamma_{0}-\varepsilon}{\alpha_{0}}.$$

Since $\varepsilon > 0$ is arbitrary, we have $\dim_H(E_f) \ge (1+\gamma_0)/\alpha_0$.

Finally we consider the case $\alpha_0 \leq 1 + \gamma_0$. It is clear that

$$E_f^{1+\gamma_0+\varepsilon} \subset E_f^{\alpha_0}$$

for any positive number ε . Then we have from our preceeding results

$$\frac{1+\gamma_0}{1+\gamma_0+\varepsilon} \leq \dim_H E_f^{\alpha_0} \leq 1$$

for any $\varepsilon > 0$. Hence we get

$$\dim_{H} E_{f}^{\alpha_{0}} = 1.$$

We now show a lemma to obtain the Theorem B-F from Proposition 1.2.

LEMMA 2.5. The critical exponent ν_0 of

$$\sum_{q \in \mathcal{L}} \frac{1}{q^{\nu}}$$

is equal to $\gamma_0 = \sup\{\gamma : \overline{\lim}_{N \to \infty} C_{\mathcal{L}}(N) / N^{\gamma} > 0\}, \text{ where } C_{\mathcal{L}}(N) = \#\{q \leq N : q \in \mathcal{L}\}.$

Proof. Let $\nu < \gamma_0$. We can choose a sequence $\{N_i\}$ with $N_j \to \infty$ $(i \to \infty)$ such that $C_{\mathcal{L}}(N_i) > 2N_i^{\nu}$. We also choose a subsequence $\{L_j\}$ of $\{N_i\}$ such that

$$L_{j} > C_{\mathcal{L}}(L_{j-1})^{1/\nu} L_{j-1}.$$

Then we have

$$C_{\mathcal{L}}(L_j) - C_{\mathcal{L}}(L_{j-1}) > L_j^{\nu}.$$

We set $\mathcal{L}_i = \{q \in \mathcal{L} : L_{j-1} < q \leq L_j\}$. Then

$$\sum_{q\in\mathcal{L}} \frac{1}{q^{\nu}} = \sum_{j=1}^{\infty} \sum_{q\in\mathcal{L}_{j}} \frac{1}{q^{\nu}} > \sum_{j=1}^{\infty} \frac{C_{\mathcal{L}}(L_{j}) - C_{\mathcal{L}}(L_{j-1})}{L_{j}^{\nu}} > \sum_{j=1}^{\infty} 1 = \infty.$$

When $\nu > \gamma_0$, we can show that the series $\sum_{q \in \mathcal{L}} 1/q^{\nu}$ is convergent by the same way used in the proof of the inequality $\dim_H E_f \leq (1+\gamma_0)/\alpha_0$.

3. Proof of Theorem 1.1

In this section, we prove the Theorem 1.1. Let g be a nonnegative function defined on the set of all natural numbers. Let

$$E_g = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ for infinitely many } q \right\}.$$

Set

$$\gamma(\alpha) = \sup \left\{ \gamma : \lim_{N \to \infty} \frac{C_{\alpha}(N)}{N^{\gamma}} > 0 \right\}$$

for $\alpha \ge 1$, where $C_{\alpha}(N)$ is the cardinality of the set $\{q \le N : g(q) \ge 1/q^{\alpha}\}$. We define a function $\delta(\alpha)$ as follows

$$\delta(\alpha) = \begin{cases} \frac{1+\gamma(\alpha)}{\alpha} & \text{if } \lim_{N \to \infty} C_{\alpha}(N) = \infty \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

THEOREM 1.1.

$$\dim_{H} E_{g} = \min\left\{\sup_{\alpha \geq 1} \delta(\alpha), 1\right\}.$$

Proof. Set

$$E = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ for infinitely many } q \right\},$$

$$E_{\alpha} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ and } g(q) \ge \frac{1}{q^{\alpha}} \text{ for infinitely many } q \right\}$$

and

$$F_{\alpha} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ and } g(q) < \frac{1}{q^{\alpha}} \text{ for infinitely many } q \right\}.$$

Set $F_{\infty} = \bigcap_{\alpha \ge 1} F_{\alpha}$ then it is clear that

$$E - \bigcup_{\alpha \ge 1} E_{\alpha} \subset F_{\infty}.$$

We can show that $\dim_H F_{\infty}=0$ as follows. Let

$$G_{\alpha} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < \frac{1}{q^{\alpha}} \text{ for infinitely many } q \right\}.$$

Then we have

$$F_{\infty} \subset F_{\alpha} \subset G_{\alpha}$$

for $\alpha \ge 1$. Hence $\dim_H F_{\infty} \le \dim G_{\alpha} = 2/\alpha$. Since α is arbitrary large, $\dim_H F_{\infty} = 0$. Therefore $\dim_H (E - \bigcup_{\alpha \ge 1} E_{\alpha}) = 0$ and hence $\dim_H E = \dim \bigcup_{\alpha \ge 1} E_{\alpha}$.

First we show the inequality $\dim_H E \ge \min \{ \sup_{\alpha \ge 1} \delta(\alpha), 1 \}$. Set

$$H_{\alpha} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < \frac{\chi_{A_{\alpha}}(q)}{q^{\alpha}} \text{ for infinitely many } q \right\},$$

where $A_{\alpha} = \{q \in \mathbb{N} : g(q) \ge 1/q^{\alpha}\}$ and $\chi_{A_{\alpha}}$ is the characteristic function of A_{α} . Then by the Proposition 1.2, we have

$$\dim_{H} H_{\alpha} = \min\left\{\frac{1+\gamma(\alpha)}{\alpha}, 1\right\}$$

if A_{α} is an infinite set and $\dim_{H} H_{\alpha} = 0$ if A_{α} finite. Hence $\dim_{H} H_{\alpha} = \min \{\delta(\alpha), 1\}$. Since $E_{\alpha} \supset H_{\alpha}$,

$$\dim_{H} E_{\alpha} \geq \dim_{H} H_{\alpha} = \min \{ \delta(\alpha), 1 \}.$$

Therefore

$$\dim_{H} E = \dim_{H} \bigcup_{\alpha \ge 1} E_{\alpha} \ge \sup_{\alpha \ge 1} \dim_{H} E_{\alpha}$$
$$\ge \sup_{\alpha \ge 1} \min\{\delta(\alpha), 1\}$$
$$= \min\{\sup_{\alpha \ge 1} \delta(\alpha), 1\}.$$

Next, we show the converse inequality $\dim_H E \leq \min \{ \sup_{\alpha \geq 1} \delta(\alpha), 1 \}$. For positive real numbers α , β such that $\alpha > \beta$, we set

$$E_{\alpha}^{\beta} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < g(q) \text{ and } \frac{1}{q^{\beta}} > g(q) > \frac{1}{q^{\alpha}} \text{ for infinitely many } q \right\}$$

and

$$H_{\alpha}^{\beta} = \left\{ x \in [0, 1] : \left| x - \frac{p}{q} \right| < \frac{\chi_{A_{\alpha}}(q)}{q^{\beta}} \text{ for infinitely many } q \right\}.$$

It is clear that $E^{\beta}_{\alpha} \subset H^{\beta}_{\alpha}$. So we have, by using Proposition 1.2 again,

$$\dim_{H} E_{\alpha}^{\beta} \leq \dim_{H} H_{\alpha}^{\beta}$$
$$= \min\left\{\frac{1+\gamma(\alpha)}{\beta}, 1\right\}$$
$$= \min\left\{\frac{1+\gamma(\alpha)}{\alpha} \cdot \frac{\alpha}{\beta}, 1\right\},$$

if A_{α} is infinite and $\dim_{H} E_{\alpha}^{\beta} = 0$ if A_{α} finite. Hence

$$\dim_{H} E^{\beta}_{\alpha} \leq \min \left\{ \delta(\alpha) \cdot \frac{\alpha}{\beta}, 1 \right\}.$$

Fix an $\varepsilon > 0$ arbitrary. Define the sequence $\{\alpha_n\}_{n=0}^{\infty}$ by setting $\alpha = 1 + n\varepsilon$. Then it is easily seen that

$$\bigcup_{\alpha\geq 1} E_{\alpha} = \left(\bigcup_{n=1}^{\infty} E_{\alpha_n}^{\alpha_{n-1}}\right) \cup E_1.$$

If E_1 is not empty, then the set $\{q: g(q) \ge 1/q\}$ is infinite. Hence $\delta(1) = (1+\gamma(1)/1 \ge 1)$. Therefore $\min\{\sup_{\alpha \ge 1} \delta(\alpha), 1\} = 1$ and hence the inequality is obvious. So we may assume that E_1 is empty. For a countable family of sets $\{X_n\}_{n=1}^{\infty}$, the Hausdorff dimension has the following property:

$$\dim_H \bigcup_{n=1}^{\infty} X_n = \sup_{n \ge 1} \dim_H X_n.$$

So we have

$$\dim_{H} E = \dim_{H} \bigcup_{\alpha \ge 1} E_{\alpha}$$

$$= \dim_{H} \bigcup_{n=1}^{\infty} E_{\alpha_{n}}^{\alpha_{n-1}}$$

$$= \sup_{n \ge 1} \dim_{H} E_{\alpha_{n}}^{\alpha_{n-1}}$$

$$\leq \sup_{n \ge 1} \min \left\{ \delta(\alpha_{n}) \cdot \frac{\alpha_{n}}{\alpha_{n-1}}, 1 \right\}$$

$$= \min \left\{ \sup_{n \ge 1} \delta(1 + n\varepsilon) \cdot \frac{1 + n\varepsilon}{1 + n\varepsilon - \varepsilon}, 1 \right\}$$

$$\leq \min \left\{ \sup_{\alpha \ge 1} \delta(\alpha) \cdot \frac{\alpha}{\alpha - \varepsilon}, 1 \right\}$$

TAKANORI HINOKUMA AND HIROO SHIGA

$$\leq \min\left\{\frac{1}{1-\varepsilon}\sup_{\alpha\geq 1}\delta(\alpha), 1\right\}.$$

Since $\varepsilon > 0$ is arbitrary, we have the desired conclusion.

4. Examples

For a function g(q) defined on N, we set

$$a_q = \begin{cases} -\frac{\log g(q)}{\log q} & \text{if } g(q) > 0\\ \infty & \text{if } g(q) \leq 0. \end{cases}$$

Then we see

$$\{q \in \mathbf{N}: a_q < \alpha\} = \left\{q \in \mathbf{N}: g(q) > \frac{1}{q^{\alpha}}\right\}$$

for $\alpha \in \mathbf{R}$. Hence the Hausdorff dimension of E is determined by the distribution of the sequence $\{a_q\}$.

PROPOSITION 4.1. If the cardinality of the set $\{q \in \mathbb{N}: a_q < \alpha\}$ is finite for any $\alpha \in \mathbb{R}$, then $\dim_H E = 0$.

Proof. By the assumption we have $\lim_{N\to\infty} C_{\alpha}(N) = \# \{q \in \mathbb{N} : a_q < \alpha\} < \infty$. Hence from Theorem 4.1, $\dim_H E = 0$.

We may apply Proposition 4.1 for following functions

(1)
$$g(q) = \frac{1}{q^{q}}, \quad \frac{1}{(\log q)^{q}}, \quad \frac{1}{q^{\log q}}, \quad \frac{1}{(\log q)^{\log q}}, \quad \text{etc.}$$

(2) $g(q) = \frac{1}{q^{\varphi(q)}},$

where $\varphi(q)$ is the Euler function.

$$(3) g(q) = \frac{1}{a^q},$$

where a is a constant with a > 1.

$$(4) g(q) = \frac{1}{q!}.$$

By Theorem 1.1, we have

PROPOSITION 4.2. If the sequence $\{a_q\}$ is distributed in an interval [s, t] $(2 \le s \le t)$ in such a way that the limit

$$\lim_{N\to\infty}\frac{\#\{q\leq N: a_q\in[s, \alpha]\}}{N^r}$$

exists and its value is positive for any $s < \alpha$, where γ is a constant $0 < \gamma \leq 1$, then

$$\dim_{H} E = \frac{1+\gamma}{s}.$$

We can apply Proposition 4.2 for following cases:

- (1) $\{a_q\}$ is uniformly distributed in [s, t]. Then $\gamma = 1$ and $\dim_H E = 2/s$.
- (2) $a_q = s + |\sin q|$.

The sequence $\{q/\pi\}$ is uniformely distributed in [0, 1] mod 1. Hence $\{a_q\}$ satisfies the condition of Proposition 4.2 for $\gamma=1$ and $\dim_H E=2/s$.

Example 4.3. We set $a_q=s+k$ if $q\equiv k \pmod{n}$, where *n* is a fixed natural number and $s (\geq 2)$ is also fixed. Then if $s+k < \alpha \leq s+k+1$,

$$C_{\alpha}(N) = \#\left\{q \leq N : \frac{1}{q^{a_q}} > \frac{1}{q^{\alpha}}\right\}$$
$$= \#\left\{q \leq N : q \equiv 0, 1, \cdots, k-1 \pmod{n}\right\}$$
$$\sim \frac{k}{n}N.$$

Hence $\gamma(\alpha) = 1$ and we have

$$\dim_{H} E = \sup_{s < \alpha} \frac{2}{\alpha} = \frac{2}{s}.$$

References

- [1] I. BOROSH AND A.S. FRAENKEL, A generalization of Jarník's theorem on Diophantine approximations, Indag. Math., 34 (1972), 193-201.
- [2] K.J. FALCONER, Fractal Geometry, John Wiley and Sons, 1990.
- [3] K.J. FALCONER, The Geometry of Fractal Sets, Cambridge University Press, 1985.

DEPARTMENT OF MATHEMATICS College of Science University of the Ryukyus Nishihara, Okinawa 903-01 Japan