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HAUSDORFF DIMENSION OF SETS ARISING

IN DIOPHANTINE APPROXIMATION

TAKANORI HINOKUMA AND HIROO SHIGA

Abstract

Let g(q} be a nonnegative function on the set of positive integers. We
studied the Hausdorff dimension of a set

Eg=\x^[Q, 1] : x— — <g(q) for infinitely many — i .

We prove a generalization of a result of I. Borosh and A. S. Fraenkel.

1. Introduction

It was shown by Jarnίk and Besicovitch that the Hausdorff dimension,
denoted by dim//, of the set of real numbers for which there exist infinitely
many rationals p/q satisfying

*-£
q

1

is min{2//3, 1}. In 1972 Borosh and Fraenkel extended the above result in the
following way. Let X be a subset of positive integers having infinitely many
elements and set

:={xe[0, 1]: x— /> <—-5- for infinitely many — with
q q

THEOREM B-F ([!]). Let VQ be a real number satisfying the following two
conditions :

( i ) Σίq^j:q~v° is divergent,
(ϋ) Σ<ZGJ: <?~i/0~ε is convergent for every ε>0.

Then dim£r^=min{(l+v0)/j8, 1}.

The purpose of the present paper is to study the Hausdorff dimension of a
set
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Eg— j;te[0, 1] : x— — <g(q) for infinitely many
*• q Q

where g is a nonnegative function on the set of positive integers. We set

Cα(ΛO=the cardinality of the set q^>N:

and

Then we shall prove the following result :

THEOREM 1.1.

dimH E g=m'm\sup δ(a), Ik
I a^l }

where

ί(α)= a

0 otherwise.

Let f(q) be a function on the set of positive integers with the values 0 or
1. We consider the case

In this case, Ca(N) is equal to the cardinality of the set {q^=N: f(q)=l] if
a^cto and Ca(N)=0 if a<a0. Then δ(a)=(l+γ(a0))/a if a^aϋ and d(α)=0 if
a<a0. In this situation, we denote Ef/q

ao by £/ for simplicity and set γ0=
γ(a0). Then Theorem 1.1 reduces to the following

PROPOSITION 1.2.

cΓ F — ' -ί *"^° llH f~~ \ a0 ' I '

Set f(q)=l if ^e J7 and f(q)=Q if <?^-£. Then Theorem B-F can be obtained
from Proposition 1.2 by proving

^0=70.

We prove Proposition 1.2 and v0=γ0 in §2. A proof of Theorem 1.1 is
given in §3. In §4, some examples are given.

2. Proof of Proposition 1.2

In this section, we give the proof of the Proposition 1.2. We first show
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the inequality άimH(Ef)^(l+γ0)/aQ. For each positive integer qy we set

P, 1]: x — — <~^~ for some integer p\ .

Then Fq consists of q—l intervals of length 2f(q)/qa° and two end intervals of
length f(q)/qa". Clearly, EfC.{Jq=k Fq for each positive integer k, so taking
the intervals of Fq for q^k as a cover of Ef gives that

If 2/ka«^δ, where Ms

a(E) is the infimum of ΣΓ=ι|ίΛ s over all countable δ-covers
{t/J of £. The right hand of the above inequality is smaller than

β 9 «.-'

Hence if the series Σ<Γ=* f(q)/Qs<XQ~l converges, then the Hausdorff s-dimensional
measure Ms(Ef)=Umδ_>0M

s

d(Ef)=Q.
Fix a positive real number γ with 7>7V Let Cf(N) be the cardinality

of the set {q:q<N and /(^)=1}. Note that C/(N)=CΛo(ΛO Then, for
lim ̂ oo C/(N1/0/N=lim^βo 0X^/^=0, there exists an integer NQ such that if

then CfW^N. We define Mfe by Cf(Mk)=kN0 (k=l, -)• Since
), we have

Set
)=l and

then #Mk=NQ from the definition of MΛ. Now we have

0 yy(S«0-ι ) / r ^(βα 0-ί)77" '

If s>(l+τ )/α0, then Σ£Ul/& ( S α°~1 ) / r is convergent. Hence if s>(l+γ)/α0 we
have 4Cs(Ef)=Q and therefore dim#(£/)^(l-|-7)/a!o for any 7>^0 This implies
that dimH(£/)^(H-7o)/α:o.

We need some lemmas to prove converse inequality. Let Cf(N, M) be the
cardinality of the set {q:N^q<*M and /(#)=!}. We set

LEMMA 2.1.
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Proof. It is clear that O^TΊ^ Ό. Hence it is sufficient to show that 7Ίέ?v
We can assume that γ0 >0. Let ε be a positive number with γ0— ε>0 and {n3}
be a sequence of positive integers such that

it is possible to choose such a sequence as above by definition of γ0. We divide
the interval [1, n^ into &-small intervals

n,\ Γ n j _ ^ \ Y
'"^'LF' 2*- 1/' ' L

where k is the greatest integer satisfying £<log2n ;. Let m be the number such
that Cf(nj/2m+1, nj/2m) is the greatest among Cf(nj/2l+1

t Hj/21), /=0, 1, •••, k.
Let Mj—nj/2m. Then Mj-^oo if /-*oo. Because if Mj<K for some con-

stant K, then we have

nεj nrj° ε—»co (y_>oo).

This is a contradiction.
Now for 70 — ε>0,

Since C/Cw^/GoggW^wϊ 0" 9-*^ (/— >oo) we have

Hence ^I^TΌ— s Since ε can be taken arbitrary small, it follows that γ^γQ.

Let P(N)=Nr*/Cf(N, 2N). Then by Lemma 2.1

limW sP(AO=: + oo and Hm N" P(N)=0
ΛΓ-*oo ΛΓ-oo

for any ε>0. So, for each ε>0, we choose a sequence of positive integers
{Nj} such that N^ZN^ and

+ oo and

First we consider the case a?0>l+?V Set Lj={Nj<q<2Nj : f(q)= 1} and
#L,= Cf(N,,2N3\ Then^ljP(Nj)/Nr

J

Q=L Let L,= {̂ , - , ?,,} with N,^
^2< ••• <Qij^2Nj. Let (59A be the set of reduced fractions /?/<?* in the
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interval [0, 1] whose numerators p are prime numbers. Let Gqι—Gqι and let
Gg2cGg2 be the set of reduced fractions t2/q2 in the interval [0, 1], whose
numerators are prime numbers, satisfying

( i ) A_A
#2 Ql

for any element tl/ql of Gqι.

LEMMA 2.2.

Proof. If t2/qz satisfies the inequality

\tzQi —ttfzl >—7Γ
(logΛO)2

for any tl/ql^Gqι, it satisfies (1) for any tJq^Gq^ So we count up the
number of fractions tz/q2 which satisfies

/ Γ\ \ I » , I ̂

for some tl/ql^Gqι. Since the number of solutions (tlt t2) of the equation

\tzQi—tιQ2\=k (k is a positive integer)

in the range O^fi^tfi, 0^ί2^^2 is at most two, the number of reduced fractions
£2/42 which satisfies (2) for some tl/q1^Gqι is at most SNj-^P(Nj)/(\ogNj)2.
Hence we have the lemma.

Now we inductively define GqkdGqk. Let Gqk be a set of reduced fractions
with prime numerators which satisfies

qk q

for all ί/tf^UtίG^i Then by the similar argument as the proof of Lemma 2.2,
we have

Set #,=UUαGgjb and Hj=\Jl

kLιGqk. Then we get

LEMMA 2.3.
MM
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Proof. By the preceeding discussion, we have

Therefore we have

N?

since

Now we complete the proof of Proposition 1.2. For any two different
elements pjri and />2/r2 of #,, we have

Set

and

, 1]: *--
qa» I

j= U

Then the distance between two different intervals Ip/q and IpΊq is at least

2

for sufficiently large 7V;, since l-{-γo<a0.
Let EQ^EO, 1] and E3 the set of intervals of K3 which are completely con-

tained in some of E3^. Then the intervals of E3 are separated by gaps of at
least

P(N3) 1
J

Let /=[fl, ft]C[0, 1] be an interval with |/|>3/A/ ;. We count the number of
intervals of K3 in /.

LEMMA 2.4. The number of intervals of K3 contained in I is at least

for sufficiently large Nj.

16 log W, '
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Proof. The number of rationale in I whose denominators are qk and
numerators are prime is equal to the number of primes in the interval [_aqk, bqk~\.
By prime number theorem there are at least

I / bqk aqk \
2

primes in \_aqk, bqk~\. Then we have

I / bqk _____ aqk \
2 V log bqk log aqk ) 4 log qk 4 log qk

/ bqk _____ aqk \ 1 (b-a)qk __. 1 q k \ I \
) 4 ' '

8 ' log Nj '
Then by Lemma 2.3,

8 logΛT, (logN,)2

^16 log N}'

Hence at least Λf/, |/ |/161ogΛΓ, intervals of K3 are contained in 7 for sufficiently
large N3.

We can take the sequence {Nj} to satisfy the inequality

2 ^ 64

As the length of each interval in E3_v is at least 2/(2NJ_l)
OC(), by Lemma 2.4,

Ej-i contains at least

j 16 log N, logJV,

intervals of /Γ,, where c— Iθ"1^"^0 and we set ml=l. By choosing a subsequence
of TV,, we can assume that logΛf ;>/ logN ;_ι. Then clearly ε^>ε;+1 for sufficiently
large /. By Example 4.6 (p. 58) in [2], we have

The numerator can be rewritten as following:
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••• H-logA/,_2)

372

----- HoglogN;_2)

-(log />(#,)+

Since \ogNj>j logW,_i we have

We may assume that NjP(Nj)>l and NjεP(Nj)<l for all . Then Njε<P(Nj)
<Nε

} and hence

Hence we have

Thus the principal term of the numerator is (l+^logΛΓ,.,—\ogP(Nj. t)>
,.!, and that of denominator is α0logJV,-ι. Hence we get

If Λ:eE^ for all /, then x lies in infinitely many of the Fq and so
Therefore

Since ε>0 is arbitrary, we have dimH

Finally we consider the case α0^ It is clear that

for any positive number ε. Then we have from our preceeding results

for any s>0. Hence we get

άimHEf°=l.

We now show a lemma to obtain the Theorem B-F from Proposition 1.2.
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LEMMA 2.5. The critical exponent v0 of

is equal to ^supfr: Πrn^ooCXW)/Nr>OK where Cj;(N)=#{q^N :

Proof. Let v<;v We can choose a sequence {JVJ with Λf/— >oo (2— >oo)
such that Cj;(Nl)>2Nv

l. We also choose a subsequence {Z^} of {-/VJ such that

Then we have

We set JCi={q&£\ L3_γ<q^L3}. Then

> f ! l=co.

When v>7o> we can show that the series 25e^l/^y is convergent by the
same way used in the proof of the inequality άimHEf^(l+γ0)/a0.

3. Proof of Theorem 1.1

In this section, we prove the Theorem 1.1. Let g be a nonnegative function
defined on the set of all natural numbers. Let

= [0,1]: x — A <g(q) for infinitely many q\.

Set

for α^l, where Ca(N) is the cardinality of the set {q^N: g(q)^l/qa}. We
define a function δ(a) as follows

0 otherwise.

Then we have

THEOREM 1.1.

Eg=mm\^upδ(a)ί 1\.
(a^l )
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Proof. Set

— <g(q) for infinitely many q\ ,0, 1] : x — —
Q

and

0, 1] :

x~£
Q

x— —

<g(q) and #(0)^— for infinitely many q\

and g(q}<~^- for infinitely many

Set Foo— ΓWfci^α then it is clear that

We can show that dimHF00=Q as follows. Let

Ga— |*e[0, 1] : *— — <— - for infinitely many q\.

Then we have

for α^l. Hence dim^Fco^dimGα=2/α. Since a is arbitrary large, dim/yKo—O.
Therefore dim^(E— \Jαii Eα)=0 and hence dim#£=dim\J«;>ι£α.
First we show the inequality dimjyE^min{supαϊ>ιδ(α), 1}. Set

Ha={xe[Q, 1]: 4^ for infinitely many <?},

where ΛΛ={^e^V: g(q)^l/qa} and λ^Λ is the characteristic function of Aa.
Then by the Proposition 1.2, we have

dimHHa=mi FM
if Aa is an infinite set and dimHHa=Q if Λα finite. Hence dim##α==nιin{d(α), 1}.
Since £αZ)//α,

dim^ Eα^dimjy7/«—min{5(α), 1}.

Therefore
dim^ £"—dim# \J ̂ α^

«), i}
3upδ(α), ll.
α^l J

Next, we show the converse inequality dim#£^min{suραδld(#), 1}. For
positive real numbers a, β such that a>β, we set
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0, 1] :

and

x --

x-—

<g(q) and —j>g(q)>— for infinitely many q\

for infinitely many

It is clear that E$dH$. So we have, by using Proposition 1.2 again,

if Aa is infinite and di ^O if Aa finite. Hence

£^min{s(tf) - , l}.

Fix an ε>0 arbitrary. Define the sequence {an}%=Q by setting a
Then it is easily seen that

If /t! is not empty, then the set {q : g(o)^l/q} is infinite. Hence δ(l)=
(1+7(1)/1^1. Therefore min{supαέl^(α), 1}=1 and hence the inequality is
obvious. So we may assume that E1 is empty. For a countable family of sets
{Xn}%=ι> the Hausdorff dimension has the following property:

So we have

0 Xn=sup άimHXn

\J Ea

in^δ(α:n) -- — , l l
I ^n-i ^

s)-^— - , li
1 + nε — ε I

a) — — , 1\
a— ε J
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^minj- -- supd(a), li.
1 1 — ε a^i J

Since ε>0 is arbitrary, we have the desired conclusion.

4. Examples

For a function g(q) defined on N, we set

„= «
if

Then we see

for a^R. Hence the Hausdorff dimension of E is determined by the distribution
of the sequence {aq}.

PROPOSITION 4.1. // the cardinality of the set {q^N: aq<a} is finite for
any a^R, then άimHE— 0.

Proof. By the assumption we have limiV-,ooCa(AO— #{q(=N: aq<a}<°o.
Hence from Theorem 4.1, dim#£=0.

We may apply Proposition 4.1 for following functions

( 2 )

where φ(q) is the Euler function.

(3)

where a is a constant with

(4) gW=~q\'

By Theorem 1.1, we have

PROPOSITION 4.2. // the sequence {aq} is distributed in an interval [s, ί]
(2^s^0 in such a way that the limit
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N:aq<=ls, a]}
NT

exists and its value is positive for any s<α, where γ is a constant 0<7^1, then

We can apply Proposition 4.2 for following cases:

(1) {αj is uniformly distributed in [s, ί]. Then 7=! and dimH£=2/s.
(2) aq=s+ sinq .

The sequence {q/π} is uniformely distributed in [0, 1] modi. Hence {αj
satisfies the condition of Proposition 4.2 for p=l and dim^E=:2/5.

Example 4.3. We set αg=s+* if q=k (mod n), where n is a fixed natural
number and 5 (:>2) is also fixed. Then if s+k<a^s+k+l,

• , k—1 (mod n)}

^Ajv
n

Hence f(α)—1 and we have
_ 2_ 2

H s<<* a s
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