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A GENERALIZATION OF THE BIG PICARD THEOREM

YUKINOBU ADACHI

Introduction

The classical big Picard theorem says that any holomorphic map f from
the punctured disk A* into P! which omits three points can be extended to a
holomorphic map f: A— P'. After Kobayashi’s fundamental work [14, VI],
Kiernan [9] generalized this theorem to the following result.

Let B an analytic subset of the complex manifold N whose singularities are
normal crossings and let M be a hyperbolically imbedded subspace of the complex
space X. Then any holomorphic map f: NN\B—M can be extended to a holomor-
phic map f: N—X.

And Fuyjimoto [5] obtained the following another generalization of the big
Picard theorem.

THEOREM. Let B be a regular analytic subset of a complex manifold N and
let M be the complementary domain of n+2 hyperplanes in general position in
P Let f: NN\B— M be a holomorphic map. Then either the image f(N\B)
lies in a diagonal hyperplane in P" or f can be extended to a holomorphic map
f: N—-P",

The purpose of this paper is to consider a generalization of the big Picard
theorem of Fujimoto’s type for any holomorphic map f: A*—P>\A where A is
a curve in P? with 4 or more irreducible components in general position in a
certain sence (Theorem 10.1) and for any meromorphic map f: N\NB — P® 4,
where N is an arbitrary manifold, B is a proper analytic subset of N and A
is the same of the former case (Theorem 12.1). To prove the former result,
Kizuka’s theorem in [11] (see Theorem 7.1 in this paper) as well as Fujimoto’s
theorem play an important role.

Chapter I. Preliminaries
1. Degeneracy locus of the Kobayashi pseudodistance

Throughout the sections 1~3, let X be a complex manifold of dimension n
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with a hermitian metric ds? and let M be a relatively compact subdomain of X.
Denote by du(p, q) the intrinsic pseudodistance of two points p and ¢ of M
introduced by Kobayashi [13]. In [3] we extended d, onto the closure M of
M in X as follows:

For p, g=M, we define

du(p, @)= lim du(p’, ¢ D', q/EM'
p'~p.q'~q
It is clear that 0=<dx(p, q)< oo and du(p, )=<du(p, ¢)+dulq, r) for p, g, reM.

DEFINITION 1.1. We call peM a degeneracy point of d, if there exists a
point geM\{p} such that du(p, 9=0. By Sx(X) we denote the set of the
degeneracy points of d, on M and call it the degeneracy locus of d, in X.

We studied properties of Sy,(X) in [3] and [1]. Let us recall and study
some results.

We denote the disk {z€C'; |z|<r} by A(r) and A(l) by A. We have then,
by Royden [18], the following criterion for the degeneracy points of d .

LEMMA 1.2. p is a degeneracy point of dy in M if and only if there exists
a sequence of holomorphic maps f,: A—>M(v=1, 2, ---) such that lim,.. f,(0)=p
and limy.. ||f,/(0)]|=c0, where f,/0)=df, (d/dw|w=o) and |-|| is the norm with
respect to the hermitian metric ds®.

Proof. Assume that there exists a sequence of such holomorphic maps f,.
Let U be any closed neighborhood of p in X which is biholomorphic to the
closed unit ball {(z,, ---, z,)€C™; 3|z, |2<1}. From Schwarz lemma, for any
positive number <1, there exists a v such that f, (A(»))ZU. Therefore, there
exists a sequence of {w;}a-1 ... such that lim;..w;=0 and f”(wl)eaU. By
taking a subsequence we may assume f,,(w;)—¢€dU. Then dy(p, ¢)<lim; .
du(fu(0), fo(w2)=lim;.e da0, wy)=0. So, pisa degeneracy point of dy in M.

Next, we assume that there exists a point g M\{p} such that du(p, ¢)=0
and there is no such a sequence of holomorphic maps f,. Then there exist a
neighborhood U of p in X and positive constant ¢ such that ¢&U and for every
point reUNM and v,eT, (M), Fy(r, v,)=cllv.|, where T.M) is the tangent
space of M at » and Fy(r, v,) is the Royden function. (cf. [18]). We take a
neighborhood V of p such that V&EU and r& VN\Mand seU°N\M. Let y(t) be
any piecewisesmooth curve on M such that y(0)=r and y(1)=s. From [18]

dulr, s)=i1;fS:FM(7(t), (t)dt

zinfe-| Iy ldt

=c-dist(@V, oU)>0,
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where E={t=[0, 1]; y(®U}. This contradicts to dx(p, ¢)=0. O
PROPOSITION 1.3. Sy(X) is a closed subset of X.

Proof. Let p,eSy(X) such that lim,..p,=p and let U be any closed
neighborhood of p in X which is biholomorphic to the closed unit ball. We
may assume that p,&U for every v. From the proof of Lemma 1.2, there
exists ¢,&0UNM such that du(p,, ¢,)=0 for every v. By taking a subsequence
we may assume ¢,—¢<0U. Then p=Sy(X) by the definition of d,. O

DEFINITION 1.4. (cf. [6], [19] and [21]). A closed subset E of X will be
called a pseudoconcave subset of order 1, if for any coordinate neighborhood

U: |z1<], -, lza1<1

of X and positive numbers 7, s with 0<r<1, 0<s<1 such that U*"\E=0, one
obtains UNE=0, where

Ur={pelU; |a(p)|=rtU{pel; s max lz:(p)I}
In [3], we proved the following theorems.
THEOREM 1.5. Sx(X) is a pseudoconcave subset of order 1 in X.

THEOREM 1.6. If Sy(X) ¢s an analytic subset of dimension 1 of X, then
each irreducible component of Sy(X) is of genus <1.

Let S be an analytic subset of X. The following deflnition is due to
Kiernan-Kobayashi [10] (cf. also Lang [15], p 37).

DEFINITION 1.7. M is hyperbolically imbedded modulo S in X if, for every
pair of distinct points p, g=M not both contained in S, there exist neighbor-
hoods V, and V, of p and ¢ in X such that dx(V,N\M, V,N\M)>0.

It is easy to see the following propositions.

PROPOSITION 1.8. M s hyperbolically imbedded modulo S in X if and only
if, for every pair of points p, g=M such that du(p, q)=0 not both contained in
S we conclude p=q.

PROPOSITION 1.9. If M is hyperbolically imbedded modulo S in X, then
Su(X)CS.

DEFINITION 1.10. (cf. Lang [1?_], p 32). Let {p,} and {q,} be two sequences
in M converging to points p, ¢ in M respectively. M is hyperbolically imbedded
in X if lim,..du(p, ¢»)=0 then p=g.
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It is easy to see the following

PROPOSITION 1.11. M is hyperbolically imbedded in X if and only if Su(X)
=0.

2. Basic theorem for an extension of a holomorphic map

LEMMA 2.1. Let f,: A*>M be a sequence of holomorphic maps and let {z,}
be a sequence in A* converging to 0 such that fuz,)— p&ESu(X). Then f.(p.,)—
p(y—o0), where p,={z&C; |z|=|z,]}.

Proof. For every 2,=p,, we have the following inequality :

limy—roo dM(fv(gv); P)ﬁlimweo dM(fv(gl’)’ f,,(Z.,))
<limyoe da*(Z), 2,).

Since da*(2,, z,) ~ O(1/loglz,]) (cf. [14], p 81), and p&ESK(X), then fu(2,)—
p(y—mo). D

The following theorem is basic for an extension of a holomorphic map.
The proof is essentially same as Kiernan’s proof (cf. Theorem 1 in [9]).

THEOREM 2.2. Let f,: A*—M be a sequence of holomorphic maps. If there
is a sequence {z,} in A* converging to 0 such that f.(z2,)—p&ESy(X), then f(z,)
—p for every sequence {z,’} in A* converging to 0.

Proof. We show that it is absurd if we assume that there is a sequence
{z,’} converging to 0 such that f.(z,/)—q¢#p.

(i) Assume that |z,|<]|z,/| by taking a subsequence and relabelling. There
exists the closed neighborhood I of p in X which is biholomorphic to the closed
unit ball B={(w,, -, w,)€C"; 3%, |w,|*<1} such that TNSy(x)=0 and ¢ U
from Proposition 1.3. Let » be sufficiently large such that f.(p,)CU and let
R, be the largest annulus such that p,CR, and f (R, CU where p,={z&C;
|z|=|z,|}. Then there exist a,=0 and b,<1 such that R,={z€A*; a,<|z|<b,}.
We can assume that either a,%0 or a,=0 for every v by taking a subsequence
and relabelling. We consider the former case flrst. Let o,={zcC; |z|=a,}
and r,={zeC; |z|=b,}. Then there exist a,=0, and B,=7, such that f.,(a,),
f{B,)€dU. By taking a subsequence and relabelling, we may assume f,(@,)—
¢'€dU and f,B.,)—¢”€0U. Since a,, b,—0 and ¢, ¢"&Sx(X), fi(0,)— ¢’ and
fuzy) — ¢” from Lemma 2.1. By rotating B if necessary, we can assume that
|wy(¢")|=06">0 and |w,(¢”)|=6”">0. By the argument principle, for all suffi-
ciently large v we have
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[, dtogtwierimr—wie £z

={_dtog(w.e fu@)—wse fue)=0.
On the other hand, we have

S, d log(w, = f(2)—wyo f1(2,)

- g _ dlog(wiefu(D)—wief ()

=2ni(N—P),

where N and P are the number of zeros and poles of the function w;ef,(2)—
wye fy(z,) on the annulus R,. This is a contradiction since N>0 and P=0.

If a,=0 for every y, f, extends holomorphically to A(b,) with f,(0)in B by
the Riemann extension theorem since f,(R,)CU. Setting ¢,=0, the argument
used in the preceding paragraph leads to a contradiction. This proves the
theorem in case (i).

(ii) Assume that |z,’|<|z,| by taking a subsequence and relabelling. There
exists the closed neighborhood U of p in X which is biholomorphic to the closed
unit ball B such that UNS,(X)=0 and ¢¢U. Since f.(z,/)—¢ (v—o0) and f.(p,)
CU for sufficiently large v where p,={z=C ; |z|=|z,|}, there exists z,” such
that |z,”|<|z,| and f.(z,”)€dU. By taking a subsequence and relabelling, we
may assume that f,(z,”)—redU. Since r¢&Sy(X), there exists a closed neigh-
borhood T’ of » in X which is biholomorphic to the closed unit ball B such
that O’NSy(X)=0 and U’%p from Proposition 1.3. By considering », p, z,”
and z, in place of p, ¢, z, and z,’, we can reduce to case (i). O

We obtain

COROLLARY 2.3. Let f: A*—M be a holomorphic map. If there is a se-
quence {z,} in A* converging to 0 such that f(z,) — p&Su(X), then f can be ex-
tended to a holomorphic map f: A—X.

COROLLARY 2.4. Let f,: A*>M be a sequence of holomorphic maps. Assume
that each f, can be extended to a holomorphic map f,: A—X. If there exists a
sequence {z,} in A* converging to 0 such that f.(z,)— p&ESy(X), then f,0)— plv

—00).

Proof. 1If there is a subsequence {v;} of {v} such that fv;(0)— ¢#p, then
there exists a sequence {z,”} in A* converging to 0 such that f,,(z2”)—¢. This
is a contradiction since for every sequence {z,’} in A* converging to 0, f,(z,))—p
from Theorem 2.2. 0
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3. Cluster set of a holomorphic map f: A*—M at 0

According to Nishino-Suzuki [16], we define and study cluser sets. We
denote the punctured disk {zeC ; 0<|z| <p=1} by A*(p). Let f: A*—>M be a
holomorphic map.

DEFINITION 3.1. We define the cluster set f(0: X) of f at 0 by
FO: X)= 1 F(A¥(p)),
>0

where f(A*(p)) is the closure of f(A*(p)) in X.

It is easy to see that f(0: X) is either a single point or a continuum.
From the Riemann extension theorem we have

PROPOSITION 3.2. If f(0: X) is contained in a coodinate neighborhood of
X, f can be extended to a holomorphic map f:A—X and then f(0: X) is a single
point of X.

DEFINITION 3.3. We call a holomorphic map f: A*— M has an essential
singularity at 0 if f(0: X) contains at least two points.

THEOREM 3.4 (cf. Theorem 1 in [16]). If a holomorphic map f: A*— M
has an essential singularity at 0, f(0: X) is a pseudoconcave set of order 1.

Proof (The following proof is essentially the same of [16]). Assume that
there is a coordinate neighborhood U in X which is biholomorphic to the poly-
disk {(z1, 23, =+, 2,)EC™; |2,|<1(A<i<n)} such that f(0: X)NU+0 and f(0:
X)NU*x0, where U*={pcU; |z(p)|Sr}U{pelU; sSmaxssica|2:(p)|} 0<r<
1, 0<s<). Zip)=2;2f(2) is a holomorphic function in D=f"'(U) (x0). We
can choose a positive real number ¢ such that e<r<l—e, s<1—2¢ and f(0: X)
NUx0, where U.={pelU; |z(p)|<l—e (1<i<n)}. Consider in A*(p) (0<
p<1) the inverse image f~'(U)NA*(p)=D,(x0). We may assume that D,=
A*(p) for every p>0 since if D,=A*(p) for a p, f(A*(p))CU. and f(0: X) is a
single point from Proposition 3.2. So the origin z=0 belongs to the accumula-
tion points of the boundary y of D, in A*(p). Since f(0: X)NU*=0, we can
find a >0 such that

(i) for zeD, e<|Z\(2)|<l—e and |Z(2)|<1—2¢ 2<i<n)
and

(i) |Z(l=1—¢ for er.

From Theorem in T6ki [21], lim,epp,,*olZl(z)]=1——s. Then f(0: X)NU.=0.
This contradicts to the definition of U.. [

From Theorem 3.4 and a property of the pseudoconcave set of order 1,
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we obtain

PROPOSITION 3.5 (cf. Proposition 3 in [16]). If a holomorphic map f:A*—
M has an essential singularity at 0 and f(0: X) is contained in an analytic subset
C of dimension 1 of X, then f(0: X) is also an analytic subset of dimension 1
of X composed of irreducible components of C.

From Corollary 2.3 we obtain

THEOREM 3.6 (cf. Proposition 2 in [16]). If a holomorphic map f: A*—M
has an essential singularity at 0, then f(0: X)CSu(X).

4. Nonhyperbolic curve and hyperbolic curve

Let X be a compact complex manifold of dimension 2 and let A be a curve
in X. In [1], we defined a nonhyperbolic curve with respect to A as the fol-
lowing

DEFINITION 4.1. An irreducible curve C in X is a nonhyperbolic curve
with respect to A, if the following condition is satisfied:

In case C A, the normalization of C\A is isomorphic to either a smooth
elliptic curve, P!, C or C*=C~{0}. In case CCA, the normalization of C\A’
is isomorphic to either a smooth elliptic curve, P!, C or C*, where A’ is the
union of the components of A except C. (A’ may be 0).

DEFINITION 4.2. An irreducible curve C in X is a hyperbolic curve with
respect to A, if C is not a nonhyperbolic curve with respect to A.

If C is a nonhyperbolic curve with respect to A such that Cd A, then CC
Su(X) since there is a nonconstant holomorphic map f: C—C\A where M=
XNA. In [1] we showed the following.

THEOREM 4.3. Let A be a curve in P% Set X=P? and M=P*A. If
Su(X) is a curve in X, then Sy(X) is composed of nonhyperbolic curves with
respect to A.

COROLLARY 4.4. Let A be a curve in P Set X=P*? and M=P>A. If
Su(X) is a curve in X and an irredncible curve C in X is a hyperbolic curve
with respect to A, then CQSy(X).
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5. Fundamental lemma

Let Y=P? and LP=Y\(H,\\J-*\UH,,,) where H,, ---, Hp,; are p+2 hyper-
planes in P? in general position. Following Cartan [4], we represent Y and
L? as follows. Let (wy, -+, wp,1) be homogeneous coordinates for P?*' and
imbed Y in P?*! as the hyperplane Y ={(w,, -+, Wy )EP?™; wo+-++wp,;=0}.
Without loss of generality, we may assume that H,= {(w,, -, Wy, )€Y ; w,=0}
and therefore L?={(w,, -, Wp,)EPP™; we+--+w,,;=0 and w;x0 for y=0,
-+, p+1}. We now define an analytic subvariety Ad of Y. It will be the
union of a particular set of hyperplanes which we shall call diagonal hyper-
planes with respect to H,, -+, Hp,;. Let J be the set of subsets of {0, ---, p+1}
which consist of at least two elements and not more than p elements. For /=
{1, =, 1k €Y, we set A;={(w,, -, Wp41)EY ; wjs+ - +w;,=0} and define
As=UjresA;r. Note that if I’ is the subset of {0, ---, p+1} complementary to
Iy, then A;'=A;.

Kiernan-Kobayashi [10] showed the following

THEOREM 5.1. L7 is hyperbolically imbedded modulo Ay in Y.
Next lemma is fundamental for our work.

LEMMA 5.2 (cf. [2], pp. 454-456). Let A,, ---, A, be [4+1 (I=n+1) distinct
irreducible hypersurfaces in P"™ and set A=A\ ---\UA,. Then there exists a
rational map G: P"—P? (p=2) such that Glpr\g: P"™NA—L?'=Y\(H,U --- UH,)
is holomorphic, G(P™ A)TA,; and the rank of G is always =1.

Proof. Let P, (z,, -+, z,) (0=<7=!) be homogeneous polynomials which take
zeros only on A, respectively, where (z,, ---, z,) are the homogeneous coordi-
nates for P*. We may assume that P,’s are of the same degree d. Let F be
the rational map P™ to P! defined by y,=F,, -, y:=P;,, where (y,, -+, y;) are
the homogeneous coordinates for P!. Since the rank of F is <n, the image of
F is contained in a hypersurface S of P!. Let us write the defining equation
of S as follows:

Ecx.yozo. .ylxl—_-o,
P

where ¢;%0, A=(4,, ---, 4;) and 1,’s are nonnegative integers such that A,+ -
+4,=N (a positive integer). Set G;=c,-Py%- .- -P,*t, Then {G,} are homo-
geneous polynomials of z, -+, z, of degree d- N and satisfy >}; G;=0 and G0
on P™A. Let {G,, -+, G,} be a subset of {G,;} which satisfies Go+ - +G,
=0 and every subtotal of G,, ---, G, is not identically zero. We consider the
rational map G of P" to Y={(w,, -, wp)eP?; wo+ -+ +w,=0} by (G, -+, Gp).
Since A,, -+, A, are all irreducible and distinct, A2’ implies G,;/G, =
constant. Therefore, we have p=2 and the rank of G is always =1. O
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COROLLARY 5.3. If rank G=1, there is a holomorphic rational function g
on P™ A with lacunary three points.

Proof. It is easy to see that if rank G=1, the normalization of W=
G(P™\A) is isomorphic to P!. Let n: P'-W be the normalization of W. If
7~'G(P™A) is not lacunary three points, there is a nonconstant holomorphic
map h:C—rnY(G(P™A)). Then z-h(C)CA; from Theorem 5.1. By Lemma
5.2, G(P™A)xAqy. So, A;y"\G(P™A) is a set of points. This is a contradic-
tion since ~ is a nonconstant map. Set g=n"'eG. Then g is a holomorphic
rational function on P™\A with lacunary three points. O

6. Rational functions of C- or C*-type

Let A be a curve in P?, f be a nonconstant rational function on P? and
I, be the set of inditermination points of f. According to Kashiwara [8] and
Kizuka [12], we define and study rational functions of C- or C*-type.

DEFINITION 6.1. We call f a rational function of C-type (resp. C*-type) on
P A if f is a rational function on P? and normalization of every irreducible
component of all level curves of f except for a finite number of them is iso-
morphic to C (resp. C*) on P*\(AUI;). (A may be 0).

DEFINITION 6.2. We call a nonconstant rational function f primitive if all
level curves of f are irreducible except for a finite number of them.

From the Stein factorization we have

PROPOSITION 6.3 (cf. Proposition 1 in [12]). For every nonconstant rational
Sfunction f on P? there exists a pair of a primitive rational function f, on P?*
and a rational function © on P such that f=mof,.

It is well known that every irreducible component of all level curves of a
rational function is the same type except for a finite number of them, so we
have

PROPOSITION 6.4. If there are infinite irreducible components of the level
curves of a rational function f on P*\A such that their normarizations are iso-
morphic to C (resp. C*) on P*\(AUlI,), then f is of C-type (resp C*-type).

PROPOSITION 6.5. Let A be a curve in P If there exists a rational func-
tion f of C- or C*type on P*\A, then A must belong to one of the following two
classes of curves.

(i) The sum of compactifications of several irreducible components of the
level curves of f of C- or C*-type on P2
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(ii) The sum of compactifications of several irreducible components of the
level curves of f of C-type on P*® (which may be 0) and an irreducible curve of
genus 0 in P? such that f is of C*-type on P*\A.

Proof. Let us consider the case that f is of C-type on P>\ A at first. In
this case, f is of C-type on P% Suppose that A, is an irreducible component
of A which is not contained in a level curve of f. Then, f|, is a noncon-
stant holomorphic function on A, to P'. Since infinite level curves of f inter-
sect with A,\I,, this is a contradiction from Proposition 6.4.

Next, let us consider the case that f is of C*-type on P*\A. If f is of
C*-type on P2, it is obvious that A is the sum of compactifications of several
irreducible components of level curves of f from the same discussion above.
So, we prove that f is of C-type on P? and A must belong to the class (ii) if
A does not belong to the class (i). Suppose A, and A, be irreducible com-
ponents of A such that they are not contained in level curves of f. Then,
fla, is a nonconstant holomorphic function on A, to P! (=1, 2). This is a
contradiction since infinite level curves of f intersect with A,\J;. Let A; be
an irreducible component of A which is not contained in a level curve of f.
From Proposition 6.3, we may assume that f is a primitive rational function.
Then it is obvious that f|4, : A;—P" is holomorphic and one to one. So, the
genus of A, is 0. O

7. Kizuka’s theorem

THEOREM 7.1 (Theorem 1 in Kizuka [11] and Theorem 0 in [12]). Let A
be a curve in P*®  Suppose that there exists a holomorphic map ¢: A*—P*\A
such that ¢ has an essential singularity at 0 and ¢(0: P>)CA. Then A must be
a nonsingular cubic curve or there exists a rational function f of C- or C*-type
on P*A. In the latter case, A contains at least one irreducible component of a
level curve of f.

Since each tangent line to a nonsingular cubic curve A through any points
of P>\ A intersects with A at most two points, it is easy to see the following

COROLLARY 7.2. Let A be a curve in P®. Set X=P* and M=P* A. Sup-
pose that there exists a holomorphic map ¢:A*—P>A such that ¢ has an
essential singularity at 0 and ¢(0: P )CA. Then Sy(X)=X.

8. Hyperbolicity of P\ A

In this section, let A be a curve with [ ({=4) irreducible components m P2,
Set X=P*? and M=P>A. From Corollary of Theorem in [1] we have

THEOREM 8.1. There are following three cases.
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(i) Su(X)=0.
(ii) Su(X) is a curve in P2
(iil) Sx(X)=X.

PROPOSITION 8.2. If Sy(X)=X, then there exists a holomorphic rational
function g of C- or C*-type on P>\A with lacunary three points.

Proof. From Lemma 5.2, there exists a rational map G: P*—P? (p=2)
such that Glpevs: PANA—LP'=Y\(H, - UH,) is holomorphic and G(P*\A)
&¢A;. From Theorem 1 in [2], rank G=1 if Sy(X)=X. From Corollary 5.3,
there exists a holomorphic rational function g on P*\A with lacunary three
points. From the little Picard theorem, if 4 is a nonconstant holomorphic map
of C to P*\A, g-h=constant. From Corollary of Theorem in [1] there exist
infinite nonhyperbolic curves with respect to A, so they are contained respec-
tively in level curves of g. From Proposition 6.4, g is a holomorphic rational
function of C- or C*-type on P*\A. |

COROLLARY 8.3. If Sy(X)=X, A must belong to one of two classes (i), (ii)
of Proposition 6.5.

Consequently, from Corollary 8.3 and Proposition 6.5 there are criterions
that the case (i) or (ii) of Theorem 8.1 occurs as the following

PROPOSITION 8.4.

(1) If at least one irreducible component of A s of genus =1, Sy(X) 15 a
curve or an empty set.

(2) If at least two irreducible components of A are hyperbolic curves with
respect to A, Sy(X) is a curve or an empty set.

(3) If the singularities of A are at most normal crossings, Sy(X) is a curve
or an empty set.

Chapter II. A generalization of the big Picard theorem (1)

9. Cluster set of a holomorphic map f: A*—~P* A at 0

THEOREM 9.1. Let A be a curve with | (1=4) 1rreducible components in P2.
If a holomorphic map f: A*—P>\ A has an essential singularity at 0, then f(0: P?)
is a curve in P* which consists of nonhyperbolic curves with respect to A.

Proof. Let us consider cases (ii) and (iii) in Theorem 8.1, since in case (i)
0 is a removable singularity of f from Corollary 2.3. In case (ii), it is easy to
prove statements of Theorem 9.1 from Theorem 3.6, Proposition 3.5 and Theo-
rem 4.3. In case (iii), there exists a holomorphic rational function g of C- or
C*-type on P*\A which omits {0, 1, co} from Proposition 8.2. Then gof: A*—
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P'\{0, 1, oo} can be extended to a holomorphic map g-f: A—P! from the big
Picard theorem. It is clear that f(0: P®)C g %d), where d=g-f(0). Since g7 (d)
consists of finite nonhyperbolic curves with respect to A, f(0: P? consists of
finite nonhyperbolic curves with respect to A from Proposition 3.5. |

Remark. In Theorem 9.1, /=4 is a necessary condition for which f(0: P?%
is a curve in P®. For example, f(e'? ¢°*'?): A*—C%x, y)\{x=0}\U{y=0} has
an essential singularity at 0 and f(0: P*)D{y=e¢"}.

10. The big Picard theorem for a holomorphic map f: A*—P>*\A

Let A be a curve with [ ({=4) irreducible components in P? and let f: A*—
P*\A be a holomorphic map. Set X=P? and M=P* A.

From Theorem 8.1 there are three cases (i) Sy(X)=0, (ii) Sy(X) is a curve
and (iii) Sy(X)=X. In case (i), f is always extended holomorphically to
f: A—P? from Corollary 2.3. In case (iii), let us consider f=(z, ¢'/?): A* —
C*x, yN{x=2}U{x=3}U{y=0} for example. Then f(A*) is contained in a
transendental curve {y=e'*}. In case (ii), we show that if f has an essential
singularity at 0, f(A*) is contained in a nonhyperbolic curve with respect to A
in P? and then f is regarded as a function of one variable. Namely, we have
the following

THEOREM 10.1. Suppose that Sy(X) 1s a curve and f:A*—P*\A s a holo-
morphic map. Then f can be extended to a holomorphic map f: A—P*® or f(A*)
CC, where C is a nonhyperbolic curve with resprct to A such that Ca A.

Proof. From the Lemma 5.2, there is a rational map G: P*—P? (p=2)
such that G|p?\4: PNA—LP '=Y\(H,\U --- \UH,) is holomorphic where H,, ---, H,
are p+1 hyperplanes in general position in Y=P?™' and G(P*\A)TA,. Set
V=GP*™A) and W=G(P*\A). There are two cases such that (1) rank G=2
or (2) rank G=1.

At first, let us consider the case (1). According to applying G- f: A*—L?"!
for Fujimoto’s theorem, there are following two cases.

(a) G-of can be extended to a holomorphic map G-f: A—W.

(b) G-f(A¥CANV.

In case (a), set Gof(0)=q=W. Then f(0:P*CG*(g). If 0 is an essential
singularity of f, then f(0: P*)=C,\J - UC, where C, (1=7<k) is a nonhyper-
bolic curve with respect to A such that G(C,)=¢ from Theorem 9.1. In this
case if Gof(A*)=q, then f(A*)CC, for some ;. If G-f(A¥*)=q, there exists a
positive real number p=1 such that G-f(A*(p))>¢q. Therefore, f(A*(p))N\C,
=0 for every ;. Now set A/=AUC,\U - UC, and M'=P>A’". If f:A*p)
—P?* A’ has an essential singularity at 0, then Sy.(X)=X from Corollary 7.2
since f(0: P*)CA’. Then it is clear that Sy(X)=X, so this is absurd. In case
(b), there are two cases such that i) dim (A;N\V)=0 or ii) dim (A;NV)=1. In
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case i), G- f(A¥)=gqA;N\V. Then f(A*)CG '(g). If 0is an essential singularity
of f, f(A¥)CC where C is an irreducible component of G~*(¢) which is a non-
hyperbolic curve with respect to A from Theorem 3.6, Proposition 3.5 and
Theorem 4.3. In case ii), B=G (AsN\V) is a curve in P2 Then, if 0 is an
essential singularity of f, f(A*)CC where C is an irreducible component of B
and ¢ nonhyperbolic curve with respect to A from Theorem 3.6, Proposition
3.5 and Theorem 4.3.

Next, let us consider case (2). From Corollary 5.3, there exists a holomor-
phic rational function g on P* A with lacunary {0, 1, oo}. Then gof:A*—
P\{0, 1, o} can be extended to a holomorphic map g-f:A—P!. Set a=
g°f(0). If ac{0, 1, o}, then f(0: P*)CA. From Corollary 7.2, 0 is a remova-
ble singularity of f. When a& {0, 1, o}, gof=a or g-f=a. In the former
case, f(A¥)Cg ' (a). If 0 is an essential singularity of f, f(A*)CC where C is
an irreducible component of g !(a) and a nonhyperbolic curve with respect to
A from Theorem 3.6, Proposition 3.5 and Theorem 4.3. In the latter case,
there exists a positive real number p=<1 such that gof(A*(p))N {0, 1, o0, a}=0@.
Set A’/=A\Ug™(a)and M'=P*A’. Suppose that f : A*(p)— P>\ A’ has an essential
singularity at 0. Then from Corollary 7.2, S;(X)=X since f(0: P*)CA’. This
is absurd since it is clear that Sy(X)=X. O

Chapter III. A generalization of the big Picard theorem (2)

11. Meromorphic maps

It is well known the following

PROPOSITION 11.1. If the Cousin II problem is solvable in a domain of D in
C*tand f is a holomorphic map of D to P™, then there are holomorphic functions
fi 0<i<n) in D such that there is no common zero of f, and f=[fqo: - : fnl.

DEFINITION 11.2. Let X be a complex manifold, let Y be a compact com-
plex manifold and f: X—Y be a meromorphic map. We denote by /, the set
of the indetermination points of f (i.e. the set of all points {x} of X such that
f(x) is not a single point).

The following proposition is well known. (cf. Noguchi-Ochiai [17], Chapt.
V).

PROPOSITION 11.3. Let X, Y and f be the same in Definition 11.2. Then
i) I, is an analytic subset of X such that codim I,>=2,
ii) f(x) is a compact connected analytic subset of Y such that dim f(x)=1
if x€l; and
iii) flx,: XNI;=Y is a holomorphic map.
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PROPOSITION 11.4. If the Cousin II problem is solvable in a domain D in
C* and f is a meromorphic map of D to P™, then there are holomorphic func-
tions f, (0<i<n) in D such that f=[f,: - : f.] and codimension {z&D; f,(z)=
- fa(2)=0} (=1;) is greater than 1.

Proof. From Proposition 11.3, I, is an analytic subset of D such that
codim I,=2 and f: D\I;—P™" is a holomorphic map. Since Cousin I problem
is solvable in D\I,, there are holomorphic functions f, (0=<¢<n) in D\I, such
that there is no common zero of f, in D\I; and fip,=[fe:-:fal. By
Hartogs theorem, f,’s are holomorphic in D, so f=[f,:-:f,] in D and I,=
{z€D; fo(z)= - =fa(2)=0}. O

DEFINITION 11.5. Let D be a domain of C* and f be a meromorphic map
of D to P™. [f,:-:fa] is a reduced representation of f on D if f,’s (0=i<n)
are holomorphic functions in D, f=[f,::f,] and I;,={zeD; fy(z)= - =

fa(2)=0}.
It easy to see the following

PROPOSITION 11.6. Let N be a complex manifold (dim N=£k=2), let A be an
analytic subset of N such that codim A=2 and f be a meromorphic map of N\NA
to P*. Then f can be uniquely extended to a meromorphic map of N to P™.

It is also easy to see the following

PROPOSITION 11.7. Let f be a meromorphic map of A*XA*' to P™ (k=1)
and let f=[fo:: fa] be a reduced representation of f on A*XA*™. Suppose
fox0. Then f can be extended to a meromorphic map of A* to P™ if and only
if, f1/fo, -+, falfo can be extended to meromorphic functions in A*.

It is well known the following

PROPOSITION 11.8 (cf. Theorem (Levi) in Green [7] and Corollary of Theo-
rem 4 in Terada [20]). Let f be a meromorphic function in A*XA* (k=1) and
not meromorphic in A**', We denote by E the set of (y°)EA* such that f(x,(v°))
is @ meromorphic function of A. Then mes E=0.

It is easy to see the following

PROPOSITION 11.9. Let N be an arbitrary complex manifold of dim=Fk (k=2)
and let f be a meromorphic map of N to P*. If C is an irreducible and locally
irreducible analytic subset of dim=1 in N and C& I, then fl|c: C—P™ is holo-
morphic.

LEMMA 11.10. Let [ be a meromorphic map of A¥*XA* (k=1) to P™ and it
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can not be extended meromorphically to A**'. Then, there is a subset E of A*
such that mes E=0 and for every (yO)&EE, |-y : A*—P™ is holomorphic and
0 s an essential singular point.

Proof. 1t is easy to see the demonstration from Propositions 11.7, 11.8 and
11.9, since the set of (y°) such that {(y)=(y°)}CI, is contained in an analytic
subset of A*.

12. The big Picard theorem for a meromorphic map f: N\B—P* A

THEOREM 12.1. Let N be an arbitrary complex manifold of dim=*Fk (k=1)
and let B be a proper analytic subset of N. Let A be a curve in P? with [ (1=4)
irreducible components. And set X=P? and M=P>A. Assume that Sy(X) is a
curve. If f be a meromorphic map of N\B to M, then f can be extended to a
meromorphic map of N to X or f(NN\B)TC, where C is a nonhyperbolic curve
with respect to A such that CgA.

Proof. 1f k=1, f is a holomorphic map of N\B to M. So, f can be
extended to a holomorphic map of N to X or f(N\B)CC, where C is a non-
hyperbolic curve with respect to A from Theorem 10.1. Therefore we assume
that #=2. Suppose that f can not be extended meromorphically to a neigh-
borhood U of a regular point of B. Since we can consider U=A*XA*"! we
may assume that f|y is a meromorphic map of A*XA*™' to M and f can not
be extended to a meromorphic map of A* to X. From Lemma 11.10 there is a
subset of £ of A*7! such that mes £=0and for every (y°)&EE, f|p=on : A¥*—M
is holomorphic and 0 is an essential singular point. From Theorem 10.1,
F(A*, (y*)C C for fixed (y°)& F where C is a nonhyperbolic curve with respect
to A. Since f is holomorphic in A*XA*'\I;, mes £=0 and the number of
nonhyperbolic curve with respect to A in M is finite, f(A*XA*\I;)CC. There-
fore, f(A*XA* ") C. From the theorem of invariance of analytic relations and
N\B is connected, f(NN(BUI;)CC. Therefore, f(N\B)CC. If f can be
extended meromorphically to every regular point of B, f can be extended to a
meromorphic map of N to X from Proposition 11.6. O

Remark. 1f Sy(X)=0 in the same situation above, f can be always ex-
tended to a meromorphic map of N to X because there is no nonhyperbolic

curve with respect to A.
And if Sy(X)=X, Theorem 12.1 does not hold for example, f=(z, ¢'/?):
A*—C¥x, y)\{x=2} U {x=3}U{y=0}.

COROLLARY 12.2. Let N, B, A, X, M and f be the same in Theorem 12.1.
Suppose that Sx(X) is a curve or an empty set and rank =2, then f can be
extended to a mervomorphic map of N to X.

COROLLARY 12.3. Let A, X and M be the same in Theorem 12.1. Suppose
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that Sy(X) is a curve or an empty set, then any analytic automorphism of M is
the restriction to M of a birational map of X.

13. Application

THEOREM 13.1. Let N be an arbitrary complex manifold of dim=*~k (k=1)
and let B be a proper analytic subset of N. Let X be an arbitrary compact
complex manifold and let M be a relatively compact domawn of X. Suppose that
f is a holomorphic map of N\B to M and f can be extended to a meromorphic
map of N to X. If a point o BN\I; is at most a normal crossing singularity
of B, then f(0)CSu(X).

Proof. We may consider locally, so we assume that N\B=A*X((A*)¥"!"!
XA (0<I<k—1)and 0=(0, ---, 0). Suppose that A*X((A¥)*" 1" 'XAHS(x™, (¥™))
—o0 and f(x™, (y"™)—p&ESu(X) (m—oo). Set fnl(2)=f(x™, 2X(y:™/Iy™]), -,
ZX@e-1™/1y™1)), where (y™)=(.", -, ¥&-1™). Then f, is a holomorphic
map of A* to M, f.(ly™)—p&Sy(X) and [y™|—0 (m—oo), where |[y™|=
Ay ™74+ [ye- ™% Since fn(z) can be extended to a holomorphic map of
A to X from Proposition 11.9, f,(0)=fn(x™, (0))—p (m—oo) from Corollary 2.4.
Since f(x, (0)) can be extended to a holomorphic map of A to X from Proposi-
tion 11.9, f(x, (0))—p (x—0). Suppose that A*X((A*)*~ "X AHS(F™, (§™))—0 and
f@E™, (3™)—qESu(X) (m—co), then we conclude that f(x, (0))—q (x—0) by the
same discussion above. Therefore p=g¢. Since f(0) is a connected analytic
subset of X and dim f(0)=1 from Proposition 11.3, f(0)CS(X). 0

COROLLORY 13.2. Let A be a curve in P* with | ({=4) irreducible components
and its singularities are normal crossings. Then the number of analytic auto-
morphisms of P*\A is finite.

Proof. Set P*=X and M=P™A. Since each irreducible component of A
is a hyperbolic curve with respect to A, Sy(X)is a curve or an empty set from
Proposition 8.4. Let ¢ be an automorphism of P*\A. From Corollary 12.3, ¢
can be extended to a birational map of P2 Since the image of an indeter-
mination point consists of nonhyperbolic curves with respect to A from Theo-
rem 13.1 and it must be contained in A, ¢ is an automorphism of P?. It is
easy to see that the number of automorphism ¢ of P* such that p(A)=A where
A consists of 4 or more hyperbolic curves is finite. OdJ
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